
CS 370 Cheat Sheet F2022 Jacob Schnell

1 Floating Point Numbers
• Taylor Series: The Taylor Series of f(x) evaluated at a is

∞∑
n=0

f(n)(a)
n!

(x− a)n

• Floating Point System: The floating point system {β, t, L, U} represents numbers of the form ±0.1d1d2 · · · dt · βp for L ≤ p ≤ U . To
go from a real number x to its floating point representation:

1. Express x in base β.
2. Normalize x by writing it in the form x̄ · βp for L ≤ p ≤ U so that x̄ has a leading 0.
3. Either round or truncate/chop x̄ to t digits.

• Absolute error: Eabs = |xexact − xapprox|.
• Relative error: Erel =

|xexact−xapprox|
|xexact

. A result is roughly correct to s digits if Erel ≈ 10−s.
• Machine Epsilon: The maximum relative error E, i.e., the smallest value such that fl(1 + E) > 1. When rounding, E = 1

2
β1−t, when

truncating E = β1−t. For any x ∈ R, fl(x) = x(1 + δ) for some |δ| ≤ E. For any w, z ∈ F , we have w ⊕ z = fl(w + z) = (w + z)(1 + δ).
Note floating point operations aren’t associative.

• To minimize error, sum numbers of approximately same size and sign.

2 Polynomial Interpolation
• Vandermonde Matrices: To fit a polynomial to (x1, y1), . . . , (xn, yn), create an n−1 degree polynomial and solve the system mapping

x to y in n coefficients.
• Lagrange Bases: For data (x1, y1), . . . , (xn, yn), a polynomial interpolant is given by p(x) = y1L1(x) + y2L2(x) + · · ·+ ynLn(x), where

Lk(x) =
(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

Note the kth entry is missing, and Li(xj) = δi,j .
• Hermite Interpolation: For data (x1, y1, s1), . . . , (xn, yn, sn) where si is the slope at xi, we have a piecewise cubic interpolation where

the polynomial on the ith interval [xi, xi+1] is given by pi(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 for

ai = yi, bi = si, ci =
3y′

i − 2si − si+1

∆xi
, di =

si+1 + si − 2y′
i

(∆xi)2
,

where ∆xi = xi+1 − xi and y′
i =

yi+1−yi
∆xi

.
• Cubic Splines: For data (x1, y1), . . . , (xn, yn), we fit a piecewise interpolation by enforcing C2 continuity, i.e.,

Si(xi) = yi Si(xi+1) = yi+1 S′
i(xi+1) = S′

i+1(xi+1) S′′
i (xi+1) = S′′

i+1(xi+1)

To do this, we solve the system in si for i = 2, . . . , n− 1

∆xisi−1 + 2(∆xi−1 +∆xi)si +∆xi−1si+1 = 3(∆xiy
′
i−1 +∆xi−1y

′
i)

where ∆xi = xi+1 − xi and y′
i =

yi+1−yi
∆xi

. We also need boundary conditions. Common choices are:
– Clamped: S′(x1) = s1 and S′(xn) = sn are specified.
– Free/Natural: S′′(x1) = 0 and S′′(xn) = 0, done adding equations s1 +

s2
2

= 3
2
y′
1 and sn−1

2
+ sn = 3

2
y′
n−1.

After solving for slope information si, plug into Hermite Interpolation formula.
• We can generalize this to parametric curves, usually using ti = i or an arc-length parameterization via ti+1 = ti+‖pi−pi+1‖2 and t1 = 0

for points p1, . . . , pn.

3 Ordinary Differential Equations
• ODE: Given an IVP y′(t) = f(t, y(t)) and y(t0) = y0, find yi for some later point ti. Generally yn ≈ y(tn) is our approximation.
• Local (Truncation) Error: It is given by |yn+1 − y(tn+1)| assuming exact data yn = y(tn). To compute it for yn+1 = RHS:

1. Replace approximations in RHS with exact values.
e.g., yn−1 → y(tn−1) and f(tn, yn)→ y′(tn).

2. Taylor expand RHS quantities about time tn.
3. Taylor expand exact solution y(tn+1).
4. Compute y(tn+1)− yn+1, lowest degree non-canceling term is LTE.

