
CS 251 Spring 2021: Notes Jacob Schnell

Contents

1 Introduction to ARM 3

1 ARM Overview . 3

1.1 Computation . 3

1.2 Commands . 4

2 Digital Logic Design 4

2 Circuits and Transistors . 4

2.1 Circuits . 4

2.2 Transistors . 7

3 More Complex Components . 7

3.1 Decoder . 7

3.2 Multiplexor . 8

3.3 Latches . 8

3.4 Register File . 9

4 RAM, FSM, Data Representation . 11

4.1 Random Access Memory . 11

4.2 Finite State Machine . 12

4.3 Data Representation . 13

5 ALU, Floating Point . 14

5.1 ALU . 14

5.2 Floating Point . 15

3 Single Cycle Processing 15

6 Single Cycle Processor . 15

6.1 Datapath Overview . 15

6.2 Specifics . 17

7 Single Cycle cont.; Multicycle Datapath . 18

7.1 More on Single Cycle Processor . 18

Contents 1

CS 251 Spring 2021: Notes Jacob Schnell

7.2 Multicycle Processor Datapath . 18

4 Pipelining 20

8 Pipelined Datapath . 20

9 Control Hazards . 21

9.1 Data hazards . 21

9.2 Branch Hazards . 22

9.3 Branch Predicting . 22

5 Memory 23

10 Cache . 23

11 Virtual Memory . 25

11.1 TLB . 26

12 Extras . 26

Contents 2

CS 251 Spring 2021: Notes Jacob Schnell

Unit 1 Introduction to ARM

Week 1 ARM Overview

1.1 Computation

High level languages are compiled to assembly languages such as ARM (think PRIMPL /
MMIX) which are in turn assembled into binary code.

Computers work with current / voltage (V = IR). These quantities are continuous, manip-
ulable values, however, they are difficult to accurately measure. Hence, we digitize them to
discrete, binary values (High: 1, Low: 0). Binary values are used as they are simpler.

Memory goes from input to the registers, from the registers the processor, where an operation
is performed on it, back to the registers, and then to output or wherever is necessary.

Definition. ARM: ARM stands for Advanced RISC (Reduced Instruction Set Computer)
Machine. It is an assembly language with few, small, quick to execute commands.

Definition. Register: There are 32 general registers in ARM holding 64 bits each. Each
register is denoted Xi, i.e. X0 to X31, however, X31 is reserved and holds only 0.

Note. Memory: Memory is segmented into 4 byte (word) and 8 byte (double-word) blocks.
Instructions hold a word of memory, where as data holds a double-word of memory.

Definition. Program Counter (PC): Special register which holds the address of the next
instruction in the program.

Note: Addresses in a program increment by 4 each time as an instruction is generally 32
bits, i.e. 4 bytes, called a word. Memory access is by accessing a byte in memory, hence
addresses increase by 4 per instruction. After each instruction, PC ← PC + 4.

Note: Data in ARM is either an address (e.g. a register like X5) or an immediate (e.g. an
integer like #55).

1 Introduction to ARM 3 1, ARM Overview

CS 251 Spring 2021: Notes Jacob Schnell

Remark. Instruction: Instructions come in 5 formats:

• R-Format: Inst Addr, Addr, Addr; e.g. ADD X1,X2,X3

• D-Format: Inst Addr, [Addr, Imm]; e.g. LDUR X1, [X2, #20]

• I-Format: Inst Addr Addr, Imm; e.g. ADDI X1, X2, #100

• B-Format: Inst Imm; e.g. B #28

• CB-Format: Inst Addr, Imm; e.g. CBZ X1,#8

1.2 Commands

Note: We use M [x] to represent the memory held at the xth location, for instance M [4] is
the memory held at the second word, 4th byte.

Branches ARM has no if statements or loops, rather it uses conditional and unconditional
branching. An unconditional branch is of the form B Imm and immediately sets PC to
PC ← PC + Imm× 4.

There are multiple conditional branches, for instance CBZ Addr, Imm which sets PC ←
PC + Imm× 4 if Addr 6= 0. Similarly is CBNZ which branches when the address is non-zero.

Memory accessing To load into a register, we use LDUR Dst, [Src, Imm]. This has the
effect of Dst←M [Src + Imm] where Dst and Src are registers.

To save a register’s value in memory, we use STUR Src, [Dst, Imm]. This has the effect of
M [Dst + Imm]← Src where Dst and Src are registers.

Unit 2 Digital Logic Design

Week 2 Circuits and Transistors

2.1 Circuits

Definition. Combinational Circuit: A combinational circuit consumes n Boolean inputs
and returns m Boolean outputs. Recall a Boolean 1 is high and 0 is low voltage.

Definition. Sequential Circuit: A sequential circuit has inputs passed to a combination
circuit and some of the outputs of the combinational circuit are passed along to output,
while others are kept in storage. In the next clock cycle, the information in storage is passed
to the combinational circuit along with inputs.

2 Digital Logic Design 4 2, Circuits and Transistors

CS 251 Spring 2021: Notes Jacob Schnell

Remark: We use Boolean algebra in circuits, i.e. arithmetic in Z2. For instance for X, Y ∈
Z2, we defined X and Y as X ∩ Y = X · Y = XY and X or Y as X ∪ Y = X + Y . Further,
we denote the complement as X = 1−X.

Definition. Minterm: A minterm or minimal term is a combination of inputs, for instance
each combination of XY Z is a minterm. Notice we tend to use shorthand and to denote
the minterm of X = 1, Y = 0, Z = 1, we write XY Z. Notice also, each row of a truth
table has a corresponding minterm and we write the rows in increasing order by the binary
representation of the minterm (i.e. XY Z = 101 = 5).

Remark. Circuit Representations:

A

B
A ·B

A

B
A + B A A

Remark. Truth Tables:

OR
A B A + B
0 0 0
0 1 1
1 0 1
1 1 1

AND
A B A ·B
0 0 0
0 1 0
1 0 0
1 1 1

NOT
A ¬A
0 1
1 0

Example: Example of the logic circuit F = ABC + ABC + ABC.

