Canonical Polyhedra

Tiffany Inglis

July 20, 2010

Polyhedral graphs

Canonical polyhedron

 All edges are tangent to the unit sphere
The tangent points have a centre of mass at the centre of the sphere

Koebe polyhedron

 All edges are tangent to the unit sphere
The tangent points have a centre of mass at the centre of the sphere

Circle packing

Every Koebe polyhedron admits a circle packing.

Circle pattern

Primal packing + dual packing = circle pattern

Orthogonal circle pattern

Every polyhedral graph admits an orthogonal circle pattern.

Parameters defining a circle pattern

A circle pattern is defined uniquely (up to rotation) by the intersection angles and the circle radii.

Circle pattern on the Euclidean plane

Angles around a vertex add up to π .

Circle pattern on the Euclidean plane

Canonical Polyhedra

Rewrite as critical point problem

Had:
$$0 = 2\pi - 2\sum_{f_j \mid f_k} \arctan\left(\frac{r_{f_k}\sin\theta_e}{r_{f_j} - r_{f_k}\cos\theta_e}\right) \quad \forall f_j$$

$$\begin{array}{ll} \underline{\text{Want}}: & \frac{\partial S}{\partial r_{f_j}} = 2\pi - 2\sum_{f_j \mid f_k} \arctan\left(\frac{r_{f_k}\sin\theta_e}{r_{f_j} - r_{f_k}\cos\theta_e}\right) & \forall f_j \\ \\ \underline{\text{So that}}: & \frac{\partial S}{\partial r_{f_i}} = 0 & \forall f_j \end{array}$$

Rewrite as critical point problem

Critical points of S

- \rightarrow Solutions to the system of equations
- \rightarrow Circle patterns!

<u>Goal</u>: Find a critical point of S

Solving numerically

Idea: Find a critical point with Newton's method Problem: Might get a degenerate circle pattern

Degenerate solutions

<u>Fact</u>: No degenerate solutions on the plane <u>Idea</u>: Solve on the Euclidean plane first

Map solution from plane to sphere

<u>Fact</u>: Stereographic projections preserves angles <u>Idea</u>: Map Euclidean solution onto the sphere

Obtaining a family of Koebe polyhedra

Apply a projective transformation that fixes the sphere

i.e. move towards or away from a fixed point

Centre of mass

Notice that the centre of mass of the tangent points moves continuously towards or away from the fixed point.

Canonicalizing a Koebe polyhedron

Sequentially adjust the polyhedron with fixed points (1,0,0), (0,1,0) and (0,0,1) until the centre of mass lies on (0,0,0) (centre of the unit sphere).

Tiffany Inglis Cano

Canonical Polyhedra

The End

References:

Boris A. Springborn, *Variational Principles for Circle Patterns*. Berlin, 2003.

Stefan Sechelmann, Discrete Minimal Surfaces, Koebe Polyhedra, and Alexandrovs Theorem. Variational Principles, Algorithms, and Implementation. Berlin, 2007.