
CS 487/687 / CM 730 : Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 10 Page 1

10 Factoring Polynomials over Finite Fields

One of the most fundamental operations in algebraic computing is factoring. It is also one where
modern computer algebra has seen some of its greatest successes. In this section we look at factor-
ing polynomials over finite fields.

Let R be any integral domain. Recall that an irreducible element of a ring R is any a ∈ R such
that a cannot be written as b · c for non-units b,c ∈ R. We define a Unique Factorization Domain
as a ring such that any a ∈ R can be written as a product

a = a1a2 · · ·a`,

where the ai are irreducible, and unique up to their order and up to multiplication by a unit.
We know that Z is a unique factorization domain, and so is any polynomial with coefficients

from a unique factorziation domain. Over F[x], F a field, we define the factorization problem as,
given f ∈ F[x], find distinct, monic, irreducible f1, . . . , f` ∈ F[x] and e1, . . . ,e` ∈ Z>0 such that

f = lc(f) · f e1
1 f e2

2 · · · f
`
` .

Here lc(f) is the leading coefficient of f , the coefficient of the highest degree term. We will say an
f is squarefree if it is not divisible by the square of another polynomail (or higher power) of any
other polynomial of degree greater than zero.

We will examine this problem for F= Fq, the finite field with q elements in it. For now you can
think of q being prime, so Fq = Zp. We break down the problem into three distinct phases (though
our final algorithm won’t quite do this).

• Squarefree Factorization. Find the largest factor of f ∈Fq[x] which is squarefree, generally
referred to as the squarefree part of f .

• Distinct Degree Factorization. Given a squarefree f ∈ Fq[x], find g1,g2, . . . ,gn ∈ Fq[x] such
that gd is the product of all factors of f which have degree d, for 1≤ d ≤ n.

• Equal Degree Factorization. Given a squarefree g ∈ Fq[x], all of whose irreducible factors
have some fixed degree d (which is known), find h1, . . . ,hk ∈ Fq[x] of degree d such that
g = h1h2 · · ·hk.

We will look at distinct degree factorization first, followed by equal degree factorization, fol-
lowed by squarefree factorization (and how to sometimes avoid it).

10.1 Distinct Degree Factorization

Distinct degree factorization is based on the following theorem of Fermat, often referred to as
Fermat’s Little Theorem.

CS 487/687 / CM 730 : Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 10 Page 2

Theorem 10.1 (Fermat’s Little Theorem). For any nonzero a ∈ Fq we have aq−1 = 1, and for all
a ∈ Fq, aq = a and

xq− x = ∏
a∈Fq

(x−a).

Please see the text for a proof.
Let’s first look at how to find all the factors of degree one. Assume that f ∈ Fq[x] is squarefree.

All factors of degree one are also factors of xq− x by Fermat’s Little Theorem, and so to separate
all factors of degree one, we can compute

g1 = gcd(xq− x, f) ∈ Fq[x].

In fact, this is useful even when f is not squarefree. If (x−α)e divides f for any e ≥ 1, then
certainly (x−α) divides xq−x. Thus gcd(xq−x, f) is a product of all unique degree one factors of
f (and does not take into account the exponent on the factor in f , sometimes called its multiplicity).

To compute this GCD efficiently we need to use a slightly different method than the standard
one. First compute b1 = xq rem f . Then gcd(xq− x, f) = gcd(b1− x, f). To compute b1, we
perform repeated squaring.

Algorithm: RepeatedSquaring
Input: I f ∈ F[x] of degree n and u ∈ F[x] of degree less than n, and m ∈ N
Output: I um rem f ∈ F[x]
(1) Write m in binary:

m = 2k +mk−1 ·2k−1 +mk−2 ·2k−2 + · · ·+m1 ·2+m0

(2) w← u; v← 1;
(3) For i = 0,1,2, . . . ,k do
(4) if mi = 1 then v← v∗w rem f ;
(5) w← w∗w;
(6) Return v.

