
A Simple Radiosity Model

Ryan Gunther

rtcgunth

I.D 95803907

December 5, 1995



CS488/688 Final Project

The purpose of this project was to implement a very simplistic radiosity model. I feel that I have

successfully met all of my goals and satis�ed all of my stated objectives.

Topics

� Generating very simple meshes.

� Progressive Re�nement method.

� Simple calculation of Form Factors.

� Gouraud Shading.

Statement

Radiosity is the rate at which energy leaves a surface. It is the sum of the rates at which a surface

emits energy and reects or transmits it from that surface to other surfaces. The radiosity method

is a modeling of visible light that models light interreections between di�use surfaces. It assumes

that all surfaces in the environment are ideal di�use reectors which means that the reectance

does not depend on the outgoing direction. Thus radiosity models are view-independent. Radiosity

models allow any surface to emit light so light sources are modeled with an area and they are

treated no di�erently than any other surface in the environment.

To implement a Radiosity model we break up each surface into a �nite number of patches. Thus

the entire environment will contain some �nite number of surface patches. We consider each surface

patch to be an opaque Lambertian di�use emitter and reector and for each patch we calculate it's

radiosity with the following equation:

B

i

= E

i

+ �

i

X

1�j�n

B

j

F

j�i

A

j

A

i

, where B

i

and B

j

are the radiosities of patches i and j, E

i

is the rate at which light is emitted from

patch i, �

i

is patch i

0

s reectivity and F

j�i

is the form factor which speci�es the fraction of energy

leaving patch j that arrives at patch i, taking into account the shape and relative orientation of

both patches and the presence of any obstructing patches. A

i

and A

j

are the areas of patches i and

1



2 CS488/688 Ryan Gunther

j. Therefore, �nding the radiosity of each patch involves solving a set of simultaneous equations,

however it is possible to approximate the algorithm's results incrementally using a method called

Progressive Re�nement. This procedure continually selects the patch with the greatest unshot

radiosity and shoots it's energy towards all other patches. It then updates the radiosity and unshot

radiosity of each patch in the environment and selects the next shooting patch. It terminates when

the greatest unshot energy reaches some pre-de�ned minimum.

Radiosity is a very interesting and challenging subject. It has the restriction that it is limited to

environments containing only di�use surfaces and computing Form-factors is both di�cult and time

consuming. One advantage it has over Ray-tracing is that because it only considers di�use surfaces

it is view-independent. Another nice feature of the Radiosity model is that it creates images with

noticeable color bleeding. Color bleeding is the e�ect that di�use reection has between adjacent

surfaces. It causes di�use surfaces to be tinged with the colors of other di�use surfaces that they

reect. Another aspect that adds to the di�culty of implementing a good Radiosity model is that

surfaces must be subdivided very carefully in order to get a realistic looking image.

Goals

I hope to implement a very simple Radiosity model for this project. The goals that I am aiming to

achieve are the following:

I will limit my model to rectangular surfaces only. Thus, my �rst goal will be to subdivide

a rectangular surface into a number of patches and create an e�cient data structure to hold the

information for all of the surfaces in the environment. This data structure will have to e�ciently

store information for each patch in the surface. This information includes the vertices of each patch

as well as the reectance and radiosity values for each patch.

My next goal will to be implement a progressive re�nement method very similar to the one

described by Cohen, Chen, Wallace, and Greenberg[1]. Initially, I will assume a convex environment

where all surfaces are in full view of one another and there are no shadows. This simpli�es things

because there is no need to do any visibility testing. I will calculate Form-Factors using the formula

proposed by Baum, Rushmeier, and Winget[2]. This formula will be described in more detail in

the Technical Outline section of this proposal.

My third goal will be to modify the Gn ray-tracer I created in assignment 4. I will need to

modify it so that when it determines visible surfaces it is able to �gure out which patch of the

surface is intersected and then use the radiosity value for that patch to determine surface color.

Hopefully, this will give me the �rst bit of encouraging feedback from my project. I should be able

to get crude images generated with my radiosity model.

The fourth goal I hope to achieve is the ability to test for visibility when computing my Form-

Factors. To do this I will cast four rays from the emitter patch to the receiver patch and see how

many reach the receiver without intersecting another surface. I will then weight my Form-Factor

according to the amount of the receiver patch that is visible. Next, I will add an ambient correction

factor to demonstrate the intermediate results of the radiosity model.

