
CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2023: A. Storjohann Script 8 Page 1

8 Integer matrix determinant and nonsingular rational system
solving

Consider the problem of solving linear systems over the rational numbers. In this domain we face
the added complexity of coefficient growth. Given nonsingular A ∈ Zn×n and w ∈ Zn×1, we wish
to find v ∈ Qn×1 such that Av = w, or in other words, compute A−1w. Note that v is a vector of
rational numbers, and not just integers, which adds to the complexity of the problem. Here’s an
example of a nonsingular linear system solution:

A

−81 −98 −76 −4 29

−38 −77 −72 27 44

−18 57 −2 8 92

87 27 −32 69 −31

33 −93 −74 99 67

v =

w

−16

−9

−50

−22

45

has solution v =

1615537
4562102

−10907346
11405255

25212277
22810510
2035412
11405255
2893133
22810510

.

Of course, we could just do an LU decomposition over Q and solve the system directly. The
problem is that the numbers can get very large. The main tool to see this is Hadamard’s (1893)
bound on the size of the determinant of A. This essentially says that the absolute value of the
determinant is less than the product of the euclidean length of its rows (or columns). An easy
consequence is that detA≤ nn/2||A||n, where ||A|| is the maximum magnitude of entries in A.

To bound the size of a solution to a system of (integer) linear equations Av = w, we employ
Cramer’s rule, which says that if Av = w, and v = (v1, . . . ,vn)

t ∈ Qn×1, then vi = detAi/detA,
where Ai is A with the ith column replaced by w. How does this help?

(1) The numerator and denominator of entries in v ∈ Qn×1 all have absolute value less than
nn/2||A||n−1||w||.

(2) All denominators in the entries of v are divisors of detA. In other words, (detA)v ∈ Zn×1.

8.1 Finding the determinant with Chinese remaindering

A classic example of using the Chinese remainder algorithm is to compute the determinant of an
integer matrix. To take into account the size of the entries involved, we count word operations
rather than simply operations in Z. We use the standard algorithms for integer arithmetic, which
allow us to multiply two integers of length k words using O(k2) word operations.

The idea is to compute detA mod pi for a collection of small primes p1, . . . , pk. First, note that
(detA) mod p = det(A mod p). This follows since detA is a polynomial in the entries of A (see
text, Sections 5.5 and 25.4).

The first task in employing Chinese Remaindering is to establish a bound β on the magnitude
of the output integers. Let A ∈ Zn×n, and recall that ||A|| denotes the maximum magnitude of

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2023: A. Storjohann Script 8 Page 2

all entries. Then Hadamard’s bound gives that |detA| ≤ β := nn/2||A||n. Let p1, . . . , pk ∈ Z>0 be
primes such that

M := p1 p2 · · · pk > 2β .

We know that −M/2 < detA < M/2, so if we know detA mod M, we can recover detA ∈ Z. This
requires that we use the “symmetric” representation of an integer modulo M. For example, if M is
odd, then the numbers modulo M are reduced in the range [−(M−1)/2,(M−1)/2], which allows
us to represent positive and negative numbers. In Maple we would use mods instead of the default
modp. Look it up!

The algorithm is as follows:

Algorithm: ModularDeterminant
Input: I A ∈ Zn×n

Output: I detA ∈ Z
(1) Let β := nn/2||A||n
(2) Find small primes p1, . . . , pk ∈ Z>0 such that M := p1 p2 · · · pk > 2β

(3) For i = 1 to k do
(4) Compute Ai = A mod pi

(5) Compute di = detApi over Zpi

End For
(6) Using the Chinese Remainder Algorithm compute d ∈ Z in the symmetric range modulo M,

with d ≡ dpi mod pi for 1≤ i≤ k

Finding primes in Step 2 is straightforward (though we will not address it completely here).
We could simply use 2,3,5, However, it is usually more beneficial to actually have all our
primes the same length, say `-bits, i.e., with 2` < pi < 2`. In general, if we require the product of
our primes to be larger than 2β , some results from number theory ensure us that we can choose
` = 6+ ln lnβ . For the choice of β in the algorithm above we have logβ ≤ n(logn+ log ||A||).
Thus, in the above algorithm, the smallest choice for ` is

` ∈ O(logn+ log log ||A||) and k ∈ O(n(logn+ log ||A||)/`).

To simplify our analysis somewhat we will choose ` somewhat larger, with

` ∈Θ(logn+ log ||A||) and k ∈Θ(n). (1)

In practice, `= 32 will be more than sufficient for any reasonable problem, in which case `= O(1)
and k = Θ(logM). However, to be completely correct in our analysis we will use the bounds given
in (1).