2 Digital Logic Design 5 2, Circuits and Transistors

CS 251 Spring 2021: Notes Jacob Schnell

A

B

C

A

B

C

A

B

C

F

Remark. Don’t Cares: In truth tables we occasionally use an X in the place of a 0 or 1
in input to indicate that regardless of the value the variable has, the output is the same. If
the X occurs in the output, then it indicates we don’t care about the output for this input.

Note. Laws of Boolean Algebra: Following mostly from the requirements for a field:

Rule Dual Rule Name

X = X
X + 0 = X X · 1 = X Identity
X + 1 = 1 X · 0 = 0 Zero/one
X + X = X XX = X Absorption
X + X = 1 XX = 0 Inverse

X + Y = Y + X XY = Y X Commutative
X + (Y + Z) = (X + Y) + Z X(Y Z) = (XY)Z Associative

X(Y + Z) = XY + XZ X + Y Z = (X + Y)(X + Z) Distributive
X + Y = X · Y XY = X + Y DeMorgan

Remark: We introduce now the remaining simple logic gates. The NAND gate is XY ,
NOR is X + Y , XOR is XY + XY , and XNOR is XY + XY . The following ar their gates

X

Y
NAND

Z
X

Y
NOR

Z
X

Y
XOR

Z
X

Y
XNOR

Z

2 Digital Logic Design 6 2, Circuits and Transistors

CS 251 Spring 2021: Notes Jacob Schnell

2.2 Transistors

Definition. Transistor: An electrically controlled switched, i.e. lets current pass when on,
doesn’t otherwise. An NMOS transistor (“n-transistor”) behaves like a transistor but trans-
mits strong 0’s and weak 1’s (expected 5v, gets 3-4v). A PMOS transistor (“p-transistor”)
is the opposite, weak 0’s strong 1’s.

Input NMOS PMOS
1 L H
0 H L

Definition. CMOS: A CMOS circuit uses p and n transistors to make circuits with clean
paths to power and ground. This means there are no weak signals.

Remark. Circuit Analysis: To analyze a circuit, for each possible input, determine the
resistance of each transistor. If the output has a low resistance path to power and high to
ground than it is 1, if it has a low resistance path to ground and high to power it is 0. In the
case that there is a low resistance path to power and ground, it is a short circuit marked by
a star ?. In the case that there is a high resistance path to power and ground, it is a float
state disconnected from both, marked by a dash −. A circuit with only 0 and 1 outputs is
said to be stable, otherwise it is unstable.

Remark: An AND gate is just a NAND gate followed by a NOT gate.

Remark. Number of Transistors per Gate: A NOT gate has 2 transistors. A NAND
gate has 2 transistors per input (minimum 4 total). A NOR gate has 2 transistor per input
(minimum 4 total).

Week 3 More Complex Components

3.1 Decoder

Definition. Decoder: A component of a digital circuit, it has n inputs and 2n outputs.
In particular, it translates the n-bit input into a signal in the index that corresponds to the
binary value of the input. Note this means one and only one output will ever be activated
at once.

Remark: The decoder can be used for instance to determine which piece of hardware, which
bit, etc. to activate in any given clock cycle.

Example: An example of a usage of the decoder is for expanding memory by a process
called chip select. For instance, if we have 1 GB or 230 B memory chips, each byte being
addressed using a 230 bit input, we can quadruple the memory into 4 GB by using a decoder.
You pass instead 232 bits, the decoder takes the first 2 bits to determine which memory chip
to send the reference to.

2 Digital Logic Design 7 3, More Complex Components

CS 251 Spring 2021: Notes Jacob Schnell

3.2 Multiplexor

Definition. Multiplexor (MUX): It has n select bits/lines and 2n lines for input, and a
single output. In particular, it outputs the line with binary representation equal to select
bits. That is, it chooses one of the input lines to pass through.

Definition. Bit Order: When considering bits for binary representations, we say S0 is the
lower order bit and it appears at the far right. Sn is the higher order bit and it appears at
the far left. For instance, 2 in binary is 10, hence we have higher order bit S1 = 1 and lower
order bit S0 = 0.

Remark. Multiple Bit Multiplexors: To use a (parent) multiplexor which consumes k n-
bit inputs and returns an n-bit output, we use an array of (child) multiplexors. In particular,
each bit of each of the k inputs is connected to a single multiplexor (n total multiplexors, 1
per bit), all sharing the same select bit, and return the output of each multiplexor in order.

Definition. Bus: A slash across an input or an output is used to indicate a bus, a collection
of data lines that are treated as a single logical signal.

Example: 64-bit multiplexors can be useful for instance in getting the computer to execute
operations before receiving them. If it is unsure which arithmetic operation (+, −, ×, ÷)
then it’ll compute all of them and use a 64-bit multiplexor to choose the appropriate output.

3.3 Latches

Definition. Synchronous: A synchronous (sequential) circuit has a clock pulse which is
fed in every cycle as a clock bit. An asynchronous circuity does not have this clock pulse,
making it potentially faster and less power-hungry, but harder to design and analyze.

Definition. Set/Reset Latch: A Set/Reset (SR) latch holds a bit of information.

R

S

Q

Q

When S,R = 0, 0 the value of Q is unmodified. When S,R = 0, 1 the value of Q is set to 1.
When S,R = 0, 1 the value of Q is set to 0. When S,R = 1, 1, the value of Q,Q oscillates
from 0, 0 to 1, 1 indefinitely. We implement safety measures before the SR latch to avoid
S,R every being 1, 1.

Definition. Falling/Rising Edge: The rising edge of a signal is the edge of where the
signal goes from low to high. The falling edge is where the signal goes from high to low.

Definition. D-Latch: A D-Latch implements a clock bit to copy the value from an input
D so long as the clock bit is high.