My �fth goal will be to create some scenes that are able to demonstrate some of the e�ects that

my radiosity model is able to create as well as some of the shortcomings that it has. I will also

make some scenes that illustrate the di�erences created by adding visibility checking to my model.



CS488/688 I.D. 95803907 3

Hopefully, I will be able to explain the problems and limitations of my model and suggest ways in

which I could improve it given more time. I will try to write my code in such a way that it will be

practical to implement additional advanced features in the future.

My �nal goal will be to hand the project in on time and get a good night's sleep.

Communication

Input: Slightly modi�ed Gn script

Interaction: None

Output: .ppm image �les

Modules

I have used a modi�ed version of Gn so I use all of the standard Gn modules. I have also used the

following modules.

radiosity.c contains my main radiosity routine

patches.c contains code to �nd patch vertices and center points

formfactor.c contains code to calculate formfactors between surfaces

callbacks.c contains the code for the modifed Gn Ray-Tracer, including such added features as

gouraud shading

Technical Outline

Here I will explain in more detail how I plan to meet all of my goals and implement the features of

my project. As I stated previously, I only plan to handle rectangular surfaces. Thus, I will modify

Gn to read in my rectangular surfaces along with the information associated with each surface such

as the reectance of the surface. I will not implement hierarchical modeling and I will specify all

surfaces in World coordinates so that I don't have to worry about transformations. To create the

patches for each surface I will just subdivide each surface uniformly, allowing as input a value for

the size of the subdivision. I will have to put considerable thought into developing a data structure

to hold all of the information for the surfaces. This data structure will have to hold values for the

radiosities of each patch and it will also have to store all of the vertices of the patches. It will

have to be easy to determine which vertices belong to which patch. A clever design for this data

structure is crucial to quick computation of the radiosity values.

I will implement the progressive re�nement algorithm described by Cohen, Shenchang, Wallace,

and Greenberg[1] (page 79) except that I will not use the hemicube method to compute the Form-

factors. To compute the Form-Factors I will use the method given by Baum, Rushmeier, and



4 CS488/688 Ryan Gunther

Winget[2] (page 330). They give a formula for calculating the Form-factor from a point to a

surface. It is:

F

dA

j

A

i

=

1

2�

X

g2G

i

N

j

� �

g

where: G

i

is the set of edges in surface i

N

j

is the surface normal for the di�erential surface j

� is a vector with magnitude equal to the the angle gamma (in radians) illustrated in the

diagram below, and direction given by the cross product of the vectors R

g

and R

g+1

as illustrated

below. I will implement visibility testing by shooting a ray to each vertex of the receiving patch

edge 1

dAj

edge 2

edge 3

edge 0

Ai

g0

g1

g2

g3

R0 R1

R2
R3

Nj

Figure 0.1:

Form-Factor diagram.

and multiplying the value I get for my Form-factor by the ratio:

[num rays that don't intersect a surface between the emitter and receiver divided by four]

I will try to implement this algorithm in such a way that it is possible to increase the number

of rays which can be shot. The algorithm for the Ray-tracer I implemented in assignment 4 will

have to be modi�ed so that it can determine which patch of a surface is intersected. The formulas

for computing the radiosity and unshot radiosity values are given by Cohen in his progressive

re�nement algorithm. He also gives a formula for computing the ambient light term which I will

use to generate intermediate images.



CS488/688 I.D. 95803907 5

Milestones

My �rst task will be to read the literature on radiosity more throughly and make sure I have a

complete understanding of all the issues involved. This will help me to avoid potential pitfalls.

Next, I will come up with a data structure that stores all of the patch information for each

surface. This data structure should store the vertices for each patch in such a way that it is easy

to �gure out which vertices correspond to a particular patch. I would like to have this done by

Wednesday, November 22.

Next I will modify Gn to allow me to read in square surfaces, subdivide them uniformly, and

store them in my data structure. I would like to have this done by Saturday, November 25.

Then I will implement the progressive re�nement algorithmwithout visibility testing and modify

my Ray-Tracer so that it can create a .ppm image �le from the radiosity information I have stored

for each patch of a surface. At this point I will create some simple scenes. I would like to have this

done by Wednesday, November 29.

Then I will add visibility testing to my model and create some more interesting scenes to

compare against the ones generated without visibility testing. I should have this done by Friday,

December 1.

