
1/5/2015

1

Getting Started with

Chimera and Python

Finding Chimera
 You download Chimera from the UCSF website:

 http://www.cgl.ucsf.edu/chimera/

 If you need help with the menus, here is a useful link:

 http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/frametut.html

 Then click on “Getting Started - Menu Version”

 For now, you can avoid a lot of the entire tutorial (only the menu version is

currently relevant to the first assignment).

http://www.cgl.ucsf.edu/chimera/
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/frametut.html

1/5/2015

2

Chimera & Python

 Python is part of the Chimera download.

 To get a Python Shell you can use the menu item:

Tools/General Controls/IDLE.

 To make this invocation a bit faster, you can set up an “IDLE button” on

your Toolbar by checking the appropriate box after clicking the “Add

Tool Icon…” on first page of the Chimera application.

 The Python Shell has multiple uses:

 You can test syntax or execution of short Python scripts.

 You can use the Shell window to get output results from a script that is in execution.

 You can also provide input to a running script.

 You can open an editing window that may be used to generate a new Python script or

to modify a recently produced script.

Python Scripts

 Editing of new scripts can be initiated from the Shell with:

File/New Window.

 Any script typed into this editor can be saved using the File menu

of the editor window.

 Later, you can get that same script by using File/Recent Files in

the Python Shell window.

 To run your script, you should save it and then use the

Run/Run Module of the edit window.

 If you have print statements in the script (especially important for

debugging), the print output will be directed to the Python Shell

window.

1/5/2015

3

Python Scripts for Chimera
 Start your script with: import chimera

 To load a PDB file that is resident on your disk use a full path name.

 For example to get file 1k4c.pdb stored in directory Temp:
my_mod=chimera.openModels.open('C:\\Temp\\1crn.pdb',type="PDB")

OR

 To load a PDB file from the RCSB use the PDB id:
my_mod = chimera.openModels.open('1crn', type="PDB")

 Note that “.pdb” is not used in this case.

 The variable my_mod will be a list of open models.

 For a PDB file this list will usually have a single element because the file
contains only one molecule.
 Some NMR derived PDB files contain several models (Examples: 2K9Z, 2L1T, 2KTS)

 Note: Some files, such as .sdf files, can contain several molecules.
 Incidentally: a list of open models will be accessible in the Chimera window by using

Favorites/Model Panel.

The Chimera Object Hierarchy (1)

 You can experiment with the Chimera object hierarchy by using the

Python Shell to fetch the file for crambin from the PDB:

>>> import chimera

>>> openModels = chimera.openModels.open('1crn', type="PDB")

>>>

 Hitting the Enter key after typing the second line, causes Chimera to

fetch 1crn from the PDB and the protein is displayed in the Chimera

window.

 By accessing the first member (index 0) of the open models list we

derive an object that is a protein molecule:

>>> prot = openModels[0]

 Note that if we now type prot followed by a period:
>>> prot.

we get a rather long popup list of all the attributes for this object.
 Use the up/down arrow keys to go through the list of attributes.

1/5/2015

4

The Chimera Object Hierarchy (2)

 When the molecule accessed from the open models list is a protein,

then most of our interactions with the Chimera hierarchy will make

use of the following relationships:

 a protein molecule contains a list of residues

 a residue contains a list of atoms.

 Continuing our example, you can access the ith residue object in

prot by using:

>>> a_res = prot.findResidue(i)

 To get a named atom in that residue, for example, the alpha carbon:

>>> ca_atom = a_res.findAtom(‘CA’)

 To go to the next residue use:

next_res = prot.residueAfter(a_res)

Protein Chains

 Unfortunately, there is no chain object!

 If necessary you could build your own chain object...

 It is possible to determine the chain in which a residue resides:

>>> prot.findResidue(44).id.chainId

1/5/2015

5

Atoms in Chimera

 Atoms can be accessed directly (without going through the residues):

>>> my_atom = prot.atoms[i]

 For any atom object, you can get the coordinates of that atom:

>>> my_atomCoords = my_atom.coord()

 This will be a Point object. To get:

 the x-coordinate use: my_atomCoords[0]

 the y-coordinate use: my_atomCoords[1]

 the z-coordinate use: my_atomCoords[2].

Dealing with Point Objects

 You can import the Point class definition for your own use:

>>> from chimera import Point

 Then you can define a point object:

>>> q = Point()

 Coordinates in the point object can be changed, for example:

>>> q[0] = 22.000

 To change atom coordinates, define the contents of a Point, say q,

and then use:

>>> my_atom.setCoord(q)

1/5/2015

6

Changing Atom Coordinates

 Here is Crambin with the

coordinates of atom[33] set to

(22.00, 0.00, 0.00) by using

the techniques described on

the previous slide.

