
CS 360 Cheatsheet F2022 Jacob Schnell

1 Pre-TM Definitions
• DFA: A 5-tuple (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is a

finite alphabet, δ : Q× Σ → Q is the transition function, q0 ∈ Q is the
start state, F ⊆ Q are the accept states.
A DFA M accepts w = w1 · · ·wn ∈ Σ∗ if there are states r0, r1, . . . , rn ∈
Q with r0 = q0, rn ∈ F and ri+1 = δ(ri, wi+1).

• Regular: A language L is regular if there is a DFA D with L(D) = L.
• NFA: A 5-tuple (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is a

finite alphabet, δ : Q× Σε → P(Q) is the transition function, q0 ∈ Q is
the start state, F ⊆ Q are the accept states.
A NFA M accepts w = y1 · · · yn ∈ Σ∗

ε if there are states r0, r1, . . . , rn ∈
Q with r0 = q0, rn ∈ F and ri+1 ∈ δ(ri, wi+1).

• For a language L, there is a DFA D with L(D) = L if and only if there
is an NFA N with L(N) = L.

• Regular Closure: If A,B are regular, then A ∪B, A ∩B, A ◦B, A∗,
and A are all regular.

• (Regular) Pumping Lemma: If L is a regular language, then there
is a number p such that for all s ∈ L with |s| ≥ p, we may write s = xyz
with

1. xyiz ∈ L for all i ≥ 0
2. |y| > 0, and
3. |xy| ≤ p.

• CFG A 4-tuple (V,Σ, R, S) where V is a finite set of variables, Σ is
disjoint from V and is finite set of terminals, R is set of rules of the form
v → σ for v ∈ V and σ ∈ (V ∪ Σ)∗, and S ∈ V is the start variable.
We say αAβ ⇒G αγβ is a derivation in G if A → γ is a rule in R. We
say A ⇒∗

G γ if A derives γ in zero or more steps. We say G accepts w
if S ⇒∗

G w.
• Context-free: A language L is context-free if there is a CFG G such

that L(G) = L.
• Every regular language is context-free.
• Ambiguity: A string is generated ambiguously if there are two or more

derivations of the string. A regular expression/CFG is ambiguous if it
generates strings ambiguously.

• (Context-free) Pumping Lemma: If L is a context-free language,
then there is a number p such that for all s ∈ L with |s| ≥ p, we may
write s = uvxyz with

1. uvixyiz ∈ L for all i ≥ 0
2. |vy| > 0, and
3. |vxy| ≤ p.

• Context-free Closure: If A,B are context-free, then A ∪ B, A ◦ B,
and A∗ are context-free. If A is context-free and B is regular, A ∩ B is
context-free.

• PDA: A 6-tuple (Q,Σ,Γ, δ, q0, F) where Q is a finite set of states, Σ is a
finite alphabet, Γ is a finite set of stack symbols, δ : Q×Σ×Γ → P(Q×Γ)
is the transition function, q0 ∈ Q is the start state, F ⊆ Q are the accept
states.
A PDA functions like an NFA but with a stack. δ(q, a, α) = (q′, β)
means in state q we read a and pop α from the top of the stack and go
to state q′ and push β to the top of the stack. Note if α = ε we don’t
read or pop from the stack, if β = ε we don’t push to the stack. We
accept as in an NFA.

• For a language L, there is a CFG G with L(G) = L if and only if there
is a PDA P with L(P) = L.

• Algorithmic Aspects: For a DFA M we can check if L(M) = ∅. For
a CFG G we can check if L(G) = ∅. For two DFA M1,M2 we can check
if L(M1) = L(M2). For two CFGs G1, G2 checking if L(G1) = L(G2)
is undecidable, but checking if L(G1) 6= L(G2) is Turing recognizable
(possibly infinite time).