2 Digital Logic Design 8 3, More Complex Components

CS 251 Spring 2021: Notes Jacob Schnell

When the clock bit is high, Q will receive the value of D, when the clock bit is low Q will
remain unchanged. We consider the changes to be instantaneous, though it is not in reality.
In particular, a change to D on the falling edge of C has no impact.

Remark: In the case that D changes during a clock pulse, so will Q, this is generally an
undesirable trait for a memory bit.

Definition. D Flip-Flop: A D flip-flop implements two D-latches in a master-slave to
design to make it so that memory is only updated on the clock’s falling edge. This means a
D flip-flop is more stable as if Q changed during a clock cycle it doesn’t matter. See below.

3.4 Register File

Definition. Register File: The register file is the set of all registers, implemented as D
flip-flops. In particular, it has 5 inputs and 2 outputs. The first register number to read from,
the second to read from, the register number to write to, the write data and the write bit.
In the case of an ARM based processor, there are 32 registers, hence the register numbers
are 5 bits wide. Since each register contains 64 bits, the write data is 64 bits wide. The
write bit indicates whether the operation is a read (0) or write (1).

2 Digital Logic Design 9 3, More Complex Components

CS 251 Spring 2021: Notes Jacob Schnell

Remark. Writing to Register: Recall that in writing to a register, 3 inputs are needed.
The write bit to permit writing, the write register number and the write register data. The
register number is passed to a decoder which, along with the write bit, opens a register for
writing. The data is then passed to each register, however, only one (the desired register)
will commit anything. Recall a register is an abstraction of 64 (or more) D flip-flops.

Remark. Reading from Register: Recall that in reading from a register, 2 inputs are
needed, the register read numbers. The information from each register is passed along to
two multiplexors and each register read number is sent to one multiplexor. The register read
number selects which register’s information is allowed to pass through the multiplexor. Note
that in reality this is 64 multiplexors per read number, one for each bit of data.

2 Digital Logic Design 10 3, More Complex Components

CS 251 Spring 2021: Notes Jacob Schnell

Remark: The second image is the combined register file, both read and write.

Week 4 RAM, FSM, Data Representation

4.1 Random Access Memory

Definition. Random Access Memory: Abbreviated RAM, it is memory where any byte
can be accessed randomly, i.e. not in sequential order. You provide an address and get the
corresponding data.

Definition. Three-State Buffer: Has 2 input values and outputs one of a 0, a 1, or a float
state. It works by taking an input C and when C = 1 then transistors are all low allowing
the other input, X to pass through to the output F . If C = 0 however, then X passes
through two high resistances creating a float state. We usually abstract a 3 state buffer to
a triangle with input at its base, output at its tip and control bit into one of the sides.

Definition. Static RAM: Abbreviated SRAM, it has 5 inputs and 1 output. There’s an
input for address of byte, chip select, output enable, write enable, and data in. It uses D-
Latches to store memory instead of flip-flops as there is no clock. The chip select is a binary
number representing which RAM chip to index. Importantly, since all chips are connected
to the same output, the output number decides which chip to enable, turning each other
output into a float state using three-state buffers. Otherwise it is similar to a register file,
one column per bit, one row per word. The following is a 4 word 2 bit SRAM cell

2 Digital Logic Design 11 4, RAM, FSM, Data Representation

CS 251 Spring 2021: Notes Jacob Schnell

Definition. Dynamic RAM: Abbreviated DRAM, it is similar to SRAM but uses capac-
itors and a single transistor to store a bit. To write a bit, the word line is sent a charge and
each bit in the word line is sent the new value through the bit line. The word line opens the
transistor to allow the charge to leak if the bit sent is 0 or to charge it to 1 if the bit sent
is 1. To read the word line is sent a 1 and the bit line is sent a value of 1

2
. A charge in the

capacitor will slightly increase the voltage of the bit line, a lack of charge will decrease it.
This change in the charge will be detected and written back. However, charges slowly leak
and so they must be recharged thousands of times per second.

4.2 Finite State Machine

Definition. Finite State Machine: Abbreviated FSM is a circuit whose outputs depend
on the state and the state depends on the state and the input. In particular, if we get a
specific input, we may change our state. These are often complemented by a clock where a
minimum period of time spent in one state is enforced.

Example. FSM Traffic Lights:

2 Digital Logic Design 12 4, RAM, FSM, Data Representation

CS 251 Spring 2021: Notes Jacob Schnell

In this example for traffic lights, the east west lights are on so long as we are in the EWgreen
state. So long as there is no north south car we stay in EWgreen, however, once there is a
north south car we transition to NSgreen. So on so forth.

Example. FSM Traffic Lights + Yellow:

Remark: Notice the truth table used above, this is a common way to depict details of a
FSM. In particular, from this table we are able to easily find minterms to generate simple
combinatorial circuits.

Remark. Details of FSM: In an FSM, the state bits are held in a D Flip-Flop hooked up
to the clock so as to ensure they cannot be updated until after the clock cycle has passed.
These states are held inside the circuit.

4.3 Data Representation

Definition. Unsigned Binary: An unsigned binary number can represent natural numbers
up to 2k where k is the number of bits used. In particular, the binary number d3d2d1d0
translates to 20d0 + 21d1 + 22d2 + d3d3. Common powers to remember are that 210 is 1K
(kilobyte), 220 is 1M (megabyte), and 230 is 1G (gigabyte).

Definition. Signed Binary: Binary numbers used to be given a sign as the top bit (signed
magnitude). I.e. if the top bit is 1 then the following number is negative but this leads to
two representations of 0. We switched since to two’s complement, taking the first bit as
negative and the remaining bits as positive. I.e. the binary number d3d2d1d0 translates to
20d0 + 21d1 + 22d2 − 23d3. This method uniquely represents each number.

2 Digital Logic Design 13 4, RAM, FSM, Data Representation

CS 251 Spring 2021: Notes Jacob Schnell

Remark. Adding Unsigned Binary: Adding unsigned binary is as normal. Go column
by column carrying if necessary. If the last column results in a carry, then there is an
overflow, as in the number is too large to be represented in binary.

