Canonical Polyhedra

Tiffany Inglis

July 20, 2010

Polyhedral graphs

Canonical polyhedron

1 All edges are tangent to the unit sphere
2 The tangent points have a centre of mass at the centre of the sphere

Koebe polyhedron

(1) All edges are tangent to the unit sphere
(2) The tangent points have a centre of mass at the centre of the sphere

Circle packing

Every Koebe polyhedron admits a circle packing.

Circle pattern

Primal packing + dual packing $=$ circle pattern

Orthogonal circle pattern

Every polyhedral graph admits an orthogonal circle pattern.

Parameters defining a circle pattern

A circle pattern is defined uniquely (up to rotation) by the intersection angles and the circle radi.

Circle pattern on the Euclidean plane

Angles around a vertex add up to π.

Circle pattern on the Euclidean plane

$$
\varphi_{e}=\arctan \left(\frac{r_{f_{k}} \sin \theta_{e}}{r_{f_{j}}-r_{f_{k}} \cos \theta_{e}}\right) \Rightarrow 2 \pi-2 \sum_{f_{j} \mid f_{k}} \varphi_{e}=0
$$

Rewrite as critical point problem

Had: $\quad 0=2 \pi-2 \sum_{f_{j} \mid f_{k}} \arctan \left(\frac{r_{f_{k}} \sin \theta_{e}}{r_{f_{j}}-r_{f_{k}} \cos \theta_{e}}\right) \quad \forall f_{j}$

Want: $\quad \frac{\partial S}{\partial r_{f_{j}}}=2 \pi-2 \sum_{f_{j} \mid f_{k}} \arctan \left(\frac{r r_{f_{k}} \sin \theta_{e}}{r_{f_{j}}-r_{f_{k}} \cos \theta_{e}}\right) \quad \forall f_{j}$

So that: $\quad \frac{\partial S}{\partial r_{f_{j}}}=0$

Rewrite as critical point problem

Critical points of S
\rightarrow Solutions to the system of equations
\rightarrow Circle patterns!

Goal: Find a critical point of S

Solving numerically

Idea: Find a critical point with Newton's method Problem: Might get a degenerate circle pattern

Degenerate solutions

Fact: No degenerate solutions on the plane Idea: Solve on the Euclidean plane first

Map solution from plane to sphere

Fact: Stereographic projections preserves angles Idea: Map Euclidean solution onto the sphere

Obtaining a family of Koebe polyhedra

Apply a projective transformation that fixes the sphere
i.e. move towards or away from a fixed point

Centre of mass

Notice that the centre of mass of the tangent points moves continuously towards or away from the fixed point.

.

Canonicalizing a Koebe polyhedron

Sequentially adjust the polyhedron with fixed points $(1,0,0),(0,1,0)$ and $(0,0,1)$ until the centre of mass lies on ($0,0,0$) (centre of the unit sphere).

1. polyhedral graph

2. map to sphere

$$
\begin{gathered}
2 \pi-2 \sum_{f_{i}, f_{k}} \arctan \left(\frac{r_{f_{k}} \sin \theta_{c}}{r_{f,}-r_{f_{k}} \cos \theta_{c}}\right)=0 \quad \forall f_{j} \\
\Downarrow
\end{gathered}
$$

$$
-\sum_{f_{j} \mid f_{i}}(\pi-\theta)\left(\rho_{f_{i}}+\rho_{f_{i}}\right)+\sum_{f_{j}} 2 \pi \rho_{f_{i}}
$$

2. algebraic form

3. canonicalize

4. solve on plane

5. result

The End

References:
Boris A. Springborn, Variational Principles for Circle Patterns. Berlin, 2003.

Stefan Sechelmann, Discrete Minimal Surfaces, Koebe Polyhedra, and Alexandrovs Theorem. Variational Principles, Algorithms, and Implementation. Berlin, 2007.

