CS 360 Cheatsheet F2022

Jacob Schnell

1 Pre-TM Definitions

DFA: A 5-tuple (Q, %, 0, g0, F') where Q is a finite set of states, ¥ is a
finite alphabet, § : Q X ¥ — @Q is the transition function, go € Q is the
start state, FF C @ are the accept states.

A DFA M accepts w = wy -+ - wp, € 2% if there are states ro,r1,...,7n €
Q with ro = qo, rn € F and rj41 = 0(rs, wit1)-

Regular: A language L is regular if there is a DFA D with £(D) = L.
NFA: A 5-tuple (Q, 3,0, qo, F') where Q is a finite set of states, 3 is a
finite alphabet, ¢ : Q X ¥ — P(Q) is the transition function, go € Q is
the start state, F' C @ are the accept states.

A NFA M accepts w = y1 - - -yn € XF if there are states ro,r1,...,rn €
Q with rg = qo, 7n € F and 7,41 € E(ri,wi+1).
For a language L, there is a DFA D with £(D) = L if and only if there
is an NFA N with £(N) = L.
Regular Closure: If A, B are regular, then AUB, AN B, Ao B, A*,
and A are all regular.
(Regular) Pumping Lemma: If L is a regular language, then there
is a number p such that for all s € L with |s| > p, we may write s = zyz
with

1. zy*z € L for alli >0

2. |yl >0, and

3. Jzy| <p.
CFG A 4-tuple (V,%, R,S) where V is a finite set of variables, ¥ is
disjoint from V and is finite set of terminals, R is set of rules of the form
v—oforveVand o€ (VUX)*, and S € V is the start variable.

We say aAB =g avf is a derivation in G if A — « is a rule in R. We
say A =7, v if A derives 7 in zero or more steps. We say G accepts w

if $=¢ w.
Context-free: A language L is context-free if there is a CFG G such
that £(G) = L.

Every regular language is context-free.
Ambiguity: A string is generated ambiguously if there are two or more
derivations of the string. A regular expression/CFG is ambiguous if it
generates strings ambiguously.
(Context-free) Pumping Lemma: If L is a context-free language,
then there is a number p such that for all s € L with |s| > p, we may
write s = uvxryz with

1. wv'zy*z € L for alli >0

2. |vy| > 0, and

3. Jvzy| < p.

Context-free Closure: If A, B are context-free, then AU B, Ao B,
and A* are context-free. If A is context-free and B is regular, AN B is
context-free.

PDA: A 6-tuple (Q, %, T, 4, qo, F') where Q is a finite set of states, ¥ is a
finite alphabet, I is a finite set of stack symbols, § : QXX xT' = P(QxT)
is the transition function, qo € @ is the start state, F' C @Q are the accept
states.

A PDA functions like an NFA but with a stack. d&(q,a,a) = (¢’,8)
means in state ¢ we read a and pop « from the top of the stack and go
to state ¢’ and push B to the top of the stack. Note if & = ¢ we don’t
read or pop from the stack, if 8 = € we don’t push to the stack. We
accept as in an NFA.
For a language L, there is a CFG G with £(G) = L if and only if there
is a PDA P with £L(P) = L.
Algorithmic Aspects: For a DFA M we can check if £(M) = (. For
a CFG G we can check if £(G) = 0. For two DFA M1, M2 we can check
if L(M1) = L(M3). For two CFGs G1, G2 checking if L(G1) = L(G2)
is undecidable, but checking if £(G1) # L£(G2) is Turing recognizable
(possibly infinite time).

2 Regular Examples
NFA for L = {z € {0,1}* : w is a substring of z} for some w € {0,1}*.
Note that by complementation the language of strings not containing a

particular substring. is also regular.
0,1 0,1

L = {0*1% : k € N} is not regular.

Proof. Let p be the pumping length and s = 0P1P = xyz. Then by (3)
xy is a substring of 0P, so xy%z € L has p+ |y| > p 0’s (with |y| > 0 by
(2)) and p 1’s. O
L = {z € {0,1}* : = has the same number of 0’s and 1’s} is not regular.
Proof is similar to above.