The cost of the above algorithm is now easily analyzed. Computing Ai in Step 4 can be
done with O(n2(logn+ log ||A||)) word operations. Computing di can be done with O(n3(logn+
log ||A||)2) word operations, since every operation in Zp can be done with O(`2) word operations.
Since k = O(n), the cost without Step 6 is O(n4(logn+ log ||A||)2) word operations. But the Chi-
nese remainder algorithm is done using standard algorithms in time O(n2(logn+ log ||A||))2), so
the total cost is O(n4(logn+ log ||A||)2) word operations, or about quartic in the input dimension.

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2023: A. Storjohann Script 8 Page 3

8.2 Solving nonsingular systems with Chinese remaindering

We can use the same approach as above for computing determinants to solve a nonsingular linear
systems Av = w for A ∈ Zn×n, and w = Zn×1. We will actually compute d = detA and u ∈ Zn×1

such that Au = dw at the same time. The solution to Av = w is then (1/d) ·u.
Choose primes p1, p2, . . . , pk such that M := ∏ pi > 2β := 2nn/2||A||n−1 max(||A||, ||w||). By

Hadamard’s bound, d and each entry of u has absolute value less than β . We will choose our
primes to have ` bits, where ` ∈Θ(logn+ log ||A||+(log ||w||)/n), in which case k = O(n).

For 1≤ i≤ k compute

A(i) =A mod pi,

d(i) =detA mod pi,

u(i) =d(i)A−1w mod pi.

Now use the Chinese remainder algorithm to recover d in Z, and u ∈ Zn×1.
The cost of computing all the d(i) and u(i) is O(k× n3× `2) word operations. This simplifies

to O(n4(logn+ log ||A||)2 + n2(log ||w||)2) word operations. This bounds the cost of the modular
reductions and the Chinese remaindering as well.

8.3 Faster nonsingular solving using p-adic lifting

Next we will consider a faster method which requires O(n3(logn+ logβ)2) word operations, where
β is a bound for the magnitude of entries in A and w. This should be fairly surprising. First
we require a bit of information about “p-adic expansions” and the conversion between different
representations of raional numbers.

8.3.1 p-adic expansions and radix conversion

Let p ∈ Z>0 (not necessarily prime for now). Then every element of

S = {a/b : a,b ∈ Z, gcd(b, p) = 1}

has a unique (possibly infinite) p-adic expansion:

a/b = c0,c1,c2,c3,c4, · · ·

such that c0 + c1 p+ ..+ ci−1 pi−1 ≡ a/b mod pi for all i > 0. For example

17/21 mod 10 = 7
17/21 mod 100 = 77
17/21 mod 1000 = 477
17/21 mod 10000 = 477
17/21 mod 100000 = 90477

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2023: A. Storjohann Script 8 Page 4

This works much as a Taylor expansion of a rational function works. For example, we can write

x
2x+1

= x−2x2 +4x3−8x4 +16x5 + · · ·

In class we saw a divide and conquer algorithm for “radix conversion” that could compute
the p-adic expansion of an integer given in usual 264-ary representation, and vice versa, in time
O(B(n)) word operations, n the word length of the integer. See the text, Section 9.2, for de-
tails. Recall that B is our function for bounding the cost of some algorithms, like the fast EEA,
that reduce to fast integer multiplication and have running time O(M(n) logn) word operations if
pseudo-linear integer arithmetic is used.

8.3.2 Rational Number Reconstruction

The algorithm we describe for solving linear systems of equations will actually solve the system
modulo pk, for sufficiently large k. An important question is how do we go from this modular
representation to a standard (fractional) representation of the answer in Q?

Suppose there is a rational number n/d (for relatively prime n,d ∈ Z), which we only know
modulo m. That is, we only know u ∈ Z such that u≡ n/d mod m. We assume that gcd(d,m) = 1.
How do we find n and d from u and m?

First, note that du≡ n mod m, or in other words du+qm = n for some q∈Z. This looks a little
like the Euclidean algorithm. In fact, consider the Euclidean algorithm on u and m: set r0 = m,
r1 = u, s0 = 0, and s1 = 1, and then for i = 1,2,3, . . . until i = k where rk+1 = 0 compute

qi =ri−1 quo ri

ri+1 =ri−1−qiri

si+1 =si−1−qisi

At each step we have siu+ tim = ri or siu≡ ri mod m or u≡ ri/si mod m. In other words, at each
step of the Euclidean algorithm we get ri, si ∈ Z such that u≡ ri/si mod m.

Now suppose we know that |n|< N and d < m/N for some bound N ∈ Z>0. Then let i be such
that ri < N < ri−1. Then u ≡ ri/si mod m, and this is essentially unique. This can be computed
with the same cost as computing the extended Euclidean algorithm on d and m, that is, in B(logm)
word operations. Please see the text, Section 5.10, for details.