It is fairly easy to see that the algorithm is correct and that the cost is O(k) = O(logm) mul-
tiplications and divisions with remainders of polynomials of degree n. In other words, the cost is
O(M(n) logm) operations in F.

Now to compute b1 = xq rem f , we perform repeated squaring, and this requires O(M(n) logq)
operations in Fq. To compute gcd(b1, f) requires O(B(n)) operations in Fq.

To find factors of higher degree, we rely on the following theorem, which is a generalization of
Fermat’s Little Theorem. For the proof, please see the text.

Theorem 10.2. For any d≥ 1, the polynomial xqd−x∈Fq[x] is the product of all monic irreducible
polynomials in Fq[x] whose degree divides d.

Now we can write a complete algorithm for distinct-degree factorization.

CS 487/687 / CM 730 : Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 10 Page 3

Algorithm: DistinctDegreeFactorization
Input: I f ∈ Fq[x] monic, squarefree of degree n > 0
Output: I g1, . . . ,gn ∈ Fq[x] such that gd is the product of all irreducible factors of f of degree d.
(1) h0← x, f0← f
(2) for i from 1 to n while fi 6= 1 do
(3) Compute hi = hq

i−1 rem f by repeated squaring
(4) gi← gcd(hi− x, fi−1)

(5) fi = fi−1/gi

End for;
(6) Return g1,g2, . . . ,gn

To see that this works, note that hi ≡ hq
i−1 ≡ xqi

for i = 1 . . .n. At each stage we remove all
factors of degree dividing i from fi. Since we remove lower degree factors before higher degree
factors, this means at Step i we only capture factors of degree i (all factors of a degree dividing i
have been previously removed).

Each loop of the algorithm requires O(M(n) logq) operations in Fq and there are at most n
iterations of the loop, for a total cost of O(nM(n) logq) operations in Fq.

10.2 Equal degree factorization

Once we have performed distinct degree factorization, we have decomposed our (monic and square-
free) input polynomial f ∈ Fq[x] as

f = g1g2 · · ·gn

where gi ∈ Fq[x] is the product of all monic irreducible factors of f of degree i.
To proceed, we will assume that q is an odd number (there is a slightly different algorithm

when q is even, a power of 2). We need some fairly straightforward theorems, that you may have
seen before, or can find Section 25.4 of the text.

Theorem 10.3. If h ∈ Fq[x] is irreducible of degree d, then Fq[x]/(h) is a finite field with qd

elements. If g = h1h2 · · ·h` for distinct, monic, irreducible polynomials h1, . . . ,h` ∈ Fq[x], then

Fq[x]
(g)
∼=

Fq[x]
(h1)

×
Fq[x]
(h2)

×·· ·×
Fq[x]
(h`)

.

That is, it is isomorphic to a direct product of finite fields.

Theorem 10.4. Let h ∈ Fq[x] be monic and irreducible of degree d.

(a) For any nonzero a ∈ Fq[x], aqd−1 ≡ 1 mod h.

(b) For any nonzero a ∈ Fq[x], a(q
d−1)/2 = 1 if a≡ b2 mod h for some b∈ Fq[x], and a(q

d−1)/2 =
−1 otherwise.

CS 487/687 / CM 730 : Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 10 Page 4

(c) The number of a ∈ Fq[x] \ {0} of degree less than d such that a(q
d−1)/2 = 1 is (qd − 1)/2

(and hence the number such that a(q
d−1)/2 =−1 is also (qd−1)/2).

A few notes.

• Part (a) above is simply the generalization of Fermat’s Little Theorem to all finite fields.

• In Part (b) when a = b2 for some b, we say a is a quadratic residue.

• In Part (c), this says that half of the nozero the elements in a finite field are quadratic residues
and the other half are non-residues.

• Parts (b) and (c) follow from the fact that all finite fields are cylic. That is, there is one
element β in the field such that all non-zero elements in the field are powers of β .