2 Regular Examples
• NFA for L = {x ∈ {0, 1}∗ : w is a substring of x} for some w ∈ {0, 1}∗.

Note that by complementation the language of strings not containing a
particular substring. is also regular.

q0 q1 q2 · · · qn
w1 w2 w3 wn

0, 1 0, 1

• L = {0k1k : k ∈ N} is not regular.
Proof. Let p be the pumping length and s = 0p1p = xyz. Then by (3)
xy is a substring of 0p, so xy2z ∈ L has p+ |y| > p 0’s (with |y| ≥ 0 by
(2)) and p 1’s.

• L = {x ∈ {0, 1}∗ : x has the same number of 0’s and 1’s} is not regular.
Proof is similar to above.

• L = {0i1j : i > j} is not regular. Proof is similar to above.

• L = {0k : k is prime} is not regular.
Proof. Let p be the pumping length and s = 0t = xyz for some prime
t ≥ p. Let r := |y| > 0. Then xyt−rz ∈ L has length |xz| + |yt−r| =
(t− r)− |y|(t− r) which is not prime.

• L = {x ∈ {0, 1}∗ : ∃k ≥ 0, x = 12
k} is not regular.

Proof. Let p be the pumping length, k = blog2 pc+1, and s = 12
k
= xyz.

Then xy2z ∈ L but |xy2z| > |xyz| = 2k and |xy2z| ≤ |xyz| + |xy| ≤
2k + p < 2k+1 since 2k > p.

• L = {w ∈ {0, 1}∗ : w = wR}, language of palindromes is not regular.
Proof. Let p be the pumping length and s = 0p10p = xyz. Then xy
is a substring of 0p by (3). So xy2z = 0p+|y|b0p ∈ L is clearly not a
palindrome since p+ |y| > p by (2).

3 Context-free Examples
• CFG for L = {x ∈ {0, 1}∗ : x has the same number of 0’s and 1’s}.

Proof. G = ({S}, {0, 1}, R, S) with R being S → 0S1|1S0|SS|ε. Prove
L(G) ⊆ L by induction on ` being the length of the shortest deriving
path of x. Prove L ⊆ L(G) by induction on |x|.

• CFG for L = {0k1k : k ∈ N}. Consider G = ({S}, {0, 1}, R, S) with R
being S → 0S1|ε.

• PDA for L = {0k1k : k ∈ N}.

q0 q1 q2 q3
ε, ε → $ 1, X → ε ε, $ → ε

0, ε → X 1, X → ε

• CFG for L = {w ∈ {0, 1}∗ : w = wR}, language of palindromes. Con-
sider G = ({S}, {0, 1}, R, S) with R being S → 0S0|1S1|0|1|ε.

• PDA for L = {w ∈ {0, 1}∗ : w = wR}, language of palindromes.

q0 q1 q2 q3
ε, ε → $

ε, ε → ε
0, ε → ε
1, ε → ε ε, $ → ε

0, ε → 0
1, ε → 1

0, 0 → ε
1, 1 → ε

• CFG for L = {x ∈ {(,)}∗ : x is balanced}. G = ({S}, {(,)}, R, S) with
R being either S → (S)|SS|ε or S → (S)S|ε.

• CFG for L = {x ∈ {0, 1}∗ : x is not of the form ww}. Consider
G = ({S,A,B}, {0, 1}, R, S) with R being S → AB|BA|A|B, and
A → 0A0|0A1|1A0|1A1|0, and B → 0A0|0A1|1A0|1A1|1.

• PDA for L = {x ∈ {0, 1}∗ : x is not of the form ww}.

q0 q1

q2 q3 q4 q5

q6 q7 q8
ε, ε → $

1
,ε

→
ε

ε, $ → $ 0, ε → ε ε, $ → ε

0, ε → ε ε, $ → $ 1, ε → ε

ε,
$
→

ε

0|1, ε → X

0|1, X → ε 0|1, ε → X 0|1, X → ε

0|1, X → ε 0|1, ε → X 0|1, X → ε

• L = {0k1k2k : k ∈ N} is not context-free.
Proof. Let p be the pumping length and s = 0p1p2p = uvxyz. By (3)
|vxy| ≤ p, so it cannot contain all of 0, 1, 2. Thus uv2xy2z ∈ L must
pump one of 0, 1, 2 less than the others.

