
Ray tracing

Trace rays out from light sources, bounce them
around the scene, record the ones that enter the
eye.

Highly impractical!*

Trace “light gathering rays” out from eye, record
light that definitely contributes to the scene.

Backwards ray tracing

For every pixel (x,y) in scene:
r = makePrimaryRay(x, y)
i = scene.intersect(r)
writePixel(x, y, illuminate(i))

Generating primary rays

Forget about P and V — we’re not going to use
them!

Imagine image plane floating in front of camera,
compute “pixel-to-pixel vectors” on it.

ray
scene

eye

screen

ray
scene

eye

screen

Intersection computation
Like clipping!

Ray:

Primitive:

Ray-Sphere

Substituting yields a quadratic
equation in t.

Many other algebraic surfaces work similarly.

Ross on flickr

ShiftedReality

Ray-Triangle

Intersect ray with the support plane of the
polygon.

Then check whether the point of intersection lies
within the polygon.

Ray-Box

Could treat box as just another mesh, but there
are more elegant approaches.

Treat cube as intersection of three “slabs”,
intersect ray with each slab in turn.

Debugging

Visualize per-pixel behaviour

Isolate a single pixel

Ray tracing and hierarchical
modelling

Transforming arbitrary primitives into world
coordinates can be difficult.

So transform the ray into modelling coordinates, then
transform the intersection result back into world
coordinates.

But take special care with normals!

Normals don’t transform nicely (especially
nonuniform scaling). Tangents do.

Illumination

Ray-scene intersection yields:
• World position of intersection
• World normal vector at intersection
• Material info of intersected primitive

…so perform (Phong) illumination there.

Illumination

But a given light source isn’t necessarily visible
from the point of intersection.

So trace a shadow ray
back to the light source!

If you hit any other
objects before the light,
the object is in shadow.

More secondary rays

Generate a recursive ray in the direction of mirror
reflection, add its (weighted) contribution to result.

More secondary rays

Generate a recursive ray in the direction of specular
refraction, add its (weighted) contribution to result.

Total internal reflection

Recursive ray tracing
How many levels of recursion?

• Fixed upper limit on recursion
• Threshold for contribution to final scene

Acceleration
Preprocessing time
Runtime overhead
Savings

Obvious speedups
Smarter coding

“fail fast” intersection tests

Low-level tricks (byte alignment, cache
coherency, etc.)

Organizing primitives
Bounding volumes

Bounding volume hierarchies

Protip: use special-purpose intersection tests

Organizing space
Uniform spatial subdivision

Non-uniform spatial subdivision

Need a more complicated ray traversal method.

metalbyexample.com

Bump mapping Displacement mapping

The “Little Dipper”