L ={0%17 : 5 > j} is not regular. Proof is similar to above.

L = {0% : k is prime} is not regular.

Proof. Let p be the pumping length and s = 0! = zyz for some prime

t > p. Let r := |y| > 0. Then xy?~"z € L has length |zz| + |y~ 7| =

(t — r) — |y|(t — r) which is not prime.

L={xe{0,1}*:3k >0,z = 12k} is not regular.

Proof. Let p be the pumping length, k = |logy p|+1, and s = 128 = TYZ.

Then xy?z € L but |zy?z| > |zyz| = 28 and |zy?z| < |zyz| + |zy| <

2k 4+ p < 2641 since 2F > p. O

L = {w € {0,1}* : w = wf}, language of palindromes is not regular.

Proof. Let p be the pumping length and s = 0P10? = zyz. Then xy

is a substring of 0P by (3). So zy?z = 0P*1¥lp0P € L is clearly not a

palindrome since p + |y| > p by (2). |
Context-free Examples

CFG for L = {z € {0,1}* : z has the same number of 0’s and 1’s}.
Proof. G = ({S},{0,1}, R, S) with R being S — 051|150|SS|e. Prove
L(G) C L by induction on ¢ being the length of the shortest deriving
path of . Prove L C £(G) by induction on |z|. O
CFGC for L = {0F1% : k € N}. Consider G = ({S},{0,1}, R, S) with R
being S — 0S1Je.

PDA for L = {0F1%F : k € N}.

0,e - X 1L,X —e

CFG for L = {w € {0,1}* : w = wf}, language of palindromes. Con-
sider G = ({S},{0,1}, R, S) with R being S — 050|151|0|1]e.
PDA for L = {w € {0,1}* : w = w’}, language of palindromes.

0,e >0 0,0 = ¢
Le—1 L,1—e

CFG for L = {z € {(,)}* : x is balanced}. G = ({S},{(,)}, R, S) with
R being either S — (S)|SS|e or S — (S)S|e.

CFG for L = {z € {0,1}* : x is not of the form ww}. Consider
G = ({S,A,B},{0,1},R,S) with R being S — AB|BA|A|B, and
A — 0AD|0A1|1A0|1A1|0, and B — 0AO|0A1|1A0[1AL|1.

PDA for L = {z € {0,1}* : z is not of the form ww}.

01, X - e 01, — X 01, X — e

0|l,e = X 01, X — ¢ 0|l,e = X 01, X — ¢

L = {0*1F2% : k € N} is not context-free.

Proof. Let p be the pumping length and s = 0P1P2P = wvzyz. By (3)
lvxy| < p, so it cannot contain all of 0,1,2. Thus ww?zy?z € L must
pump one of 0, 1,2 less than the others. O
L = {ww:w € {0,1}*} is not context-free.

Proof. Let p be the pumping length and s = 0P1P0P1P = wozyz. If
vzy is contained in the first half, then uv2zy?z = 0PTk1PtfoP1P € L
for some 0 < k + f < p. Thus the second half starts with a 1 by the
first half starts with a 0. Similarly for if vxy is contained in the second
half. If vzy is in both halves, then uxzz = 0P1%0'1P € L for some k < p
and/or ¢t < p, either way uxz ¢ L. O
L = {wiawz : wi,wz € {0,1}*, and w1 is a substring of wz} is not
context-free.

