
1/5/2015

1

Getting Started with

Chimera and Python

Finding Chimera
 You download Chimera from the UCSF website:

 http://www.cgl.ucsf.edu/chimera/

 If you need help with the menus, here is a useful link:

 http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/frametut.html

 Then click on “Getting Started - Menu Version”

 For now, you can avoid a lot of the entire tutorial (only the menu version is

currently relevant to the first assignment).

http://www.cgl.ucsf.edu/chimera/
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/frametut.html

1/5/2015

2

Chimera & Python

 Python is part of the Chimera download.

 To get a Python Shell you can use the menu item:

Tools/General Controls/IDLE.

 To make this invocation a bit faster, you can set up an “IDLE button” on

your Toolbar by checking the appropriate box after clicking the “Add

Tool Icon…” on first page of the Chimera application.

 The Python Shell has multiple uses:

 You can test syntax or execution of short Python scripts.

 You can use the Shell window to get output results from a script that is in execution.

 You can also provide input to a running script.

 You can open an editing window that may be used to generate a new Python script or

to modify a recently produced script.

Python Scripts

 Editing of new scripts can be initiated from the Shell with:

File/New Window.

 Any script typed into this editor can be saved using the File menu

of the editor window.

 Later, you can get that same script by using File/Recent Files in

the Python Shell window.

 To run your script, you should save it and then use the

Run/Run Module of the edit window.

 If you have print statements in the script (especially important for

debugging), the print output will be directed to the Python Shell

window.

1/5/2015

3

Python Scripts for Chimera
 Start your script with: import chimera

 To load a PDB file that is resident on your disk use a full path name.

 For example to get file 1k4c.pdb stored in directory Temp:
my_mod=chimera.openModels.open('C:\\Temp\\1crn.pdb',type="PDB")

OR

 To load a PDB file from the RCSB use the PDB id:
my_mod = chimera.openModels.open('1crn', type="PDB")

 Note that “.pdb” is not used in this case.

 The variable my_mod will be a list of open models.

 For a PDB file this list will usually have a single element because the file
contains only one molecule.
 Some NMR derived PDB files contain several models (Examples: 2K9Z, 2L1T, 2KTS)

 Note: Some files, such as .sdf files, can contain several molecules.
 Incidentally: a list of open models will be accessible in the Chimera window by using

Favorites/Model Panel.

The Chimera Object Hierarchy (1)

 You can experiment with the Chimera object hierarchy by using the

Python Shell to fetch the file for crambin from the PDB:

>>> import chimera

>>> openModels = chimera.openModels.open('1crn', type="PDB")

>>>

 Hitting the Enter key after typing the second line, causes Chimera to

fetch 1crn from the PDB and the protein is displayed in the Chimera

window.

 By accessing the first member (index 0) of the open models list we

derive an object that is a protein molecule:

>>> prot = openModels[0]

 Note that if we now type prot followed by a period:
>>> prot.

we get a rather long popup list of all the attributes for this object.
 Use the up/down arrow keys to go through the list of attributes.

1/5/2015

4

The Chimera Object Hierarchy (2)

 When the molecule accessed from the open models list is a protein,

then most of our interactions with the Chimera hierarchy will make

use of the following relationships:

 a protein molecule contains a list of residues

 a residue contains a list of atoms.

 Continuing our example, you can access the ith residue object in

prot by using:

>>> a_res = prot.findResidue(i)

 To get a named atom in that residue, for example, the alpha carbon:

>>> ca_atom = a_res.findAtom(‘CA’)

 To go to the next residue use:

next_res = prot.residueAfter(a_res)

Protein Chains

 Unfortunately, there is no chain object!

 If necessary you could build your own chain object...

 It is possible to determine the chain in which a residue resides:

>>> prot.findResidue(44).id.chainId

1/5/2015

5

Atoms in Chimera

 Atoms can be accessed directly (without going through the residues):

>>> my_atom = prot.atoms[i]

 For any atom object, you can get the coordinates of that atom:

>>> my_atomCoords = my_atom.coord()

 This will be a Point object. To get:

 the x-coordinate use: my_atomCoords[0]

 the y-coordinate use: my_atomCoords[1]

 the z-coordinate use: my_atomCoords[2].

Dealing with Point Objects

 You can import the Point class definition for your own use:

>>> from chimera import Point

 Then you can define a point object:

>>> q = Point()

 Coordinates in the point object can be changed, for example:

>>> q[0] = 22.000

 To change atom coordinates, define the contents of a Point, say q,

and then use:

>>> my_atom.setCoord(q)

1/5/2015

6

Changing Atom Coordinates

 Here is Crambin with the

coordinates of atom[33] set to

(22.00, 0.00, 0.00) by using

the techniques described on

the previous slide.