Finally, I will add the ambient light factor to generate intermediate images and I will construct

some scenes which demonstrate the shortcomings and limitations of my model. This should be

done by Sunday, December 3. This will leave me a day to write up my documentation and do some

�nal testing. (Not much time!)

Organization

All �les will be found in the subdirectories under the A5 directory. The subdirectories and �les are

indicated in the following.

radiosity contains all of the source code for my project

data contains all of the Gn scene scripts I create

doc contains all of the documentation for my project

exe contains the executable for my project

Documentation

The �le doc/README gives a brief installation guide. The �le doc/MANUAL is a (not too lengthy)

user's guide to running the programme. The �le doc/REPORT is a short technical report on the

principles, algorithms, and background literature on the project.



6 CS488/688 Ryan Gunther

Implementation

Data Structures

To implement radiosity as my �nal project I expanded upon the Gn data structures. To create

a scene you can still write standard Gn scripts with a few minor modi�cations that I have im-

plemented. I created a new model geometry called GnRecSurface. This is my geometry for a

rectangular surface, which is the only type I support for my radiosity project. It has the following

structure:

GnRadPatch subdivision[100][100];

GnVector3D surfacenormal;

GnPoint3D surfacepoints[3];

It's surface can be uniformly subdivided up to a maximum of 100x100 patches. It also contains

the surface normal and the three points de�ning the surface.

A surface patch has the following structure:

GnRadiosity B total radiosity values

GnRadiosity deltaB unshot radiosity values

double unshotvalue total unshot radiosity

GnColour roe light reexivity for the patch

GnVector3D patchnormal patch normal

GnRadiosity estimate estimate for radiosity with ambient term added

Progressive Re�nement Algorithm

I implemented a slight variation of the progressive re�nement algorithm developed by Cohen, She-

bchang, Wallace, and Greenberg[1]. My version is as follows:

Step 1 Initialize unshot and total radiosity of each patch to its emission value.

Step 2 Set a convergent factor to a supplied user speci�cation, or default to 0.1. The algorithm

will terminate when no patch has an unshot radiosity greater than that of the convergent

factor.

Step 3 Cycle through all of the patches to �nd the patch with the highest unshot radiosity.

Step 4 Cycle through each of the remaining patches in the scene, calculate the formfactor between

the shooting and the current receiving patch. Then shoot of rays to determine if the shooting

and receiving patch are visible to one another. The user can specify anywhere between 0

and 4 rays to test for visibility. Weight the formfactor by the number of rays which do not



CS488/688 I.D. 95803907 7

intersect a surface between the receiver and shooter. Then transfer radiosity to the receiving

patch based on the form factor and the reectivity of the patch. The formula to do this was

stated previously as was the formula for calculating the form factor.

Step 5 Repeat steps 3 and 4 until the convergent factor is reached.

The user also has the option to render intermediate images or to add an ambient estimation

factor in order to get better looking intermediate images. To render intermediate images I simply

increment a counter each time a new shooter is found and when the counter reaches a speci�ed

number, I call my ray tracing routine and render an intermediate image. I render it with the

estimated values if the user has supplied a parameter which puts on the ambient correction factor.

To calculate the estimated ambient factor I use the following algorithm given by Cohen, She-

bchang, Wallace, and Greenberg[1]. It is as follows:

The form-factor from any patch i to patch j can be approximated as the fraction of the total

area of the environment taken up by the area of patch j. Thus an estimated form-factor for each

patch can be calculated as:

F

�j

�

A

j

P

n

j=1

A

j

An average reectivity for the environment can be computed as an area weighted average of the

patch reectivities:

�

ave

=

P

n

i=1

�

i

A

i

P

n

i=1

A

i

For any unit energy sent into the environment, �

ave

will on average be reected, and some of

that will be reected, etc.. Thus an overall interreection factor R is simply the geometric sum:

R = 1 + �

ave

+ �

2

ave

+ �

3

ave

+ � � � =

1

1� �

ave

From these assumptions we can derive an Ambient radiosity which is simply the area average

of the radiosity which has not yet been shot by formfactor computation times the reection factor

R.

Ambient = R

X

j = 1

n

(�B

j

F

�j

Then whenever I render the scene I derive an estimate for the radisoity of each patch with the

following formula:

B

0

i

= B

i

+ �

i

Ambient

I only use this estimate for display purposes, it has no inuence on the �nal image.

The progressive re�nement algorithm is in my module radiosity.c .