• L = {ww : w ∈ {0, 1}∗} is not context-free.
Proof. Let p be the pumping length and s = 0p1p0p1p = uvxyz. If
vxy is contained in the first half, then uv2xy2z = 0p+k1p+f0p1p ∈ L
for some 0 < k + f ≤ p. Thus the second half starts with a 1 by the
first half starts with a 0. Similarly for if vxy is contained in the second
half. If vxy is in both halves, then uxz = 0p1k0t1p ∈ L for some k < p
and/or t < p, either way uxz /∈ L.

• L = {w1aw2 : w1, w2 ∈ {0, 1}∗, and w1 is a substring of w2} is not
context-free.
Proof. Let p be the pumping length and s = 0p1pa0p1p = uvxyz. Note
we need a ∈ x, so u is a substring of 1p and v of 0p. Then uvxy2z =
0p1p+ka0p+`1p ∈ L with k > 0 and/or ` > 0, either way uv2xy2z /∈ L.

• L = {0n1m : n ≤ m2} is not context-free.
Proof. Let p be the pumping length and s = 0p

2
1p = uvxyz. Let k

denote the number of 1’s in vy. If k ≥ 1 then, then uxz ∈ L but
of 0’s in uxz ≥ p2 − |vy| ≥ p2 − p ≥ p(p − k) > (p − k)2. If k = 0,
then uv2xy2z ∈ L has p2 + |vy| > p2 0’s and p 1’s.

1

CS 360 Cheatsheet F2022 Jacob Schnell

4 Post-TM Definitions
• TM: A 6-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject) where Q is a finite set of

states, Σ is a finite alphabet, Γ is a finite tape alphabet with Σ ⊆ Γ and
␣ ∈ Γ, δ : Q×Σ → Q×Γ×{L,R} is the transition function, q0, qaccept,
qreject are the start, accept, and reject states respectively.

A TM operates like a PDA, but writing directly to the tape where its
input is instead. We assume a TM has a single one-sided infinite tape.
A TM M accepts w = w1 · · ·wn ∈ Σ∗ if there is a computation path
that leads from q0 to qaccept.

• Recognizability: A language L is recognizable if there is a TM, M ,
with L(M) = L.

• Decidability: A language L is decidable if there is a TM, M , with
L(M) = L and M halts on every input. Such an M is called a decider.

• TM Variants: The following are variants of equivalent power to a
TM: k-tape TMs, 1-tape two-way infinite TMs, random-access memory
(RAM) TM. A non-deterministic TM (NTM), however, is more powerful
than a normal TM and functions by letting the transition function not
be well-defined. An NTM accepts if any computation path accepts. We
often restrict NTMs to have a branching factor of 2, i.e., for any given
input the transition function has exactly two possible outputs.

• A language L is recognizable if and only if it is accepted by an NTM.
• If L and L are both recognizable then L is decidable. L is decidable

if and only if L is decidable. If L1 and L2 are decidable then so are
L1 ∪ L2 and L1 ∩ L2.

• Strong Church-Turing Thesis: TMs can model any feasible model
of computation with at most polynomial overhead. Thus to show some-
thing is recognizable or decidable, we can provide a pseudocode algo-
rithm.

• Class P : P =
⋃

k∈N DTIME(nk) is the class of languages decidable
by a DTM in polynomial time. DTIME(f(n)) is the class of languages
decidable by a DTM in O(f(n)) time.

• Time Hierarchy: DTIME(nk) (DTIME(nk+1).
• Efficient UTM: There is a DTM U such that for any x ∈ {0, 1}∗ and

DTM encoding 〈M〉, U(x, 〈M〉) = M(x). Moreover, if M halts on x in
T steps, then U halts on (x, 〈M〉) in O(T log T) steps.