Let’s assume for now that f = h1h2 for irreducible h1,h2 ∈ Fq[x] of degree d (so deg f = 2d).
Then we know that

Fq[x]
(f)

∼=
Fq[x]
(h1)

×
Fq[x]
(h2)

.

If we choose a random polynomial u ∈ Fq[x] of degree less than 2d that is relatively prime with
f = h1h2, then this is exactly the same as choosing random u1,u2 ∈ Fq[x] \ {0} of degree less d,
that is, u ≡ u1 mod h1 and u ≡ u2 mod h2, by the Chinese Remainder Theorem. In other words,
choosing a random u ∈ Fq[x] of degree less than 2d, that is not divisible by either h1 or h2, is the
same as choosing a random nonzero element in each of Fq[x]/(h1) and Fq[x]/(h2).

Now, if we compute u(q
d−1)/2, this is the same as computing u(q

d−1)/2
1 mod h1 and u(q

d−1)/2
2 mod

h2. In each case these are ±1 with probability 1/2, independently. Suppose that

u(q
d−1)/2

1 ≡ 1 mod h1, and u(q
d−1)/2

2 ≡−1 mod h2.

or equivalently that

u(q
d−1)/2 ≡ 1 mod h1, and u(q

d−1)/2 ≡−1 mod h2.

This means that h1 divides uqd−1−1, but h2 does not. Thus, we now have the basis for an algorithm:

(1) Choose a nonzero random u ∈ Fq[x] of degree less than 2d.
If gcd(u, f) 6= 1 then gcd(u, f) is either h1 or h2.

(2) Compute v = u(q
d−1)/2 rem f .

(3) Compute gcd(v−1, f)

CS 487/687 / CM 730 : Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 10 Page 5

With probability at least 1/2, these three steps results in splitting f . If not, repeat.
This works similarly when f ∈ Fq[x] is any product of ` distinct monic irreducible factors of

known degree d, for any `≥ 2. In this case

Fq[x]
(f)

∼=
Fq[x]
(h1)

×
Fq[x]
(h2)

×·· ·×
Fq[x]
(h`)

We then choose a random nonzero u ∈ Fq[x] of degree less than deg f . if gcd(u, f) 6= 1 then we
have split f . Otherwise, gcd(u, f) = 1 and the choice of u is the same as randomly (and uniformly)
choosing nonzero elements ui = (u rem hi) ∈ Fq[x]/(hi) for each i in I = {1, . . . , `}. Suppose that
I = I1 ∪I2, where if i ∈ I1 then ui is a quadratic residue in Fq[x]/(hi), and if i ∈ I2 then ui

is not a quadratic residue in Fq[x]/(hi). Then for all i ∈ I1, hi | u(d−1)/2− 1 and for all i 6∈I1,
hi - u(d−1)/2)−1. Thus,

gcd(f ,u(q
d−1)/2−1) = ∏

i∈I1

hi.

Assuming that we are “lucky” (which happens with probability at least 1/2), then we split f .

10.3 A complete factoring algorithm for Fq[x]

To complete our factoring algorithm we need to handle an number of cases which we have not
addressed so far, specifically non-monic polynomials and non-squarefree polynomials.

Non-monic polynomials are easy: simply write f = lc(f) · f̄ , where f̄ ∈ Fq[x] is monic. Then
factor f̄ . For non-squarefree polynomials, most of what we have done so far works just fine. We
proceed in stages for i = 1,2, . . . ,n. At stage i we determine all factors of degree i, along with their
multiplicities, and remove them from f before continuing on.

Thus, to complete our algorithm, at the end of stage i we simply take each irreducible factor
of f of degree i that we have computed, figure out how many times it divides f , and remove
all factors of degree i from f before proceeding to stage i+ 1. Determining multiplicities and
removing factors can be done simply by repeated quotient with remainder.

The total cost of our factoring algorithm is dominated by the cost of equal degree factorization,
and requires an expected number of O(n(M(n) logq+B(n))) operations in Fq to completely factor
a polynomial f ∈ Fq[x] of degree n.

