CS 487: Assignment \#4

Due: Wed Apr 5, 2023 at 11:59pm

Submission Instructions: Submit your solutions for each question to Crowdmark.

1. Compute the distinct-degree decomposition of the following squarefree polynomial using the algorithm described in class.

$$
f=x^{17}+2 x^{15}+4 x^{13}+x^{12}+2 x^{11}+2 x^{10}+3 x^{9}+4 x^{8}+4 x^{4}+3 x^{3}+2 x^{2}+4 x \in \mathbb{Z}_{5}[x] .
$$

Tell from the output only how many irreducible factors of degree i the polynomial f has, for all i.
Note: For your convenience, file a4q1.mpl gives the polynomial in Maple format.
2. Let $q \in \mathbb{N}$ be a prime power.
(a) If r is a prime number, prove that there are $\left(q^{r}-q\right) / r$ distinct monic irreducibles of degree r in $\mathrm{F}_{q}[x]$. Hint: Use what you know about the polynomials of the form $x^{q^{d}}-x$.
(b) Now suppose that r is a prime power. Find a simple formula for the number of monic irreducible polynomials of degree r in $\mathrm{F}_{q}[x]$.
3. Suppose $p \geq 5$ is a prime, $f \in \mathbb{Z}_{p}[x]$ has degree 4 , and $\operatorname{gcd}\left(x^{p}-x, f\right)=\operatorname{gcd}\left(x^{p^{2}}-x, f\right)=1$.
(a) What can you say about the factorization of f in $\mathbb{Z}_{p}[x]$?
(b) Enumerate all possibilities for f. In other words, derive, with explanation, a formula in terms of p for the number of polynomials f which satisfy the stated requirements.
4. The squarefree polynomial

$$
\begin{aligned}
f= & x^{18}-7 x^{17}+4 x^{16}+2 x^{15}-x^{13}-7 x^{12}+4 x^{11}+7 x^{10}+4 x^{9} \\
& -3 x^{8}-3 x^{7}+7 x^{6}-7 x^{5}+7 x^{4}+7 x^{3}-3 x^{2}+5 x+5 \in \mathbb{Z}_{17}[x]
\end{aligned}
$$

splits into 3 irreducible factors of degree 6 .
(a) How would you check the above statement without factoring f, by computing at most three gcd's? (You need not actually compute the gcd's.)
(b) In a Maple session, trace the equal-degree factorization algorithm on computing these factors.
Note: File a4q4.mpl gives the polynomial in Maple format. The Maple commands Powmod and Randpoly will be useful. See ?Powmod and ?Randpoly.
5. Let q be an odd prime, and suppose $f=h_{1} h_{2} \in \mathrm{~F}_{q}[x]$ has degree $2 d$, with h_{1} and h_{2} distinct, monic irreducibles of degree d. Consider using the following approach to factor f.

Choose a random $u \in \mathrm{~F}_{q}[x]$ of degree $<d$ and compute $\operatorname{gcd}\left(u^{\left(q^{d}-1\right) / 2}-1, f\right)$; if this gcd is equal to 1 or f then repeat with a new random $u \in \mathrm{~F}_{q}[x]$ of degree $<d$.

Give a concrete input example for which this approach is guaranteed to run forever, i.e., specify q, d and $h_{1}, h_{2} \in \mathrm{~F}_{q}[x]$.