Remark. Adding Signed Binary: Adding signed (two’s complement) binary is different.
If both number are positive, proceed as above but note that if the sign bit changes, then an
overflow occurred. If one of the numbers is negative, throw out the final carry bit no matter
what it is.

Remark. Circuit for Addition: You can build a 1 bit adder with carry in by following
the truth table. To perform addition on larger number, e.g. 8 bits, we use a ripple carry
adder where the bits of each number are each put into a ripple adder. A carry bit of 0 is put
into the lowest bit’s adder and the carry out of this adder is the carry in of the next bit, so
on so forth.

Definition. Bit Shifts: There are two common types of bit shifts: rotates and arithmetic
shifts. A left rotate moves each bit one place to the left, moving the top most bit into the
lower most bit, a right rotate is similar, going the opposite direction. A left arithmetic shift
throws away the top most bit and copies a zero into the lower most bit. A right arithmetic
shift copies the top bit and throws away the lower most bit.

Remark. Arithmetic Shift: Arithmetic shifts are special in that they double or halve
the number they shift. A left shift doubles whereas a right shift halves and truncates. The
truncate means rounding down numbers by throwing out the decimal part.

Definition. Bitwise Operations: Bitwise logical operations are taking a logical operation
on each bit of two numbers. For instance we can apply the OR operation to each bit of two
different binary numbers. A useful application is taking the NOR of a number with 0 inverts
the number. Bitwise operations can be useful as they can be a faster way to work around a
problem, especially when dealing with many booleans.

Week 5 ALU, Floating Point

5.1 ALU

Note. Multi-input XOR: An XOR with multiple inputs check for parity. It is true if
there are an odd number of 1s, false otherwise (odd parity checker). It can also be applied
between each bit sequentially.

Definition. Arithmetic Logic Unit: Abbreviated ALU, takes in two binary numbers
A and B, operations bits, B invert bit and a carry in bit and performs a given operation
(specified by operation bits) on the numbers. The ALU actually performs all the possible
operations simply selects one of them to return using a MUX.

Remark: ALUs permitting multi-bit numbers actually simply ripple the operations accross
multiple 1 bit ALUs. Note also that ALUs do not permit subtraction, but rather if you
invert each bit of B and have a carry bit of 1 then subtraction is performed.

2 Digital Logic Design 14 5, ALU, Floating Point

CS 251 Spring 2021: Notes Jacob Schnell

Definition. Indicator Bit: In ARM and other architectures, indicator bits are often used
in ALUs to quickly check common properties of the result. For instance there is a bit to see
if the number if all zeros, if it is negative, if there was a carry out, overflow, etc.

Remark: In a true ALU, it is often the case that the B invert along with an additional A
invert bit is abstracted away into the operation bits. I.e. if there are normally 2 operation
bits then you would have a total of 4 operation bits, the first corresponding to A invert, the
second to B invert. This allows subtraction as shown above and the use of De Morgan’s laws
for NOR and NAND.

5.2 Floating Point

Definition. Binary Point: A binary point represents fractional numbers in binary. In
particular, the number d3d2.d1d0 represents 21d3 + 20d2 + 2−1d1 + 2−2d0.

Definition. Floating Point: The IEEE standard for floating points is the most common
way of representing decimal numbers. A floating point is separated into 3 sections. The first
bit is the sign (1 is negative, 0 is positive), the next 8 bits represent the exponent, and the
last 23 represent the mantissa or significand, the decimal points.

We always assume the number has a leading one in its integer portion (i.e. exactly a 1)
in scientific notation as if it doesn’t we can just shift the number and its exponent until
satisfied. We then consider the mantissa as the numbers after the binary point, led by a 1
in the integer portion and multiplied by 2exponent.

The exponent however is a biased binary integer as opposed to a two’s complement integer.
We take the positive value of the integer minus 127. This makes sorting easier.

In conclusion. If we have our sign s as a binary number, mantissa m as a binary number,
and exponent e as a binary number, the floating point is represented as (−1)s · 1.m · 2e−127.

Remark: The all 0 representation is reserved for the number 0. No number’s exponent can
be all 0 or all 1.

Unit 3 Single Cycle Processing

Week 6 Single Cycle Processor

6.1 Datapath Overview

Note: The datapath is also occasionally called the CPU, it is the flow of information in
computation.

Remark. High Level View of ARM Datapath: The datapath works in a fetch-execute
cycle. It first fetches the instruction, computes PC +4 and reads memory as necessary (gov-
erned by instruction) and then it executes the instruction and updates memory as necessary

3 Single Cycle Processing 15 6, Single Cycle Processor

CS 251 Spring 2021: Notes Jacob Schnell

(governed by instruction). This instruction may update PC (i.e. branch) and so the value
of PC + 4 is not immediately used.

Remark. Instruction Bits: The bits of an instruction can usually be separated into
specific groups. The highest order bits (variable length) of an instruction are always the
opcode, specifying the instruction to be executed.

Remark. R-Format Bit Groups: Bits 31 – 21 specify the opcode, bits 20 – 16 specify the
second input register (Rm), bits 15 – 10 specify the shift amount (for logical shift operations)
(shamt), bits 9 – 5 specify the first input register (Rn), and bits 4 – 0 specify the register
destination (Rd). I.e. ADD Rd,Rn,Rm. The opcode of R-format instructions contains 6
function bits which specify which specific operation (e.g. add, sub, etc.) is being performed.

Remark. I-Format Bit Groups: Bits 31 – 22 specify the opcode, bits 21 – 10 specify the
ALU Immediate (Imm), bits 9 – 5 specify the input register (Rn), and bits 4 – 0 specify the
register destination (Rd). I.e. ADDI Rd,Rn,#Imm.

Remark. D-Format Bit Groups: Bits 31 – 21 specify the opcode, bits 20 – 12 specify
the memory address offset as an immediate, bits 11 – 10 are ignored in this course, bits 9 –
5 specify the read register to which the offset is applied, bits 4 – 0 specify the write register.