 There is considerable “bond

stretch” because of this

arbitrary change but Chimera

does its best to display the

altered structure.

 Note: A ribbon diagram will

“smooth out” this single atom

deviation.

Other Useful Methods and Attributes

 There are typically several methods associated with classes in

Chimera.

 The next few slides look at a small (hopefully useful) subset of the

methods available for various Chimera classes.

 There are several methods that relate to the display of a residue or

atom but we will, for the most part, ignore these functions since

the course mainly concentrates on geometric properties of the

molecules being studied.

1/5/2015

7

Methods and Attributes (protein objects)

 prot.bonds

 Gives a list of bonds in the protein.

 prot.sequence(chainID)

 Gives the amino acid sequence for the chain specified by the character

held in chainID.

 Note: you will have to know the chain ID characters before using this.

 prot.sequences() returns all non-trivial sequences.

 prot.sequences(True) returns all non-trivial sequences as

a dictionary.

Methods and Attributes (residue objects) (1)

 Suppose r is a residue object. For example, using the previous

code to define prot, we can extract the first residue with:
r = prot.residues[0].

 r.atomsNames()returns a set of character strings that are the

names of the atoms in the residue.

 r.atoms returns a list of objects each representing an atom in

this residue.

 r.chi1 float representing the Chi 1 angle.

 There are other similar attributes: chi2, chi3, chi4.

 r.findAtom(atomName) returns an atom object when

given a character string representing the name of an atom in this

residue.

1/5/2015

8

Methods and Attributes (residue objects) (2)

 r.id.chainId returns a character string representing the chain

identifier of the chain containing this residue.

 r.id.position returns the position number of the residue in the

chain.

 Position numbers are specified by the PDB file.

 This is usually different from the index of that residue in the list provided by

prot.residues.

 r.id.sameChain(another_res.id) returns True if and only

if both r and another_res correspond to residues in the same chain.

 Note that the argument of the function is the ID of the residue.

 r.isHelix returns True iff r is in a helix.

 r.isSheet, r.isStrand, and r.isHet have corresponding

functionality.

 isHet returns True when the “residue” is a ligand or water molecule.

Methods and Attributes (residue objects) (3)

 r.numAtoms() returns the number of atoms in the residue.

 r.phi, r.psi returns the phi and psi dihedral angles for the

residue.

 r.type returns the type of the residue (for example, ‘ARG’).

1/5/2015

9

Methods and Attributes (atom objects) (1)

 Let us assume that an atom object a has been created, for example:

a = prot.atoms[0].

 a.bonds returns a tuple containing the bond objects for that atom.

 a.connectsTo(another_atom) returns a bond object if

atom a is connected to the atom specified by another_atom.

 a.coord() returns a Point object representing the coordinates of

atom a.

 a.coordIndex() returns the index of the atom within the atoms

list. In this case it would return the integer 0 because we computed

a using the statement: a = prot.atoms[0].

 a.findBond(another_atom) returns the bond between a

and another_atom.

Methods and Attributes (atom objects) (2)

 a.idatmType() returns the Chimera atom type for this atom.

 Atom types are described in:

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/idatm.html

 a.idatmType() returns a character string representing the

name of the atom in the residue, for example, ‘C3’.

 a.neighbors returns a list of atoms that are bonded to atom a.

 a.residue returns the residue that contains atom a.

 a.setCoord(p) sets the coordinates of a to the Point value p.

 Note that we can convert a 3-tuple to a Point object:

a.setCoord(Point(1., 3., 4.)) sets the coordinates of

a to (1., 3., 4.). Do not forget to first import the Point class. Place

from chimera import Point

near the start of the script.

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/idatm.html

1/5/2015

10

Methods and Attributes (bond objects)
 Let us assume that a bond object b has been created, for example:
b = prot.bonds[0].

 b.atoms returns a tuple containing the two atoms at either end of
this bond.

 b.contains(an_atom) returns True iff the an_atom
object is at either end of bond b.

 b.findAtom(atomIx) returns the atom object indexed by
atomIx.

 Since two atoms specify a bond, atomIx should be 0 or 1.

 b.length() returns the floating point distance between the two
atoms at either end of the bond.

 b.sqlength() returns the square of this distance.

 b.otherAtom(an_atom) returns the atom that is at the other
end on the bond containing the atom designated by an_atom.

NumPy: Numerical Python

 You can import a package to do scientific computing.

 Place the following line at the start of the program:

import numpy

 A NumPy tutorial is available at:

http://numpy.scipy.org
 Since the Chimera download includes NumPy, you can ignore the links that deal

with getting NumPy and installing NumPy.

 NumPy will be very important when we do exercises that involve

linear algebra.

 Various examples will be given later in the course.

http://numpy.scipy.org/