Proof. Let p be the pumping length and s = 0P1Pa0P1P = uvzyz. Note
we need a € x, so u is a substring of 17 and v of 0P. Then uv®y3z =
0P1P+FRqOPT1P € L with k > 0 and/or £ > 0, either way uv?zy?z ¢ L.
L ={0"1™ : n < m?} is not context-free. O
Proof. Let p be the pumping length and s = 0P’ 1P = uwvzryz. Let k
denote the number of 1’s in vy. If k& > 1 then, then uxz € L but
#of OUsinuzz >p? —|oy| 2 p> —p>plp—k) > (p— k)2 If k=0,
then uv?zy?z € L has p? + |vy| > p? 0’s and p 1’s. O



CS 360 Cheatsheet F2022

Jacob Schnell

4 Post-TM Definitions

TM: A 6-tuple (Q,%,T, 0,90, Gaccept, Greject) Where @ is a finite set of
states, 3 is a finite alphabet, I' is a finite tape alphabet with ¥ C I" and
L€eT, §: QXX — QxT x{L, R} is the transition function, qo, gaccept,
Qreject are the start, accept, and reject states respectively.

A TM operates like a PDA, but writing directly to the tape where its
input is instead. We assume a TM has a single one-sided infinite tape.
A TM M accepts w = wy ---wy € X* if there is a computation path
that leads from go to gaccept-

Recognizability: A language L is recognizable if there is a TM, M,
with £(M) = L.

Decidability: A language L is decidable if there is a TM, M, with
L(M) =L and M halts on every input. Such an M is called a decider.
TM Variants: The following are variants of equivalent power to a
TM: k-tape TMs, 1-tape two-way infinite TMs, random-access memory
(RAM) TM. A non-deterministic TM (NTM), however, is more powerful
than a normal TM and functions by letting the transition function not
be well-defined. An NTM accepts if any computation path accepts. We
often restrict NTMs to have a branching factor of 2, i.e., for any given
input the transition function has exactly two possible outputs.

A language L is recognizable if and only if it is accepted by an NTM.
If L and L are both recognizable then L is decidable. L is decidable
if and only if L is decidable. If L1 and Lo are decidable then so are
Ly UL and L1 N Lo.

Strong Church-Turing Thesis: TMs can model any feasible model
of computation with at most polynomial overhead. Thus to show some-
thing is recognizable or decidable, we can provide a pseudocode algo-
rithm.

Class P: P = J,cy DTIME(n®) is the class of languages decidable
by a DTM in polynomial time. DTIM E(f(n)) is the class of languages
decidable by a DTM in O(f(n)) time.

Time Hierarchy: DTIME(n*) C DTIME(n*+1).

Efficient UTM: There is a DTM U such that for any z € {0,1}* and
DTM encoding (M), U(z,(M)) = M(z). Moreover, if M halts on z in
T steps, then U halts on (z, (M)) in O(T logT) steps.

Class NP: A language L is in NP if there is a polynomial p : N —
N and poly-time DTM M such that x € L if and only if there is a
u € {0,1}702]) such that M(z,u) = 1 for all « € {0,1}*. A langauge
LecoNPif L e NP.

NP = Ugen NTIME(n*) where NTIME(f(n)) is the class of lan-
guages decidable by an NTM in O(f(n)) time (must be O(f(n)) for any
branch).

Poly-to-One Reductions: L is poly-to-one reduced to to L', denoted
L <, L' if there is a poly-time computable function f such that z € L
if and only if f(z) € L’ for all z € {0, 1}*.

NP-hard and NP-complete: L’ is NP-hard if for all L € NP, we
have L <, L'. If L' € NP also, then L’ is N P-complete.

If L is N P-complete, then L is coN P-complete.

Reduction Properties: If L1 <, L2 and L2 <, L3, then L1 <, L3.
If L <, L’ and L' € P, then L € P. If L <, L' and L’ € NP then
L € NP and if L is NP-hard then L’ is NP hard.

Turing Reductions: X is Turing reduced to Y, denoted X <p Y if
there is a there is an algorithm A that solved Y, and an algorithm B
that solves X by calling A.

L <7 L for all languages L, but L <, L for all languages L if and only
if NP = coNP. For any N P-complete language L, there is a Turing
reduction from the search version of L to the decision version of L. We
see this since SAT is N P-complete and SAT < Search-SAT.

PTM: A probabilistic TM (PTM) has a second tape initialized with
a random bitstring r. It may then use these random bits to prob-
abilistically find the answer. We say a PTM decides a language L
in T(n) time if for every z € {0,1}*, M halts in T(|z|) steps and
Pr(M(z,7) = L(z)) > 2.