Remark. B-Format Bit Groups: Bits 31 – 26 specify the opcode, bits 25 – 0 specify the
branch relative address.

Remark. CB-Format Bit Groups: Bits 31 – 24 specify the opcode, bits 23 – 5 specify
the branch relative address, bits 4 – 0 specify the register to check.

Remark. Control Unit: The opcode of each instruction is sent to a special ALU called
the control unit. This control unit will decide which instruction to execute through the use
of multiplexors and such. All instructions of the same format (e.g. R-format) start with
the same specific bits. The remaining bits are different, specifying the specific instruction.
The control unit generates from the opcode several control bits which are passed to ALUs,
multiplexors, etc. For instance, the register 2 location, the branch value, the read/write
memory if any (not register), the ALU operation, the source, etc.

3 Single Cycle Processing 16 6, Single Cycle Processor

CS 251 Spring 2021: Notes Jacob Schnell

Remark. ALU Control: The ALU control unit is the control unit which governs the
operations in the main ALU. It receives the opcode as well 2 ALU op control bits (provided
by main control unit) which dictate what is going on. In particular, 00 represents an add,
01 represents pass B, 10 represents an R-format instruction, and 11 represents a sub. In the
case where the ALU op bits are 10, the ALU control will look at the 6 function bits of the
instruction to determine what to do.

6.2 Specifics

Note. Control Bits:

• Reg2Loc: bit which specifies which bits of the instruction represent the second register
address. In particular, the address might be saved in one of either bits 20 – 16 or 4 –
0 depending on the instruction.

• ALUSrc: bit which specifies if the second read register or the part of the instruction
which would be used as an immediate should be used in the ALU. For instance, in
I-format instructions we want the latter to occur.

• MemtoReg: bit which specifies whether the memory read (if any) or the result from
the ALU should be written to the destination register (if writing occurs).

• RegWrite: bit which allows or disallows writing to the register file (write bit).

• MemRead: bit which allows or disallows reading from memory and specifies if the
address passed to memory would be a read location or write destination.

• MemWrite: bit which allows or disallows writing to memory (write bit).

• Branch: bit which specifies if a branch instruction is (possibly) occurring. If set to 0,
it will always execute PC ← PC + 4.

• ALUOp: 2 bits which are passed the ALU control unit specifying how it should act.
E.g. perform R-format instruction, force addition, force subtraction, pass B.

Remark: An example of where we want to use bits 4 – 0 as read address 2 is in the case of
STUR. We use those bits to specify the register whose data is written to memory.

Remark. Sign Extend: The sign extend unit determines from the opcode of the instruc-
tion how to extend the immediate part of the instruction. For instance, if the opcode is that
of an I-format instruction, it extracts the 12 relevant bits and 0 pads them so it becomes
a 64 bit number. If it is D-format instructions, it extracts the 9 relevant bits and pads it
with the most significant bit since it is 2’s complement. Similar results hold for B-format
and CB-format instructions.

Remark. Branching: When performing a branch, after sign extending the relative address,
it is shifted left by 2 bits to multiply it by 4. This number is then added to PC and passed
to the MUX for branching. In a conditional branch, you pass the register to check (bits 4

3 Single Cycle Processing 17 6, Single Cycle Processor

CS 251 Spring 2021: Notes Jacob Schnell

– 0) to the ALU and the ALU control performs a “pass B” instruction, getting the value of
the register. The ALU has a zero indicator bit which is passed to the and gate before the
MUX for branching. Hence if the value of the register is zero and the branch bit is one, then
it will take the new PC location instead.

Remark. Timing: We use exaggerated timings for each process of datapath to ensure that
each instruction has sufficient time to execute. In general, we associate reading instruction
memory with 200ps (picosecond), reading register memory with 100ps, writing to register
memory with 100ps, performing an ALU operation with 200ps, and reading or writing to
memory with 200ps. This means R-format instructions take 600ps whereas an instruction
like LDUR takes 800ps.

Remark. PC Update Timing: Notice the adder to computer PC + 4 takes 200ps,
however, this is negligible since it occurs in parallel with reading from instruction memory.
Notice the adder used for relative branching takes 200ps, but starts at the same time as a
register read. Hence it is spread across the register and main ALU operation, making it
negligible.

Week 7 Single Cycle cont.; Multicycle Datapath

7.1 More on Single Cycle Processor

Remark. Control unit timing: The control unit takes 10ps, but produces the Reg2Loc
bit which is required before doing a register read on register 2, hence it must occur before
a register read, adding 10ps to all instructions which use register 2 (e.g. R-format). In
particular, the bit is always required to read from register 2 which always takes place, but
in the case that the information at register 2 isn’t used, the data is thrown away and so we
didn’t wait for the read to occur.

Note. Different Types of Branching: To implement unconditional branches, simply add
a new control bit to the main control unit which forces the branch to occur regardless of the
value of reg 2. To implement CBNZ, modify the control unit to provide a CBNZ bit which is
fed to a mux where the zero bit and the inverse of the zero bit are passed to it, controlled by
the CBNZ bit. To implement BREL Xn which has the effect of PC ← PC + 4 ×Xn where
Xn is a register, add a new control bit for BREL and pass the register information and and
opcode to a mux where BREL selects the register data to be multiplied by 4 and added to
PC. Then use the previous unconditional branch bit to force select the new value.

7.2 Multicycle Processor Datapath

Note. Multicycle Datapath: This datapath is similar to a single cycle datapath, except
instructions are processed in 5 steps. These 5 steps each require a single clock cycle to
execute, however, these clock cycles are shorter.

3 Single Cycle Processing 18 7, Single Cycle cont.; Multicycle Datapath

CS 251 Spring 2021: Notes Jacob Schnell

Remark: Multicycle processors are actually an intermediate datapath before we implement
the more powerful Pipelining.