 There is considerable “bond

stretch” because of this

arbitrary change but Chimera

does its best to display the

altered structure.

 Note: A ribbon diagram will

“smooth out” this single atom

deviation.

Other Useful Methods and Attributes

 There are typically several methods associated with classes in

Chimera.

 The next few slides look at a small (hopefully useful) subset of the

methods available for various Chimera classes.

 There are several methods that relate to the display of a residue or

atom but we will, for the most part, ignore these functions since

the course mainly concentrates on geometric properties of the

molecules being studied.

1/5/2015

7

Methods and Attributes (protein objects)

 prot.bonds

 Gives a list of bonds in the protein.

 prot.sequence(chainID)

 Gives the amino acid sequence for the chain specified by the character

held in chainID.

 Note: you will have to know the chain ID characters before using this.

 prot.sequences() returns all non-trivial sequences.

 prot.sequences(True) returns all non-trivial sequences as

a dictionary.

Methods and Attributes (residue objects) (1)

 Suppose r is a residue object. For example, using the previous

code to define prot, we can extract the first residue with:
r = prot.residues[0].

 r.atomsNames()returns a set of character strings that are the

names of the atoms in the residue.

 r.atoms returns a list of objects each representing an atom in

this residue.

 r.chi1 float representing the Chi 1 angle.

 There are other similar attributes: chi2, chi3, chi4.

 r.findAtom(atomName) returns an atom object when

given a character string representing the name of an atom in this

residue.

1/5/2015

8

Methods and Attributes (residue objects) (2)

 r.id.chainId returns a character string representing the chain

identifier of the chain containing this residue.

 r.id.position returns the position number of the residue in the

chain.

 Position numbers are specified by the PDB file.

 This is usually different from the index of that residue in the list provided by

prot.residues.

 r.id.sameChain(another_res.id) returns True if and only

if both r and another_res correspond to residues in the same chain.

 Note that the argument of the function is the ID of the residue.

 r.isHelix returns True iff r is in a helix.

 r.isSheet, r.isStrand, and r.isHet have corresponding

functionality.

 isHet returns True when the “residue” is a ligand or water molecule.

Methods and Attributes (residue objects) (3)

 r.numAtoms() returns the number of atoms in the residue.

 r.phi, r.psi returns the phi and psi dihedral angles for the

residue.

 r.type returns the type of the residue (for example, ‘ARG’).

1/5/2015

9

Methods and Attributes (atom objects) (1)

 Let us assume that an atom object a has been created, for example:

a = prot.atoms[0].

 a.bonds returns a tuple containing the bond objects for that atom.

 a.connectsTo(another_atom) returns a bond object if

atom a is connected to the atom specified by another_atom.

 a.coord() returns a Point object representing the coordinates of

atom a.

 a.coordIndex() returns the index of the atom within the atoms

list. In this case it would return the integer 0 because we computed

a using the statement: a = prot.atoms[0].

 a.findBond(another_atom) returns the bond between a

and another_atom.

Methods and Attributes (atom objects) (2)

 a.idatmType() returns the Chimera atom type for this atom.

 Atom types are described in:

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/idatm.html

 a.idatmType() returns a character string representing the

name of the atom in the residue, for example, ‘C3’.

 a.neighbors returns a list of atoms that are bonded to atom a.

 a.residue returns the residue that contains atom a.

 a.setCoord(p) sets the coordinates of a to the Point value p.

 Note that we can convert a 3-tuple to a Point object:

a.setCoord(Point(1., 3., 4.)) sets the coordinates of

a to (1., 3., 4.). Do not forget to first import the Point class. Place

from chimera import Point

near the start of the script.

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/idatm.html

1/5/2015

10

Methods and Attributes (bond objects)
 Let us assume that a bond object b has been created, for example:
b = prot.bonds[0].

 b.atoms returns a tuple containing the two atoms at either end of
this bond.

 b.contains(an_atom) returns True iff the an_atom
object is at either end of bond b.

 b.findAtom(atomIx) returns the atom object indexed by
atomIx.

 Since two atoms specify a bond, atomIx should be 0 or 1.

 b.length() returns the floating point distance between the two
atoms at either end of the bond.

 b.sqlength() returns the square of this distance.

 b.otherAtom(an_atom) returns the atom that is at the other
end on the bond containing the atom designated by an_atom.

NumPy: Numerical Python

 You can import a package to do scientific computing.

 Place the following line at the start of the program:

import numpy

 A NumPy tutorial is available at:

http://numpy.scipy.org
 Since the Chimera download includes NumPy, you can ignore the links that deal

with getting NumPy and installing NumPy.

 NumPy will be very important when we do exercises that involve

linear algebra.

 Various examples will be given later in the course.

http://numpy.scipy.org/