Class BPP: BPP = Jycn BPTIME(n*) where BPTIME(f(n)) is
the class of languages decidable by a PTM in O(f(n)) time. Alterna-
tively, BPP is the class of languages such that there is a poly-time PTM
M and a polynomial p : N — N such that for every = € {0,1}* we have

2
Poc ioaypten (M(z,r) = L(z)) > 3

Class RP: A language L € RP if there is a poly-time PTM M such
that if 2 € L then P.(M(z,r) = 1) > 2 and if z ¢ L then P.(M(z,r) =
0) = 1. A language L € coRP if L € RP, i.e., if M is certain when
z € L and probably right when = ¢ L.

For any L € RP, there isa PTM M such that if z € L then P.(M(z,r) =

0) < (1/3)?U=D) for any polynomial p : N — N (and if z ¢ L then

P.(M(z,r) =1) = 0) by running M p(|z|) times.

For any L € BPP, there is a PTM M such that for all x € {0,1}* we

have P.(M(z,r) = L(z)) > 1 — 2= 121 for any d > 0. There is also a

PTM M such that if « € L then P.(M(xz,r) =1) > f+candifc ¢ L

then Pr(M(z,7) =1) < 8 —¢ for any 8 >¢e > 0.

BPP is subset of non-constructive P.

Class ZPP: ZPP = |J ZTIME(n*) is the class of languages that
keN

can be solved in expected polynomial time. ZTIM E(n*) is the class

of languages that can be solved in expected time O(nk). Note ZPP =

RP N coRP.

5 TM Examples
DTM for L = {a¥bFcF : k € N}  our b/b, R

Y/Y,R Z|Z,R

An NTM for the language L of composite numbers could non-
deterministically select two numbers p, ¢ < n and check if pg = n.
Since a TM may be represented by a finite bitstring and a language by
an infinite bitstring, there are fewer TMs than languages. Thus there
non-constructively exist unrecognizable and undecidable languages.
Self-reject language SR = {(M) : M is a TM that doesn’t accept (M)}
is undecidable.

Proof. BWOC, let D decide SR. If D accepts (D) then D ¢ SR so
L(D) # SR. If D rejects (D) then D € SR so L(D) # SR. O
Self-accept language SA = {(M) : M is a TM that accepts (M)} is un-
decidable.

Proof. If SA is decidable, then SR = SAN {(M) : M is a TM} is de-
cidable since SA and {(M) : M is a TM} are decidable. O
Acceptance language Arpyr = {((M),w) : M is a TM that accepts w}
is undecidable.

Proof. BWOC, let D decide Arps. Then we can decide SR by running
D((M),{M)) but SR is undecidable. O
Self-reject language SR = {(M) : M is a TM that doesn’t accept (M)}
is unrecognizable.

Proof. BWOC, let R recognize SR. If R accepts (R) then R ¢ SR so
L(D) # SR. If R rejects (R) then R € SR so £(D) # SR. If R loops
forever on (R) then R € SR so L(D) # SR. O
The halting problem Apq;: = {((M),w) : M is a TM and halts on w}
is recognizable but undecidable.

Trivial CFG language ALL.;ry = {G : G is a CFG and L(G) = X*} is
undecidable.

Proof. BWOC, let D decide ALL.yq4. Construct a PDA Py, that
rejects its input if it is an accepting computation history for M (w) and
accepts otherwise. Then run D on the grammar for Pyy ,,, if it’s true
then M rejects w, so we decided Appys. O
The language L = {(G1,G2) : G1,G2 are CFGs and £L(G1) = L(G2)}
is recognizable but undecidable.

The language L = {(G,z) : G is a CFG and = € £L(G)} is decidable by
simulating G on x.

The language L = {(G, D) : G is a CFG, D is a DFA, and £L(G) = £L(D)}
is undecidable. Otherwise we could decide (G, Dx+) to decide ALL.y,.
Let L = {((M1), (M2)) : My, Mo are TMs and L(M1) = L(M2)}. Then
L is doubly unrecognizable.