Remark. Multicycle Registers: Between each step, memory which needs to be used in
the proceeding step is stored in D flip flops. This is convenient since it will only ever write
on the falling edge of a clock cycle.

Definition. Multicycle Steps:

1. Step 1, Instruction Fetch (IF). The next instruction is fetched from memory and PC+4
is computed.

2. Step 2, Instruction Decode (ID). The instruction is passed to the control unit, register
memory is read and the sign extend is computed.

3. Step 3, instruction EXecute (EX). The instruction is executed, including computing a
different value of PC and performing the main ALU step.

4. Step 4, read/write to MEMory (MEM). Any memory reading and writing instructions
are committed to memory. If there is no reading or writing taking place, this is idle
time. In this step the new value of PC is asserted, it either PC ← PC + 4 or the new
value computed in the previous step as determined by a mux and control bits.

5. Step 5, Write Back (WB). In this step if it is necessary to write to the register file, the
write occurs, otherwise this is idle time.

Definition. Multicycle Control: Multicycle processors use a finite state machine referred
to as the multicycle control or MCC to determine which step is being executed. This de-
termines when to allow writing to the intermediate registers and when to give components
their control bits.

Remark. Multicycle Efficiency: In the implementation of a multicycle datapath, every
step must be completed. Further, the execution of each step must be sequential and must
be the only step be execute (i.e. no multiple instructions at a time). Since each step takes
at most 200ps to execute, the clock cycle for each step is 200ps, meaning a total of 1000ps
per instruction. This is slower than the 800ps (time to execute LDUR) clock cycle of a single
cycle datapath.

3 Single Cycle Processing 19 7, Single Cycle cont.; Multicycle Datapath

CS 251 Spring 2021: Notes Jacob Schnell

However, multicycle datapaths are more efficient since steps can often be ended early. For
instance, CBZ only needs 3 steps to execute. That is, the implementation of a multicycle
datapath is more sophisticated. In particular, if an instruction only needs 3 steps to execute,
then the next instruction can begin execution after 600ps, where as in a single cycle processor
it would be necessary to wait for the entire 800ps clock cycle to pass.

Note. Pipelining: Pipelining is an optimized version of multicycle processing where steps
are execute in parallel. This allows for multiple instructions to be computed at once.

Unit 4 Pipelining

Week 8 Pipelined Datapath

Definition. Pipeline Register: The registers between the steps in the pipeline are now
referred to as pipeline registers.

Remark: The idea of pipelining is that more than one instruction can be executed at a time
on a single processor. For instance, while one instruction is in the IF stage, another may be in
the EX stage. However, we run into issues where for instance we try to do ADDI X2,X31,#5

then SUBI X3,X2,#2. The next instruction depends on the execution (register writing) of
the first.

Definition. Structural Hazard: When two or more components of the datapath have to
be used by separate instructions. E.g. one instruction writes to register while another reads
from it.

Definition. Data Hazard: When the result of one instruction is required by the next
instruction. E.g. one instruction updates X1 and the next uses X1.

Definition. Control Hazard: When a (conditional) branch instruction changes the se-
quence of instructions executed.

Remark. Solving Parallel Accessing: To solve this data hazard, first make it so that
the register file is accessed twice in a clock cycle. The first to be written to and the second
to be read from.

Remark. Solving Data Hazards (Naive): The naive approach to solving data hazards
between other steps, is to have the compiler throw in NOP (no operation) instructions where
necessary to offset the instructions enough to avoid a data hazard. Each NOP adds a 1 clock
cycle delay.

Remark. Solving Data Hazards (Smart): The smarter approach, however, is to notice
that the required data is actually available as soon as the instruction is executed. Hence,
before the next instruction needs to execute the correct value is known. At this point we
pass the instruction to the next execution through a process known as forwarding.

Definition. Forwarding: A method to prevent data hazards, the result of the computation
in stage WB and in stage MEM are fed to multiplexors before the ALU in the EX stage.

4 Pipelining 20 8, Pipelined Datapath

CS 251 Spring 2021: Notes Jacob Schnell

Each result and the default values for the multiplexors are passed to both the mux for A
and B in the ALU. A forwarding unit then decides which result to pick based on if the Rn
and Rm values conflict with the Rd values of any of the other steps.

Remark. Problems with Forwarding: Forwarding is not a perfect solution, and still
does not solve the problem with LDUR instructions. We can’t take the output from reading
memory in the MEM stage as input since we won’t have a stable value. That is, we don’t
want to pass memory from middle of clock cycle to middle of clock cycle. Instead, we are
forced to use the naive approach and place a NOP instruction between instructions that load
and those that depend on memory.

Note. Forwarding Unit: To check if forwarding is required from MEM to EX, check
if EX/MEM regWrite bit is on, and register Rd is not 31, and if EX/MEM register Rd is
equal to ID/EX register Rn, in this case ForwardA=10. For ForwardB just compare against
ID/EX register Rm. To check if forwarding is required from WB to EX, do the same as
above, but also check that forwarding is not occurring from MEM.

Week 9 Control Hazards

9.1 Data hazards

Note. Load Use Stall: To solve the problem mentioned with LDUR instructions, we must
use a NOP instruction. This method of placing a NOP after a LDUR instruction is called Load
Use Stall. To know when to use it, check if reading from memory in the ID/EX stage and if
the ID/EX register Rd is equal to either IF/ID’s register Rn or Rm.

Remark. Run-time NOPs (Stalls): To add a NOP at run time (in particular at ID
stage), zero out the current instructions control bits, effectively turning it into a NOP. Then
block PC and IF/ID registers from being written to, thereby forcing the current memory to
be decoded again.

4 Pipelining 21 9, Control Hazards

CS 251 Spring 2021: Notes Jacob Schnell

9.2 Branch Hazards

Remark. CB in MEM Stage: Note when a CBZ instruction is executed, we do not know
until the MEM stage whether or not to branch. This means, since determining whether to
branch, 3 instructions have been started. To remove them, we must flush the pipeline.