8 CS488/688 Ryan Gunther

Form-Factor Algorithm

The algorithm I used to calculate Form-Factors was already stated in my technical outline. The

algorithm I use to test for visibility was also given there. I have attempted to speed up this

algorithm in the following way. I shoot one ray at a time and test it against all of the surfaces in

the scene(not against each patch). If it intersects a surface, I store this surface and that is the �rst

surface I test my next ray against. It is likely that all four rays intersect against the same surface

so this will speed things up a little bit. I also test against this surface with the �rst ray of my next

patch because it is likely that adjacent patches will also intersect with the same surface. I allow

the user to specify how many rays are to be shot for visibility testing. They can specify from 0 to 4

rays. One ray is shot from each vertex of the recieving patch to the center of the shooting patch if

four rays are speci�ed. All of my Form-Factor algorithms are in the module formfactor.c. Thus, it

would be easy to implement a di�erent method for computing form-factors, such as the hemicube

method, at some point in the future. I have also seperated the code for computing form-factors

from the code for computing visibility so it would be easy to implement a di�erent algorithm for

determing visibility without changing the form-factor algorithm.

Ray-tracing Algorithm and Gouraud shading

I have just trimmed down my ray tracer from assignment A4. It now just checks for intersections

with rectangular surfaces and determines which surface is closest. When it intersects a surface it

uses the u and v vectors of the surface to determine which patch of the surface has been intersected.

Than I have written a routine to determine the vertices of this patch and I calculate the radiosity

of each vertex. I do this by taking the average radiosity of the four patches surrounding a vertex.

Then I use Gouraud shading to linearly interpolate intensity values across the patch.

Gnscript

Gnscripts can be written in the normal fashion, except for the following modi�cations I have made:

Addition 1 I have created a new model geometry, which is the only one that my radiosity program

can handle. It is can be speci�ed by giving recsurface as the geometry for a model. A list

of three points de�ning the surface must follow this option along with a parameter called

subdivide and a list of two integers which specify the amount of subdivision for this surface.

The �rst integer speci�es subdivision along the u direction and the second one speci�es

subdivision along the v direction.

Addition 2 To specify that a radiosity lighting model is being implemented, a paramater called

radiosity must be supplied with a material name as well as the reectance of the material.

Reectance is speci�ed with the paramater reect followed by a list of three doubles in the

range from 0.0 to 1.0. If the object is to be a light source, an emission paramater must also

be speci�ed followed by a list of three doubles. As well, if you wish a material to be rendered

with Gouraud shading, you must include the paramater shade followed by gouraud.



CS488/688 I.D. 95803907 9

Addition 3 When speci�ng a camera object for the scene, there are now some additional para-

maters you can specify. You can include an iterations paramater, iteration, followed by an

integer which will cause an intermediate image to be rendered after each number of speci�ed

passes through the progressive re�nement loop. This is useful because it enables you to watch

the radiosity algorithm in progress. The �les it creates will have the name supplied, with an

integer appended to it that identi�es how far along in the algorithm the program was at the

time the image was rendered. An addambient paramater can also be speci�ed. If it is given,

then any intermediate images generated will have the estimated ambient factor added to the

radiosities of the patches. A shadows paramater can also be included followed by an integer

between 0 and 4. This speci�es the number of shadow rays to be shot for visibility testing. 0

means that no visibility testing is performed. The default value is 4.

Manual

The program was compiled and runs on an SGI. The main executable is called gnash ray. I have

not had time to implement any real error-handling if the user enters invalid scripts. I assume that

a correct script has been run and I do not guarantee that any of the Gn functionally except that

required for my implementation of radiosity will work.

The image �les are output as .ppm �les. I have already discussed all of the algorithms and data

structures I use in the above sections.

Some sample image �les which demonstrate some aspects of my radiosity algorithm are in the

directory data. They demonstrate the following things:

Uniform subdivision The imageDemo1.ppm0 demonstrates that I have sucessfully implemented

uniform subdivision of rectangular surfaces. It also demonstrates that I have implemented

visibility testing. It shows that just implementing uniform subdivision won't produce very

good images. They appear blocky and shadow boundries are too rigid. You don'y get a nice

soft shadow e�ect.

Gouraud shading The image Demo0.ppm0 illustrates the fantastic e�ect that implementing

Gouraud shading has. This image is exactly the same as the previous one, except for the fact

that Gouraud shading has been implemented. You now no longer have this blocky e�ect and

there are nice soft shadow boundries.