Proof. BWOC, let R recognize L. Let M, be a TM that on any in-
put simulates M(w). Let Mempty be a TM that always rejects. Then
(M,w) € App if and only if L(My) = 0 = L(Mempty), so Arnr is
recognizable, a contradiction since Apjs is recognizable, and thus Apps
would be decidable.

Let B = {((M1),(M2)) : M1, M2 are TMs and £(M1) # L(M2)} and
let R recognize B (true if and only if L is recognizable). Let M,, be as
above and M,;; be a TM that always accepts. Then (M, w) € Apys if
and only if L(My) =0 # L(May)- O
The language L = {(0,G1,G2) : L(G1) = L(G2)} U {(1,G1,G2) :
L(G1) # L(G2)} (over CFGs G1,G2) is doubly unrecognizable.

The language L = {(M, j) : M is a TM that halts on inputs with < j ones}
is undecidable.




CS 360 Cheatsheet F2022

Jacob Schnell

Proof. BWOC, let D decide L. Let Hps ,(w) reject if numi(w) > 1,
otherwise return M (x). Then M (x) halts if and only if D(Hps 5,0) =1
so we decide the halting problem. O
The language L = {M : M is a TM and Vw € {0,1}*, M (w0) = M (wl)}
is undecidable.

Proof. BWOC, let D decide L. Let Hyps ,(w) accept if w # 0, otherwise
return M (z). Then M(x) = 1 if and only if D(Hps,,) = 1 so we decide
The language L = {M : M is a TM and Vw € {0,1}*, M halts on w iff
M halts on w’} is undecidable.

Proof. BWOC, let D decide L. Let H s . (w) accept if w # 01, otherwise
return M (z). Then M (x) halts if and only if D(Hps ;) = 1 so we decide
the halting problem. O
The language L = {(G, A) : A is essential in the CFG G} is undecid-
able, where A is an essential variable of a CFG G if for some w € L(G),
A appears in every derivation of w.

Proof. For a CFG G, define G’ by adding a new variable A with S — A
and A —» 01A|---|onA|efor ¥ ={01,...,0n}. Then A is essential
in G’ if and only if £(G) # X*, thus we decided ALL.¢,. O

6 Complexity Examples

L ={G : G is a complete graph} is in P.

L ={n € N: n is prime} is in P.

L={(G,z): Gis a CFG with z € L(G)} is in P.

L = {(G1,G2) : G1 and G2 are isomorphic graphs} is in NP with wit-
ness given by the graph isomorphism.

L ={G: G is a graph with a Hamiltonian path} is in NP with witness
given by the Hamiltonian path (a path that visit all vertices).

L = SAT = {® : ¥ is a satisfiable formula} is in NP with witness given
by the satisfying assignment.

L =UNSAT = {® : ® is an unsatisfiable formula} is in coNP but not
in NP.

CLIQUE <, V-COVER where (G,k) € CLIQUE iff G has a clique
(complete subgraph) of size k and (G, s) € V-COV ER iff G has a vertex
cover (set of vertices S.T. every edge has an end in it) of size s.

Proof. (G,k) € CLIQUE <= (G,n—k) € V-COV ER where G is the
complement (i.e., B(G) = E(G)). This is because if G has a clique of
size k, then G has a cover of size n — k given by all vertices not in the
clique. O
SAT <, 3SAT where 3SAT is SAT but each clause has 3 literals.

Proof. Given a clause a with one literals, add two new variables p1, p2
and add clauses (aVp1 Vp2)A(aVp1VP2)A(aVDLVp2)A(aVprVD2).
Given a clause (a V b) with two literals, add a new variable p and add
clauses (aVbVp)A(aVbVPp). Given a clause (z1 V- -V z,) with r literals,
add r —3 new variables y1, ..., yr—3 and add clauses (21 Vz2Vy1)A(z3V
TIVY2)A(z2aVT2VY3) A A (2r—2VGr—aVYyr—3) A (2r—1V 2r VYr_3).
Then the formula is satisfiable if and only if the new formula is. O
3SAT <, CLIQUE.

