CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2023: A. Storjohann Assignment 2 Page 1

CS 487: Assignment #2 Due: Wed Mar 1, 2023 at 11:59pm

Submission Instructions: Submit your solutions for each question to Crowdmark before the due
date and time. Questions 1.(b), 3.(a-d) and 5.(a-d) require you to submit Maple code. A single
starter file Assign2Starter.mpl is provided to you that you can rename to FirstLastnameA2.mpl.
You may split this file up into parts for the different questions if you like. Your submission to
Crowdmark for the questions that involve Maple coding should include the result of executing the
Maple commands, i.e., the plain text file fileout produce by running

maple < FirstLastnameA2.mpl > out
Also email the file FirstLastnameA2.mpl to the course account by the due date and time.

1. Consider the following Chinese remaindering problem: given n distinct primes m1,my, ..., my
together with images vy,v,...,v, with 0 < v; < m;, find an integer f such that 0 < f <
mimy---my, and f = v; mod m; for 1 <i < n. As discussed in class, this task can be
accomplished in an incremental fashion by computing, for i = 0,1,2,...,n, the product
M; = mym; - --m; together with f; such that 0 < f; <M; and f; =v; mod m; for 1 < j <.

M07f0 = 170;
for i from 1 to n do
M;, f; == CRA(M;_1,m;, fi—1,vi);

Note that the first return value of function CRA is simply the product of the two moduli
Mm;. The starter file provides a completed implementation of CRA called cral that is based
on Lagrange interpolation.

(a) For simplicity, assume that each of the » moduli is one word in length, so that M; =
mymj - - - m; has word-length i. Assuming the standard algorithms for integer arithmetic,
derive a big-O bound in terms of 7 for the cost of the incremental Chinese remaindering
using cral.

(b) Modify the implementation of cra2 so that it matches the incremental Chinese remain-
der algorithm described in class. Note that you should change only a single line in the
file. Your answer to this part question should be a printout of a Maple session showing
the input and the output.

(c) Again assuming that each of the n moduli is one word in length, analyze the running
time of the incremental Chinese remaindering using your implementation of cra?2

2. In class we considered the fast multi-point evaluation algorithm, based on the product tree,
which will allow a polynomial of degree less than n = 2% over R[x] to be evaluated at n
distinct points in O(M(n)logn) ring operations from R. This last cost estimate remains valid
for any multiplication time, in particular also for M(n) = O(n(logn)(loglogn)). But now fix
M(n) = cn't€, for some constants €,c¢ > 0, and redo the analysis of the cost of constructing
the product tree. Your answer should be in the form of a tight big-O bound for the running
time in terms of n and €.



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2023: A. Storjohann Assignment 2 Page 2

3. Let p = 101, F = Zg1, f = 30x7 + 31x5 + 32> + 33x* + 34 + 35x% + 36x + 37 € Flx],
g =173 +18x% +19x +20 € F[x].

(a) Compute rev(g)~! mod x® using Newton iteration. Show the result after each iteration.

(b) Use (a) and the algorithm based on reversion given in class to find ¢,r € F[x] with
f=qg+randdegr < 3.

(c) Use the EEA to find f~! mod g (that is, find & € F[x] with f2 =1 mod g).

(d) Now use Newton iteration to find f~! mod g*. Show each step of the Newton iteration.

Your answer to this question should be in the form of a Maple session showing the input and
output. Note that you don’t need to write maple procedures. Just illustrate the algorithms
using a sequence of Maple commands.

4. Letl € Z>g and f = fo+ fix+---+ fr_1x'~! € F[x] with fy # 0 be given. We consider the
linear variant of Newton iteration to compute the inverse g = go+g1x+---+g/_1x' ' € F[x]
of £ modulo x!. Fori=0,1,...,¢—2, derive an explicit formula for the coefficient g; ;| in
terms of the coefficients go, g1, . . ., g; and the coefficients of the input polynomial f. Analyze
this algorithm, and determine the number of operations in F to compute g using the method.

5. In this question, you are to use Maple to trace the algorithm for fast multi-modular reduc-
tion and Chinese remaindering. Do not write procedures, simply use Maple commands to
compute all the intermediate quantities that are computed by the algorithm for the specific
examples that are given. The point is to see how the algorithm works, not just to compute the
final result. Consider the list of four moduli my = 1048583, m; = 1048589, my = 1048601
and m3 = 1048609.

(a) Use igcd to check that the moduli are pairwise relatively prime.

(b) Compute the binary tree of products. (l.e., compute the integers at the nodes of the
product tree.)

(c) Evaluation: Let f = 43296307643824213501477. Compute v; for 0 <i < 4 such that
0 <v; <m; and v; = f mod m; by going down the product tree.

(d) Chinese Remaindering:

i. Compute s; such that s; = (m/m;)~! mod m; for 0 <i < 4. As discussed in class,
first compute the m mod ml2 using the product tree approach, then divide by m;,
and finally call igcdex to compute the modular inverse.

ii. Let vo = 751411, v = 805076, v, = 253208 and v3 = 20777. Compute ¢; =
modp(s;vi,m;) for 0 < i < 4, then use the product tree to find an integer a such
that @ = v; mod m; for 0 < i < 4. Finally, give the unique integer in the range
[0, mymymzmy — 1) that is congruent to a modulo mom myms.