Shadow Rays The image Demo5.ppm0 demonstrates what happens when only one shadow ray is

cast as opposed to four shadow rays. There is a much larger shadow on the right hand side

because only one ray is being shot so there is less degree in the range that a shadow can have.

Colour Bleeding The image Demo10.ppm demonstrates the aspect of colour bleeding. The wall

on the left is a white wall, but it has a redish, blueish, and greenish tinge to it. This is because

the other walls in the room reect some of their colour onto the white wall.

Mach bands The image Demo10.ppm also demonstrates one of the short comings of uniform

subdivision. If you look closely at the white wall you will notice bright streaks on the wall.

This is a result of uniform subdivision and would be less noticable if I subdivided the wall

more.



10 CS488/688 Ryan Gunther

Progressive Re�nement The imageDemo15 demonstrates the progressive re�nement algorithm

by showing various intermediate images. Each image occurs after 40 more iterations of the

progressive re�nement loop.

Ambient light factor The image Demo16 demonstrates the addition of an ambient light esti-

mate. A comparison is made between images with the ambient light estimate and without

the ambient light estimate. You can see that initially, the images with the ambient light

estimate are much closer to the �nal image.

Uniform Subdivision and Shadows The image Demo20.ppm0 demonstrates how uniform sub-

division fails to handle shadows properly when one surface is extremely close to another

surface.

Sources

In src. The command make will compile my project and produce an executable called gnash ray.

Executable

My executable is named exe/gnash ray.

Data Files

My image �les are in data

Gn Script �les

My script �les are in exe

Graduate Report

This brief report contains the material necessary for my tenth objective.

As you could see from some of my sample images, one of the biggest problems with my imple-

mentation of radiosity is the fact that I uniformly subdivide each surface into square patches. This

causes arti�cats such as the previously mentioned Mach bands. Mach bands are caused because

of �rst-derivative discontinuties across patch boundries. These discontinuties are caused becuase

usually the rate of change of the radiosity function is di�erent on both sides of a patch edge and

our eye is very sensitive to these kinds of changes.

There are several techniques you can use that are an improvement over uniform subdivision.

Substructuring is one approach that can be taken. In this approach you can treat patches di�erently

depending on whether or not they are the emitter of energy or the reciever of energy. Each patch can

be considered as an element itself when it is the emitter or it can be broken down into smaller pieces

when it is the reciever. Then you can compute the radiosity for each element of a patch and the patch



CS488/688 I.D. 95803907 11

radiosity can be obtained as an area-weighted average of it's element radiosities. This algorithm

gives a much more accurate radiosity solution because intensity variations are represented inside

the patches by the small surface elements. However, this method has the drawback of requiring

more storage and the algorithm takes much more time becomes there are more elements to take

into consideration.

Another technique that can be used is that of adaptive mesh re�nement. The idea behind

this approach is that a denser mesh of elements is needed in areas where the illumination changes

radiply, since the assumption of a constant radiosity per element means that the radiosity function

across a surface must be treated as a piecewise constant function. Therefore, we want to try to

have the mesh follow the distribution of light in the environment, with a higher density of surface

elements in places where the illumination changes rapidly. However, it is unrealistic to suggest

that the user should try to guess where these rapid changes in illumination might occur so there

should be some way to generate the surface mesh automatically by having the program look at the

properties of the environment. Sillion gives two approaches that can be taken in doing this.[4](page

71).

The �rst approach involves predicting where important illumination features, such as shadow

boundries, fall on surfaces. The mesh could than be based on the predicted location of these

features.

Sillion suggests that a simplier idea would be to have the mesh evolve as the simulation pro-

gressed. This means it would generate more elements in areas where a rapid change in the radiosity

function is detected. Thus, the program would have to constantly evaluate the radiosity solution

and make new meshing decisions. New elements would be generated in areas where the intensity

of light changed rapidly, but no new patches would ever be introduced into the mesh. Sillion says

that the rate of change in radiosity across a surface element could be estimated by looking at

the radiosity of neighbouring elements. A new mesh could than be generated by subdividing all

elements for which the gradient exceeds some prede�ned threshold. Sillion also says that more elab-

orate schemes can be developed such as computing radiosity values at the vertices of elements as

a weighted average of the neighbouring element's radiosities. This method means that the varying

level of subdivision of neighbouring elements can be accounted for because a very small element

that shares a vertex with a large element will have more inuence on that vertex's radiosity. Vertex

radiosity values can than be used to estimate the radiosity gradient.