Proof. Suppose ® = (z1,1 Vx12Vx1,3) A A (Tp,1 V T2 V T 3).
Make a graph G with V(G) = {z;; : i € Zy,j € Z3} and with an edge
between x; ; and x;/ ;s if and only if i # i’ and z; ; # %7 ;7. Then ®
is satisfiable if and only if G has a clique of size k (the clique would
provide a satisfying assignment since it selects one true literal from each
clause). O
SAT is N P-complete.

Proof. Let L be an N P language. Let M be a TM with Q = {qo, ..., quw}
where ¢o = gstart and guw = ¢accept and I' = {0, 1,,}. Suppose M runs
in p(n) steps and has witness of length f(n) for p, f polynomials N — N.
We create a formula to check if M is a valid TM accepting z, it is
satisfiable if and only if x € L(M).

— Add variables y; ; for 1 <i < p(n) and 0 < j < w denoting at time
i, M is in state g;.

— Add variables h; j for 1 < i < p(n) and 0 < j < p(n) denoting at
time i, the head is at cell j.

— Add variables 7; ;1 for 1 < 4,5 < p(n) and k € {0,1,_} denoting
at time i, cell j contains symbol k.

— (G1) Add clauses y; 0V -+ V¥ forall 1 <i <p(n)and y;; =
Ui, forall 1 <i < p(n) and 1 < 7,5 < w with j # j'. That is, M
is in exactly one state.

— (G2) Add clauses h;gV- - Vi pn) foralll <i < p(n) and h; ; =
W forall 1 <7 < p(n) and 1 < 3,5 < p(n) with j # 5/. That is,
M’s head is at exactly one cell.

— (G3) Add clauses r; jo V rij1 Vrj, foralll<ij <p(n)and
Tijk = hyjp foralll <45 < p(n)and k, k" € {0,1,.} with
j # j'. That is, M’s tape has exactly one symbol in each cell.

— (G4) Add clauses y1,0 (initial state) and hio (initial head) and
71,00y A" AT1n—1,2, (input) and 71 o0 A - AT] i fm)—1,,
(witness) and 71 4 f(n), A" ATL p(n),, (blank tape). That is, M
is initially configured correctly.

— (G5) Add clause y,,(,,),,- That is, M accepts.

— (G¢) Add clauses h;j A1;j, == Tit1,5k for all 4,5 and k €
{0,1, .} (unchanged cells) and if §(gm, k) = (¢, k', R) then for all
1,5 add hi,j ANYim NTijk = Yitl,m’ (state) and hi,j AN Yim N
rigk = hiy1,j41 (head, do j — 1 for left) and h;; A yim A
Tijk = Tit1,j,k (content). That is, M follows its transition
rules. O

SAT <1 Search-SAT.

Proof. Suppose @ is our formula with variables z1,...,xn. Set z1 =
1 and see if the resulting formula is satisfiable. If so 1 = 1 in our
assignment, otherwise 1 = 0. Expand our assignment by repeating
with z2 = 1, so on so forth. O

CLIQUE <t Search-CLIQUE.

Proof. Suppose G is our graph and k is given. Pick a node z € V(G)
with z ¢ C. If G — z has a clique of size k, set G = G — x, otherwise
add z to C. Repeat until |C| = k. O
L = {f € Zp[z] : f = 0} is in BPP. We randomly pick a € Z, and
return 1 iff p(a) = 0. Then P(A(f) is incorrect) < % where d is the
degree of f. By repeating this we can reduce the error.

L ={(A,B,C) € (R"*")3 : AB = C} is in coRP. Randomly select a
column vector x € R™ and check if ABx = Cz. If AB = C, then returns
true with probability 1, if AB # C, then returns false with probability
at least %



	Pre-TM Definitions
	Regular Examples
	Context-free Examples
	Post-TM Definitions
	TM Examples
	Complexity Examples