• Class NP : A language L is in NP if there is a polynomial p : N →
N and poly-time DTM M such that x ∈ L if and only if there is a
u ∈ {0, 1}p(|x|) such that M(x, u) = 1 for all x ∈ {0, 1}∗. A langauge
L ∈ coNP if L ∈ NP .

• NP =
⋃

k∈N NTIME(nk) where NTIME(f(n)) is the class of lan-
guages decidable by an NTM in O(f(n)) time (must be O(f(n)) for any
branch).

• Poly-to-One Reductions: L is poly-to-one reduced to to L′, denoted
L ≤p L′ if there is a poly-time computable function f such that x ∈ L
if and only if f(x) ∈ L′ for all x ∈ {0, 1}∗.

• NP -hard and NP -complete: L′ is NP -hard if for all L ∈ NP , we
have L ≤p L′. If L′ ∈ NP also, then L′ is NP -complete.

• If L is NP -complete, then L is coNP -complete.
• Reduction Properties: If L1 ≤p L2 and L2 ≤p L3, then L1 ≤p L3.

If L ≤p L′ and L′ ∈ P , then L ∈ P . If L ≤p L′ and L′ ∈ NP then
L ∈ NP and if L is NP -hard then L′ is NP hard.

• Turing Reductions: X is Turing reduced to Y , denoted X ≤T Y if
there is a there is an algorithm A that solved Y , and an algorithm B
that solves X by calling A.

• L ≤T L for all languages L, but L ≤p L for all languages L if and only
if NP = coNP . For any NP -complete language L, there is a Turing
reduction from the search version of L to the decision version of L. We
see this since SAT is NP -complete and SAT ≤T Search-SAT .

• PTM: A probabilistic TM (PTM) has a second tape initialized with
a random bitstring r. It may then use these random bits to prob-
abilistically find the answer. We say a PTM decides a language L
in T (n) time if for every x ∈ {0, 1}∗, M halts in T (|x|) steps and
Pr(M(x, r) = L(x)) ≥ 2

3
.

• Class BPP : BPP =
⋃

k∈N BPTIME(nk) where BPTIME(f(n)) is
the class of languages decidable by a PTM in O(f(n)) time. Alterna-
tively, BPP is the class of languages such that there is a poly-time PTM
M and a polynomial p : N → N such that for every x ∈ {0, 1}∗ we have

Pr∈R{0,1}p(|x|)
(
M(x, r) = L(x)

)
≥

2

3
.

• Class RP : A language L ∈ RP if there is a poly-time PTM M such
that if x ∈ L then Pr(M(x, r) = 1) ≥ 2

3
and if x /∈ L then Pr(M(x, r) =

0) = 1. A language L ∈ coRP if L ∈ RP , i.e., if M is certain when
x ∈ L and probably right when x /∈ L.

• For any L ∈ RP , there is a PTM M such that if x ∈ L then Pr(M(x, r) =
0) ≤ (1/3)p(|x|) for any polynomial p : N → N (and if x /∈ L then
Pr(M(x, r) = 1) = 0) by running M p(|x|) times.

• For any L ∈ BPP , there is a PTM M such that for all x ∈ {0, 1}∗ we
have Pr(M(x, r) = L(x)) ≥ 1 − 2−|x|d for any d > 0. There is also a
PTM M such that if x ∈ L then Pr(M(x, r) = 1) > β + ε and if x /∈ L
then Pr(M(x, r) = 1) < β − ε for any β > ε > 0.

• BPP is subset of non-constructive P .
• Class ZPP : ZPP =

⋃
k∈N

ZTIME(nk) is the class of languages that

can be solved in expected polynomial time. ZTIME(nk) is the class
of languages that can be solved in expected time O(nk). Note ZPP =
RP ∩ coRP .

5 TM Examples
• DTM for L = {akbkck : k ∈ N}

q0 q1 q2

q3q4 qaccept

a/X,R b/Y,R

c/Z
,L

X/X,R

Y
/
Y
,R

␣/␣, R

a/a,R
Y/Y,R

b/b,R
Z/Z,R

Z/Z,L
b/b, L
Y/Y, L
a/a, L

Y/Y,R
Z/Z,R

• An NTM for the language L of composite numbers could non-
deterministically select two numbers p, q < n and check if pq = n.