8.3.3 Dixon’s algorithm

We next present a method for solving Av = w, A ∈ Zn×n and w ∈ Zn×1, for v ∈ Qn×1. It will be
faster in asymptotic complexity sense and a practical sense. The algorithm is known as Dixon’s al-
gorithm (from a paper by Dixon in 1985). It is also closely related to so-called iterative refinement
in numerical analysis, and actually to the linearly-convergent Newton iteration you developed in
Assignment 2.

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2023: A. Storjohann Script 8 Page 5

Let p be a prime (or small prime power) such that gcd(p,detA) = 1 and log p ∈ Θ(logn+
logβ). Let Zp = {0, . . . , p−1}. For i = 0,1,2, ..., suppose vi ∈ Zn×1

p is such that

A−1w = v0 + pv1 + p2v2 + p3v3 + · · · (2)

The left hand side of (2) is an n×1 vector of rational numbers with denominators relatively prime
to p. The right hand side of (2) is the n×1 vector of p-adic expansions of these rational numbers.
We know this exists, because we know that all the denominators in v are factors of detA, and we
know that detA 6≡ 0 mod p.

Multiply both sides of (2) by A, so

w = A(v0 + pv1 + p2v2 + p3v3 + · · ·).
We can now take this modulo pk, so

w≡ A(v0 + pv1 + p2v2 + · · · pk−1vk−1) mod pk.

Subtract the right hand side from the left hand side:

w−A(v0 + pv1 + p2v2 + · · ·+ pk−1vk−1)≡ 0 mod pk.

The left hand side of the above equation is thus divisible by pk. Define

Res(A,w, pk) =
w−A(v0 + pv1 + · · ·+ pk−1vk−1)

pk ,

Now compute
vk ≡ A−1Res(A,w, pk) mod p,

so Avi ≡ Res(A,w, pk) mod p and equivalently

pkAvi ≡ pkRes(A,w, pk) mod pk+1.

Thus, with a little bit of manipulation, we find

A
(

v0 + pv1 + · · ·+ pk−1vk−1 + pkvk

)
≡ w mod pk+1,

and with the solution to a single linear system modulo p, we have added a new p-adic digit to each
entry in the solution vector. Moreover, note that the system we solve is always using A mod p. I.e.,
we are evaluating A−1 mod p once to compute each set of p-adic digits.

Algorithm: DixonSolverPadic
Input: I A ∈ Zn×n and w ∈ Zn×1, and ` ∈ Z>0

Output: I v≡ A−1w mod p`

(1) Compute A mod p
(2) Compute A = A−1 mod p
(3) r← w
(4) For i from 0 to `−1 do
(5) vi← Ar mod p
(6) r← (r−Avi)/p

End For
(7) Return v← v0 + v1 p+ v2 p2 + · · ·v`−1 p`−1

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2023: A. Storjohann Script 8 Page 6

Note that we compute A = A−1 mod p once, and then use it at every iteration of the loop. This
is because computing it costs O(n3) operations modulo p, whereas to compute Ar for any r ∈Zn×1

p
costs only O(n2) operations. What is the overall cost of this algorithm? Assume that all entries in
A and w have absolute value less than β . In the following analysis we also assume that we have
chosen our prime p to satisfy log p ∈Θ(logn+ logβ).

• Step (1): Compute A mod p one time: O(n2(logn+ logβ)2)

• Step (2): Compute A = A−1 mod p one time O(n3(logn+ logβ)2)

• Step (5): Compute Ar mod p, and do it ` times: O(`n2(logn+ logβ)2)

• Step (6): Compute Avi directly in Z with O(n2(logn+ logβ)2) word operations, and r can
be computed with this cost as well.

• Step (7): Using radix conversion, compute in Z with O(n(`(logn+ logβ))2) operations.

The total cost of the algorithm is thus O((n3 +n`2 + `n2)(logn+ logβ)2) machine operations.
We can then use DixonSolverPadic and rational number reconstruction (see §8.3.2) to convert
the solution to Qn×1. For this we must choose an ` of sufficient size to guarantee the solution
can be reconstructed. For this we again use the Hadamard bound. The entries v = A−1w all
have numerator and denominator of absolute value less than nn/2β n. Thus, if we assume that
p` > 2(nn/2β n)2 = 2nnβ 2n we can recover all numerators and denominators from their values
modulo p`. Since we have chosen p such that log p ∈ Θ(logn+ logβ), we will have ` ∈ Θ(n).
Doing rational ecovery on numbers of this size (using the standard Euclidean algorithm) has cost
O((n(logn+ logβ))2), and we have n such numbers in the solution vector. Thus the total cost to
find v = A−1w is O(n3(logn+ logβ)2) machine operations. Note that this is approximately n times
faster than using the Chinese remainder method of §8.2!