Definition. Pipeline Flush: Flushing the pipeline converts all instructions before a certain
point into NOPs. To flush instructions in ID and EX stages, it suffices to zero out their
control bits. To flush an instruction in the IF stage, it is necessary to directly modify its
instruction bits, e.g. into an R-Format instruction using only X31.

Remark. CB in ID Stage: while branching in MEM is the most straightforward, we
can do better. Firstly, checking if the branch requirements are met (zero and branch bit) is
relatively fast. It can therefore be pushed up further. Then when reading from a register, we
can immediately check its bits against zero and skips the use of the ALU in EX. This means
in ID stage, using the fact instruction memory reading is slow and separated into reading
and writing, we can apply a CBZ. We have then only one instruction to flush.

Definition. Branch Data Hazard: The above implementation of evaluating CB in the
ID stage comes with a catch. If the instruction before the CB instruction modifies the Rm
value of the CB instruction (e.g. ADDI X1, X1, #1; CBZ X1, #5) then we can’t implement
data forwarding like usual. We can’t forward from the EX stage to the ID stage since this
would involve unstable bit (reading at end of clock cycle). Therefore, we are forced to place
a NOP between any such instructions. We also then need forwarding unit / hardware from
MEM to ID.

Remark. Code Rearrangement: With all the load swapping, branch flushing, etc. we
want to optimize code as much as possible. Some of this work can be done by compiler by
rearranging code to make code more efficient. For instance, if a NOP must be implemented
between lines 100 and 104 and then 108 increments a different variable, swapping lines 104
and 108 makes the code functionally identical, but requires no additional NOP.

9.3 Branch Predicting

Definition. Branch Predicting: Branch predicting is the technique of predicting the
address of a branch and fetching its instruction immediately. These come in multiple forms
of varying sophistication. Below follow some techniques

Definition. Predict Branch Not Taken: Predict branch not taken is a method of
prediction where PC ← PC + 4 each branch and we flush the instruction if the prediction
was wrong. I.e. we always predict there will be no branch when fetching.

Definition. Predict Branch Taken: The opposite method to the above is implemented.
Each branch PC is updated to the BTA of the branch and the next instruction at this
address is loaded. If the branch was wrong, flush the instruction and rollback the location.

Definition. 1 bit Prediction: A “smarter” technique is to implement an additional predict
bit. When the predict bit is on, each branch predicts taking a branch, when it is off none

4 Pipelining 22 9, Control Hazards

CS 251 Spring 2021: Notes Jacob Schnell

predict taking a branch. When it predicts are a branch but gets a non-branch or vice-versa,
the predict bit is flipped. This technique should be more consistent than the above two.

Definition. 2 bit Prediction: An even “smarter” technique is to implement two predict
bits. You use these predict bits to create strong and weak predictions. Both a weak and
strong prediction will cause the CPU to predict a branch and a weak and strong no predict
will cause the CPU to not predict a branch.

A finite state machine is used to control the two bits. Bits 00 are strong no predict, 01 are
weak no predict, 10 are weak predict, and 11 are strong predict. Taking a branch (regardless
of the prediction) causes the binary number to increase by 1 and not taking a branch causes
it to decrease by 1. I.e. with a strong prediction, must be wrong twice before changing
prediction.

Definition. Branch Destination Address Table: The branch table is what allows our
predictions to occur. It is a table of instruction lines to their branch target addresses. If the
instruction being read isn’t in the table, we wait for its address to be computed and then
add it to the table. Otherwise, if we are predicting a branch and also have the BTA in the
table, we update PC to the BTA. We can also add predict bits to each command separately,
allowing more tailored predictions.

Remark: Unconditional branches require a flushed instruction the first time they run.
However, in subsequent encounters they do not requiring flushing by using the branch table
and prediction bits.

Unit 5 Memory

Week 10 Cache

Remark. Memory Hierarchy: There is a hierarchy of memory accessing with registers
being the fastest but most expensive and secondary storage being the slowest but cheapest.

5 Memory 23 10, Cache

CS 251 Spring 2021: Notes Jacob Schnell

In between we have RAM which is quite fast, but still significantly slower than registers
for instance. That said, RAM is relatively inexpensive, so we want another intermediate
which is even faster. This comes in the form caches, which are faster but smaller than RAM.
Memory is moved from the RAM to caches whereupon they can be worked with.

Definition. Direct Mapped Cache: A direct mapped cache takes memory from RAM
and places it into its own higher access speed cache. It does so by taking the lower order
bits of memory index and turning it into its own indices (like a hash map). When memory
is queried, it is first looked in the cache (based on the lower order bits) and if the memory
at that location is valid (validation bit is turned on) and the tag (higher order bits of the
index) is matching, the memory is retrieved, this is a cache hit. Otherwise, it must first be
read from RAM and then written to the cache, an expensive process called a cache miss.

In the case that the requested index has a different tag at the (valid) specified location, the
memory must be read from RAM and written to that location. I.e. we must effectively kick
out the old memory

Definition. Fully Associative Cache: A cache which works like an association list. Each
index in the cache must be compared to the index requested to search for a match (plus
check its valid).

Definition. Set Associative Cache: A cache which combines the above ideas. There are
a small number (e.g. 4) of locations associated with the same index (like a direct mapped
cache). Among these locations, we compare tags to find a match. When all the memory for
an index is occupied, we kick out the least recently used memory.

Definition. Block Caching: A more sophisticated method of caching is block caching. In
block caching specify a block size and we separate memory in to groups of double words (as
many as the block size specifies).

When we request memory, we instead of retrieving one item retrieve the entire block of
memory. This is brought to the cache, where they share the same index and tag, but are
marked by their block bits. This is to implement temporal locality, hoping if you need this
memory, you probably need the next memory too.

Remark. STUR with Caching: When modifying memory, it is first necessary to read the
memory which will be modified to the cache. While this step is unimportant in a block size
of 1, for all other sizes this is necessary to ensure the entire block is brought.