• Since a TM may be represented by a finite bitstring and a language by
an infinite bitstring, there are fewer TMs than languages. Thus there
non-constructively exist unrecognizable and undecidable languages.

• Self-reject language SR = {〈M〉 : M is a TM that doesn’t accept 〈M〉}
is undecidable.
Proof. BWOC, let D decide SR. If D accepts 〈D〉 then D /∈ SR so
L(D) 6= SR. If D rejects 〈D〉 then D ∈ SR so L(D) 6= SR.

• Self-accept language SA = {〈M〉 : M is a TM that accepts 〈M〉} is un-
decidable.
Proof. If SA is decidable, then SR = SA ∩ {〈M〉 : M is a TM} is de-
cidable since SA and {〈M〉 : M is a TM} are decidable.

• Acceptance language ATM = {(〈M〉, w) : M is a TM that accepts w}
is undecidable.
Proof. BWOC, let D decide ATM . Then we can decide SR by running
D(〈M〉, 〈M〉) but SR is undecidable.

• Self-reject language SR = {〈M〉 : M is a TM that doesn’t accept 〈M〉}
is unrecognizable.
Proof. BWOC, let R recognize SR. If R accepts 〈R〉 then R /∈ SR so
L(D) 6= SR. If R rejects 〈R〉 then R ∈ SR so L(D) 6= SR. If R loops
forever on 〈R〉 then R ∈ SR so L(D) 6= SR.

• The halting problem Ahalt = {(〈M〉, w) : M is a TM and halts on w}
is recognizable but undecidable.

• Trivial CFG language ALLcfg = {G : G is a CFG and L(G) = Σ∗} is
undecidable.
Proof. BWOC, let D decide ALLcfg . Construct a PDA PM,w that
rejects its input if it is an accepting computation history for M(w) and
accepts otherwise. Then run D on the grammar for PM,w, if it’s true
then M rejects w, so we decided ATM .

• The language L = {(G1, G2) : G1, G2 are CFGs and L(G1) = L(G2)}
is recognizable but undecidable.

• The language L = {(G, x) : G is a CFG and x ∈ L(G)} is decidable by
simulating G on x.

• The language L = {(G,D) : G is a CFG, D is a DFA, and L(G) = L(D)}
is undecidable. Otherwise we could decide (G,DΣ∗) to decide ALLcfg .

• Let L = {(〈M1〉, 〈M2〉) : M1,M2 are TMs and L(M1) = L(M2)}. Then
L is doubly unrecognizable.
Proof. BWOC, let R recognize L. Let Mw be a TM that on any in-
put simulates M(w). Let Mempty be a TM that always rejects. Then
(M,w) ∈ ATM if and only if L(Mw) = ∅ = L(Mempty), so ATM is
recognizable, a contradiction since ATM is recognizable, and thus ATM

would be decidable.
Let B = {(〈M1〉, 〈M2〉) : M1,M2 are TMs and L(M1) 6= L(M2)} and
let R recognize B (true if and only if L is recognizable). Let Mw be as
above and Mall be a TM that always accepts. Then (M,w) ∈ ATM if
and only if L(Mw) = ∅ 6= L(Mall).

• The language L = {(0, G1, G2) : L(G1) = L(G2)} ∪ {(1, G1, G2) :
L(G1) 6= L(G2)} (over CFGs G1, G2) is doubly unrecognizable.

• The language L = {(M, j) : M is a TM that halts on inputs with ≤ j ones}
is undecidable.

2

CS 360 Cheatsheet F2022 Jacob Schnell

Proof. BWOC, let D decide L. Let HM,x(w) reject if num1(w) ≥ 1,
otherwise return M(x). Then M(x) halts if and only if D(HM,x, 0) = 1
so we decide the halting problem.