Another method that has been suggested to improve the radiosity solution is to remove the

arbitrary seperation of patches and elements and replace them by a continuum of hierarchial ele-

ments. Radiosity exchanges can than be computed between the various levels of the hierarchy and

for any pair of surfaces an appropriate subdivision level on both surfaces could be determined and

used to compute the energy exchange. This method is fairly involved and the details are beyond

the scope of this report.

Finally, there are various other more accurate ways to compute form-factors than the analytical

method I used. One such method is the hemi-cube method. The idea here is to center a cube around

the point from which form factors are to be computed. Then discretize the faces of the hemi-cube

into a number of square cells for which a delta form factor can be computed analytically. Than each

face of the hemi-cube is used as a projecton surface to determine visibility by using what is called

an item bu�er. This is an array of patch identi�ers, one for each hemi-cube cell, that records the



12 CS488/688 Ryan Gunther

visible surface for the direction of each cell. It is constructed using the z-bu�er strategy where all

surfaces are projected in turn onto the face of the cube. This determines the closest surface patch

visible through each cell. The greater hemi-cube resolution you have, the greater your accuracy.

Than the form-factors to all surfaces can be computed at once and each hemi-cube cell contributes

it's delta-form-factor to the form-factor with it's visible patch. Than the form-factor to a given

patch can be obtained by summing up all of the delta-form factors corresponding to all the cells

covered by the projection of the patch.

In conclusion, Radiosity is a very complex topic which is currently a very active area of research.

The algorithms I used were very simplistic, but I now have a de�nite feel for what radiosity is all

about. This has been a very rewarding project.

0.1 Bibliography

[1]Cohen, Michael F., Shenchang Eric Chen., Wallace R. John, Greenberg P. Donald, \A Progressive

Re�nement Approach to Fast Radiosity Image Generation," Computer Graphics (SIGGRAPH '88

Proceedings)22pp. 75-84(1988).

[2]Baum, R. Daniel, Rushmeier E. Holly, Winget M. James, \Improving Radiosity Solutions

Through the Use of Analytically Determined Form-Factors" Computer Graphics (SIGGRAPH '89

Proceedings)23pp. 325-334(1989).

[3]Foley, vanDam, Feiner, Hughes, Computer Graphics Principles and PracticeAddison-Wesley(1990).

[4]SillionX. Francois, Puech Claude, Radiosity and Global IlluminationMorgan Kaufmann(1994).

[5]Glassner, S. Andrew, Principles of Digital Image Synthesis Volume Two. Morgan Kauf-

mann(1995).

[6]Watt Alan, Watt Mark, Advanced Animation and Rendering Techniques Theory and Practice

Addison-Wesley(1992).

[7]Hearn, Donald, Baker, M. Pauline, Computer Graphics Prentice Hall(1994).

[8]Kwok, Bernard, Analysis of Radiosity Techniques in Computer Graphics (Thesis) York Uni-

versity(May 1992).



CS488/688 I.D. 95803907 13

Objectives: Project

Name: Ryan Gunther

UserID: rtcgunth

Student ID: 95803907

Objective 1.Scene is designed and square surfaces are uniformly sub-divided into patches.

Objective 2.A well designed data structure is created which allows e�cient retrieval of patches

and vertices for a surface which has been uniformly subdivided.

Objective 3.The progressive re�nement algorithm has been successfully implemented.(i.e. a

method for determining which patch is the shooter and an algorithm for updating the ra-

diosities of all recieving patches is in place. This does not include Form-Factor calculation)

Objective 4.Calculation of Form-Factors without visibility testing.

Objective 5.Calculation of Form-Factors with visibility testing in place.

Objective 6.Modi�cation of ray-tracer to create image �les using computed radiosity values of

surface patches.

Objective 7.Addition of an ambient correction factor to generate intermediate images of my

radiosity model.

Objective 8.Creation of images which clearly demonstrate the di�erence between my radiosity

model with visibility testing as opposed to my model without visibility testing.

Objective 9.Creation of images which clearly show that the meshing I use(i.e. uniform) is

inadequate.

Objective 10.A short written explanation addressing the problems of my model and how my

software design could be modi�ed to address further radiosity techniques known to treat these

problems.

Declaration:

I have read the statements regarding cheating in the CS488/688 course handouts. I

a�rm with my signature that I have worked out my own solution to this assignment,

and the code I am handing in is my own.

Signature:


