
CS 774 Assignment 2
Fall 2009

Instructors:
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Office Hours: Tues: 4:00-5:00; Thurs: 11:00-12:00
Lectures:MWF 3:30-4:20 MC2036

CS 774 Web Site: www.student.cs.uwaterloo.ca/∼cs774/

Assignments 1 and 2 are not to be handed in, but are meant to give you a head start on the course
project. If you have any problems, be sure to come and see me.

Numerical PDE Option Pricing

Basic Tasks
The objective of this assignment is to use Matlab to familiarize yourselves with Numerical PDE option
pricing.

Suppose we want to solve the BS equation, for an American option. Formally, we can state the problem
as a linear complementarity problem:
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where one of (1-2) holds with equality. V ∗ is typically the payoff condition. Boundary conditions are
typically:
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as S → 0, and, boundary conditions for large S are

V ' 0 S →∞ ; for a put
V ' S S →∞ ; for a call (4)

Usual payoff conditions are

V (S, τ = 0) = max(K − S, 0) for a put
V (S, τ = 0) = max(S −K, 0) for a call (5)

where K is the strike price.
Let
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and the discrete form of LV at node (Si, τ
n) be denoted by (LV )n

i . Let V n
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n) be the discrete
values of the option.

Then, we can write the C-N timestepping as[
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where the penalty term qn+1
i is defined as
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= 0 otherwise (9)

and where Large is a large number. Note that θ = 0 is fully implicit, θ = 1/2 is Crank-Nicolson. The factor
Large in equation (9) should be selected so that

Large ' 1
tol

(10)

where tol is the convergence tolerance for the iteration.
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and [
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where αi, βi are defined as in the course notes. Note that the first and last rows of M̂ will have to be altered
to take into account the boundary conditions.

Let the diagonal matrix P̄ is given by

P̄ (V n+1)ii = Large if V n+1
i < V ∗

i

= 0 otherwise
P̄ (V n+1)ij = 0 if i 6= j (13)

then we can write equation (7) as[
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]
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An iterative method for solving the nonlinear equations (14) is described in the course notes. The
theory behind the penalty method is discussed in the paper Quadratic convergence for a Penalty method for
American options, by Forsyth and Vetzal, Siam J. Sci. Comp. (2002) vol 23, pages 2096-2123.

Basic Tasks

Using the data in Table 1, code up the above PDE method in Matlab. You will have to solve a tridiagonal
matrix. DO NOT use the full matrix objects in Matlab. Use the sparse matrix objects. Use the Matlab
sparse matrix function spalloc to allocate a sparse matrix of the correct size, and then insert nonzero elements
into the matrix and right hand side to correctly represent the system of equations.

First, solve for a European Put option, using the data given in the Table, (with CN timestepping) and
compare with the exact solution using blsprice. Experiment with different grid spacings and timestep sizes.
You might find that an unequally spaced grid, with finer spacing near the exercise price is useful (assuming
you are interested in the price near the the exercise price). Do you observe second order convergence? An
example of a simple unequally spaced grid is given by (Matlab notation)
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S = [0:0.1*K:0.4*K,...
0.45*K:0.05*K:0.8*K,...
0.82*K:0.02*K:0.9*K,...
0.91*K:0.01*K:1.1*K,...
1.12*K:0.02*K:1.2*K,...
1.25*K:.05*K:1.6*K,...
1.7*K:0.1*K:2*K,...
2.2*K, 2.4*K, 2.8*K,...
3.6*K, 5*K, 7.5*K, 10*K];

where K is the strike, and we are interested in the solution near S = K.
Plot delta VS and gamma VSS , as well as the price (near the exercise price). Carry out a convergence

study, using different mesh sizes and timesteps (a financial year has 250 days). A reasonable number of
timesteps to use on a coarse grid would be about T/25. You may find that if you are using Crank-Nicolson
timestepping, that you may have to take two fully implicit steps at the start, and then C-N thereafter. This
is discussed in the course notes.

Note: to carry out a convergence study, you should solve the pricing problem on a sequence of problems.
Each problem has a twice as many nodes as the previous problem (new nodes inserted halfway between the
coarse grid nodes) and the timestep size is halved. Assuming that

Error = O((∆t)2, (∆S)2) ; ∆S = max
i

(Si+1 − Si) (15)

then if we let

h = C1∆S
h = C2∆t

then, if we can label each problem in the above sequence by a set of h values, so that the solution on each
grid (at a given point) has the form

V (h) = Vexact +Ah2

V (h/2) = Vexact +A(h/2)2

V (h/4) = Vexact +A(h/4)2 (16)

where we have assumed that the mesh size and timestep are small enough that the A in equation (16) is
approximately constant. Now, equation (16) implies that

V (h)− V (h/2)
V (h/2)− V (h/4)

' 4 (17)

Check the theory by examining the rate of convergence of your pricer.
Note the delta and gamma can be computed by
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Now, price an American put, with the same data. I get about $3.07 for the price at S = 100. (There
is no exact solution in this case). Experiment with different convergence tolerances for the iteration within
each timestep.

As another check, for the case of T = 1yr, σ = .40, r = .06, S = 100, (American put), I get 13.2957.
Compare with applying the American constraint explicitly.

Some additional tasks
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Table 1: A typical test case

σ .2
r .10

Time to expiry 0.25 years
Strike Price $100

Initial asset price S0 $100

1. Experiment with a European digital payoff, i.e. the payoff is

payoff = 1 if S > K

= 0 if S ≤ K

Try fully implicit and CN timestepping, plot delta and gamma. You may see some oscillations if CN
is used. These can be cured by the following trick: take two initial steps of fully implicit, followed
by CN. You should also average the payoff at the discontinuity. Carry out a convergence study, using
smaller timesteps and a finer mesh.

2. Use a second order BDF timestepping method (see course notes) to price American options. Carry out
a convergence study.

3. Try using the boundary condition VSS = 0, S → ∞ (see the section (Sec 22) in the course notes on
this). Again, this should not require many changes to your code. An advantage of this method is that
we do not have to guess the form of the solution for large values of S. The boundary condition is
imposed automatically.

4. You can get a head start on the project by writing the following function. Solve the pricing PDE and
store VS , VSS at all grid points and timesteps (Si, τ

n) (use a couple of arrays). Then, write a function
which takes as input

• The arrays of stored information, delta and gamma at each grid point and timestep.

• A discrete time τ∗ (which may not coincide with {τn}), and an array of S values, which may not
coincide with the grid points.

The output of this function should be

• Arrays of VS , VSS , corresponding to the input data. You will have to linearly interpolate the input
data arrays to produce the output.

Try to vectorize this as much as possible.

You will need this function when you simulate a hedging strategy. Each simulation path will require
determination of VS , VSS at each discrete hedging time.

5. You will also need to keep track of the exercise boundary. You will need to generate an array where
you store the exercise boundary S∗(ti) at each timestep. You will need this to determine if the option
is going to be exercised during your hedging simulations.
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