• The language L = {M : M is a TM and ∀w ∈ {0, 1}∗,M(w0) = M(w1)}
is undecidable.
Proof. BWOC, let D decide L. Let HM,x(w) accept if w 6= 0, otherwise
return M(x). Then M(x) = 1 if and only if D(HM,x) = 1 so we decide
ATM .

• The language L = {M : M is a TM and ∀w ∈ {0, 1}∗, M halts on w iff
M halts on wR} is undecidable.
Proof. BWOC, let D decide L. Let HM,x(w) accept if w 6= 01, otherwise
return M(x). Then M(x) halts if and only if D(HM,x) = 1 so we decide
the halting problem.

• The language L = {(G,A) : A is essential in the CFG G} is undecid-
able, where A is an essential variable of a CFG G if for some w ∈ L(G),
A appears in every derivation of w.
Proof. For a CFG G, define G′ by adding a new variable A with S → A
and A → σ1A | · · · | σnA | ε for Σ = {σ1, . . . , σn}. Then A is essential
in G′ if and only if L(G) 6= Σ∗, thus we decided ALLcfg .

6 Complexity Examples
• L = {G : G is a complete graph} is in P .
• L = {n ∈ N : n is prime} is in P .
• L = {(G, x) : G is a CFG with x ∈ L(G)} is in P .
• L = {(G1, G2) : G1 and G2 are isomorphic graphs} is in NP with wit-

ness given by the graph isomorphism.
• L = {G : G is a graph with a Hamiltonian path} is in NP with witness

given by the Hamiltonian path (a path that visit all vertices).
• L = SAT = {Φ : Φ is a satisfiable formula} is in NP with witness given

by the satisfying assignment.
• L = UNSAT = {Φ : Φ is an unsatisfiable formula} is in coNP but not

in NP .
• CLIQUE ≤p V -COV ER where (G, k) ∈ CLIQUE iff G has a clique

(complete subgraph) of size k and (G, s) ∈ V -COV ER iff G has a vertex
cover (set of vertices S.T. every edge has an end in it) of size s.
Proof. (G, k) ∈ CLIQUE ⇐⇒ (G,n−k) ∈ V -COV ER where G is the
complement (i.e., E(G) = E(G)). This is because if G has a clique of
size k, then G has a cover of size n − k given by all vertices not in the
clique.

• SAT ≤p 3SAT where 3SAT is SAT but each clause has 3 literals.
Proof. Given a clause a with one literals, add two new variables p1, p2
and add clauses (a∨p1 ∨p2)∧ (a∨p1 ∨p2)∧ (a∨p1 ∨p2)∧ (a∨p1 ∨p2).
Given a clause (a ∨ b) with two literals, add a new variable p and add
clauses (a∨b∨p)∧(a∨b∨p). Given a clause (z1∨· · ·∨zr) with r literals,
add r−3 new variables y1, . . . , yr−3 and add clauses (z1∨z2∨y1)∧(z3∨
y1 ∨ y2)∧ (z4 ∨ y2 ∨ y3)∧ · · · ∧ (zr−2 ∨ yr−4 ∨ yr−3)∧ (zr−1 ∨ zr ∨ yr−3).
Then the formula is satisfiable if and only if the new formula is.

• 3SAT ≤p CLIQUE.
Proof. Suppose Φ = (x1,1 ∨ x1,2 ∨ x1,3) ∧ · · · ∧ (xk,1 ∨ xk,2 ∨ xk,3).
Make a graph G with V (G) = {xi,j : i ∈ Zk, j ∈ Z3} and with an edge
between xi,j and xi′,j′ if and only if i 6= i′ and xi,j 6= xi′,j′ . Then Φ
is satisfiable if and only if G has a clique of size k (the clique would
provide a satisfying assignment since it selects one true literal from each
clause).

• SAT is NP -complete.
Proof. Let L be an NP language. Let M be a TM with Q = {q0, . . . , qw}
where q0 = qstart and qw = qaccept and Γ = {0, 1, ␣}. Suppose M runs
in p(n) steps and has witness of length f(n) for p, f polynomials N → N.
We create a formula to check if M is a valid TM accepting x, it is
satisfiable if and only if x ∈ L(M).