To ensure that main memory is updated, we implement a “dirty bit.” This bit specifies that
the memory in the cache location has been updated and is no longer a copy of main memory.
When writing to a location with its dirty bit on, we must write back the contents of the
location to main memory before writing to the location. At this point, (assuming no other
dirty locations) main memory and the cache agree on memory content. Note that this write
back requires an additional writing step, effectively doubling the time of the miss.

Remark: We can mix set associative and block caches quite easily to make even larger
caches. This a common technique as it combines the best of both worlds.

Definition. AMAT: Much of the design around caches is built to minimize miss rates to

5 Memory 24 10, Cache

CS 251 Spring 2021: Notes Jacob Schnell

try and make them as fast as possible. This leads to the AMAT (average memory access
time) measure. AMAT is calculated as time for a hit + miss rate × miss penalty.

Example: If we take a computer with a 100ps clock speed, 0.05 miss rate, and 2000ps miss
penalty, our AMAT is 100 + 0.05 × 2000 = 200ps. If we decrease this miss rate to 0.01 we
get an AMAT of 100 + 0.01× 2000 = 120ps. Now if we make our CPU ten times faster with
a 10ps clock speed, our AMATs become 10 + 0.05 × 2000 = 110ps and 10 + 0.05 = 30ps
respectively. So with a high miss rate, making our CPU ten times faster doesn’t make our
computer even twice as fast. This has real world impacts on algorithms such as quick sort
for instance.

Week 11 Virtual Memory

Definition. Virtual Page: Since fetching from disk is incredibly expensive, we fetch an
entire virtual page at a time. These virtual pages have a set size, called the page size,
which is generally 4KB. Generally a virtual page corresponds to a portion of data of a single
program.

Definition. Physical Page: A physical page is a section of RAM capable of fitting a single
virtual page in its entirety. Virtual pages swap in and out of physical pages at run time,
giving the illusion to a program that its memory is unlimited. When a program requests a
virtual page which is not currently in a physical page (i.e. like a cache miss), we call this a
page fault.

Definition. Page Table: When a program is loaded into physical memory (RAM), a page
table is made for it. This table is a mapping of the program’s virtual page number (VPN) to
the physical page number (PPN) it occupies in physical memory. Further when the program
is loaded, the processor is given a pointer to the page table so that it may access it. Now
when requesting virtual page n address k, the page table will translate to physical page m
address k (note address or offset doesn’t change). If the page table cannot translate because
the virtual page is not in memory, then we have a page fault.

Definition. Memory Address: When requesting an instruction, the processor has a
specific virtual address in mind. This is a 64 bit number where bits 63 – 12 correspond to
the virtual page number and bits 11 – 00 correspond to the offset of the instruction. This
gets translated to a physical address by the page table. This is a 32 bit number where bits
31 – 12 correspond to the physical page number and bits 11 – 00 correspond to the same
offset.

Remark: The page table contains one row per virtual page (associated with the program),
each with a valid bit and possibly a number. The valid bit is 1 when the page is loaded in
physical memory, in this case it has a physical page number associated with it. Otherwise
the page is not in physical memory and so its physical page number is considered garbage
data.

Definition. Reference Bit: In the page table, there is also a reference bit for each virtual
page. This reference bit just means that the physical page has been recently used, and the
OS will regularly clear all the reference bits. When a virtual page’s memory is accessed, its

5 Memory 25 11, Virtual Memory

CS 251 Spring 2021: Notes Jacob Schnell

reference bit is turned back on. When a physical page must be overwritten due to lack of
space, the system will prefer to overwrite physical pages whose reference bit is off.

Remark: Just like a cache, the page number also keeps track of a dirty bit for each virtual
page. When the dirty bit is on, this denotes that the physical page has been written to more
recently then the virtual page on the disk and the it is necessary to write the entire page to
the disk.

Note: For incredibly large programs, it may be necessary to treat page tables themselves
as pages. E.g. if a program has 5000 pages, we may want 5 pages of page tables, each with
1000 entries.

11.1 TLB

Definition. Translation Look Aside Buffer: Abbreviated TLB, it aims to increase
efficiency in the data path. Due to the fact that accessing the page table in RAM is expensive,
we aim to keep a small number of the most popular pages in cache in the TLB. We then
first check to translate a virtual address using the TLB and if it’s not in the TLB, we check
the page table. Since the TLB only points to popular pages, every page will be in physical
memory, never on disk.

Remark: The TLB is fully associative and each time that there is a TLB miss, the corre-
sponding page table entry is added to the TLB.

Week 12 Extras

Definition. Swap Space: As mentioned earlier, it is expensive to run multiple programs,
so we run a single program for some number of cycles and then switch to another program.
This process is called time slicing the CPU and when going from one program to another

5 Memory 26 12, Extras

CS 251 Spring 2021: Notes Jacob Schnell

(context switching), we save all important information of the current process to a swap space.
The swap space saves the register values, program counter, and page table register (pointer).
The cache and TLB can refilled when the process starts up again.

Remark: Linux saves its swap space in a dedicated partition of the disk, whereas windows
has a hidden file dedicated to the swap space.

5 Memory 27 12, Extras

	Introduction to ARM
	ARM Overview
	Computation
	Commands

	Digital Logic Design
	Circuits and Transistors
	Circuits
	Transistors

	More Complex Components
	Decoder
	Multiplexor
	Latches
	Register File

	RAM, FSM, Data Representation
	Random Access Memory
	Finite State Machine
	Data Representation

	ALU, Floating Point
	ALU
	Floating Point

	Single Cycle Processing
	Single Cycle Processor
	Datapath Overview
	Specifics

	Single Cycle cont.; Multicycle Datapath
	More on Single Cycle Processor
	Multicycle Processor Datapath

	Pipelining
	Pipelined Datapath
	Control Hazards
	Data hazards
	Branch Hazards
	Branch Predicting

	Memory
	Cache
	Virtual Memory
	TLB

	Extras