– Add variables yi,j for 1 ≤ i ≤ p(n) and 0 ≤ j ≤ w denoting at time
i, M is in state qj .

– Add variables hi,j for 1 ≤ i ≤ p(n) and 0 ≤ j ≤ p(n) denoting at
time i, the head is at cell j.

– Add variables ri,j,k for 1 ≤ i, j ≤ p(n) and k ∈ {0, 1, ␣} denoting
at time i, cell j contains symbol k.

– (G1) Add clauses yi,0 ∨ · · · ∨ yi,w for all 1 ≤ i ≤ p(n) and yi,j =⇒
yi,j′ for all 1 ≤ i ≤ p(n) and 1 ≤ j, j′ ≤ w with j 6= j′. That is, M
is in exactly one state.

– (G2) Add clauses hi,0∨· · ·∨yi,p(n) for all 1 ≤ i ≤ p(n) and hi,j =⇒
hi,j′ for all 1 ≤ i ≤ p(n) and 1 ≤ j, j′ ≤ p(n) with j 6= j′. That is,
M ’s head is at exactly one cell.

– (G3) Add clauses ri,j,0 ∨ ri,j,1 ∨ ri,j,␣ for all 1 ≤ i, j ≤ p(n) and
ri,j,k =⇒ hi,j,k′ for all 1 ≤ i, j ≤ p(n) and k, k′ ∈ {0, 1, ␣} with
j 6= j′. That is, M ’s tape has exactly one symbol in each cell.

– (G4) Add clauses y1,0 (initial state) and h1,0 (initial head) and
r1,0,x1 ∧ · · · ∧ r1,n−1,xn (input) and r1,n,␣ ∧ · · · ∧ r1,n+f(n)−1,␣
(witness) and r1,n+f(n),␣ ∧ · · · ∧ r1,p(n),␣ (blank tape). That is, M
is initially configured correctly.

– (G5) Add clause yp(n),w. That is, M accepts.
– (G6) Add clauses hi,j ∧ ri,j,k =⇒ ri+1,j,k for all i, j and k ∈

{0, 1, ␣} (unchanged cells) and if δ(qm, k) = (qm′ , k′, R) then for all
i, j add hi,j ∧ yi,m ∧ ri,j,k =⇒ yi+1,m′ (state) and hi,j ∧ yi,m ∧
ri,j,k =⇒ hi+1,j+1 (head, do j − 1 for left) and hi,j ∧ yi,m ∧
ri,j,k =⇒ ri+1,j,k′ (content). That is, M follows its transition
rules.

• SAT ≤T Search-SAT .
Proof. Suppose Φ is our formula with variables x1, . . . , xn. Set x1 =
1 and see if the resulting formula is satisfiable. If so x1 = 1 in our
assignment, otherwise x1 = 0. Expand our assignment by repeating
with x2 = 1, so on so forth.

• CLIQUE ≤T Search-CLIQUE.
Proof. Suppose G is our graph and k is given. Pick a node x ∈ V (G)
with x /∈ C. If G − x has a clique of size k, set G = G − x, otherwise
add x to C. Repeat until |C| = k.

• L = {f ∈ Zp[x] : f = 0} is in BPP . We randomly pick a ∈ Zp and
return 1 iff p(a) = 0. Then P (A(f) is incorrect) ≤ d

p
where d is the

degree of f . By repeating this we can reduce the error.
• L = {(A,B,C) ∈ (Rn×n)3 : AB = C} is in coRP . Randomly select a

column vector x ∈ Rn and check if ABx = Cx. If AB = C, then returns
true with probability 1, if AB 6= C, then returns false with probability
at least 1

2
.

3

	Pre-TM Definitions
	Regular Examples
	Context-free Examples
	Post-TM Definitions
	TM Examples
	Complexity Examples