• Global/Absolute Error: It is given by |yn − y(tn)| (no exact data). Generally (Global Error) ≤ (Local Error) ·O(h−1).
• Higher Order ODEs: To convert a higher order ODE of the form y(n)(t) = f(t, y(t), y′(t), . . . , y(n−1)(t)), set yi = y(i−1) for i = 1, . . . , n

and then solve the system of ODEs given by y′
i = yi+1 and y′

n,i = f(t, y1,i, y2,i, . . . , yn−1,i).
• Stability: To determine the stability condition of a scheme:

1. Apply it to the test equation y′(t) = −λy(t) for λ > 0.
2. Find the closed form solution of its error εn = y

(p)
n − yn where y

(p)
0 = y0 + ε0.

3. Find a condition (if any) on h such that lim
n→∞

εn = 0

Example: For FE we have yn+1 = yn + h(−λyn) = y0(1 − hλ)n. So εn = ε0(1 − hλ)n which goes to zero if and only if |1 − hλ| < 1 or
equivalently h < 2

λ

• Adaptive Time-stepping: Follow the algorithm below
1. Approximate solution with two schemes of different orders.
2. Estimate the error by taking their difference.
3. While error > tolerance, set h← h/2 and recompute steps 1 and 2.

4. Predict good next step size hnew = hold

(
tolerance

|yA
n+1−yB

n+1|

)1/p

where p is the lower order of the schemes.
5. Repeat until end time is reached.

• Common Time-stepping Schemes:

1

CS 370 Cheat Sheet F2022 Jacob Schnell

Name Multi-Step Implicit LTE Stability

Forward Euler O(h2) h < 2
λ

yn+1 = yn + h · f(tn, yn)

Trapezoidal Rule X O(h3) unconditional
yn+1 = yn + h

2
(f(tn, yn) + f(tn+1, yn+1))

Improved Euler O(h3) h < 2
λ

yn+1 = yn + h
2
(f(tn, yn) + f(tn+1, y

∗
n+1)) where y∗

n+1 = yn + h · f(tn, yn)

Backwards Euler X O(h2) unconditional
yn+1 = ynf(tn+1, yn+1)

Midpoint Method O(h3)

yn+1 = yn + k2 where k1 = h · f(tn, yn) and k2 = h · f(tn + h
2
, yn + k1

2
)

BDF2 X X O(h3)

2

CS 370 Cheat Sheet F2022 Jacob Schnell

4 Ordinary Differential Equations
• Orthongality Identities:

–
∫ 2π

0

cos(kt) sin(jt)dt = 0 for all j, k ∈ Z.

–
∫ 2π

0

cos(kt) cos(jt)dt = 0 =

∫ 2π

0

sin(kt) sin(jt)dt for j 6= k and j, k ∈ Z.

–
∫ 2π

0

cos(kt)dt = 0 =

∫ 2π

0

sin(kt)dt for all j, k ∈ Z.

–
∫ 2π

0

eikte−i`tdt = 2πδk,` for all k, ` ∈ Z.

–
N−1∑
j=0

W jkW−j` =

N−1∑
j=0

W j(k−`) = Nδk,`.

• Using the above orthogonality identities we can solve for the Fourier transform f(t) = a0 +
∞∑

k=1

ak cos(kt) +
∞∑

k=1

bk sin(kt) of a function

by integrating. We can transform this to the form f(t) =
∞∑

k=−∞
cke

ikt by ck = ak−ibk
2

and c−k = ak+ibk
2

where |c0| = |a0| and

|ck| = |c−k| = 1
2

√
a2
k + b2k. Higher order terms thus represent higher frequency components.

• Roots of Unity: For a given N , W = e2πi/N is the Nth root of unity, i.e., WN = 1. Note that W k = e2πik/N = cos(2πk/N) +
i sin(2πk/N) thus there is a parallel to the unit circle.

• Discrete Fourier Transform (DFT):

Fk =
1

N

N−1∑
n=0

fnW
−nk and fn =

N−1∑
k=0

FkW
nk

The sequence Fk is doubly infinite and N -periodic. I.e., Fk±N = Fk. If the data fn is real, then Fk = FN−k. Note Fk represents the
component of frequency k for 0 ≤ k ≤ N

2
and of frequency N

2
− k for N

2
≤ k ≤ N and F0 represents the average of {fn}.

• Matrix DFT: Where M is a matrix whose kth column is 1
N

[
W 0 W−k W−2k · · · W−(N−1)k

]T , we have F = Mf (DFT) and
f = M−1F = NMTF (IDFT).

• Fast Fourier Transform (FFT):

If gn =
1

2
(fn + fn+N

2
) and hn =

1

2
(fn − fn+N

2
)W−n then Feven = G = DFT(g) and Fodd = H = DFT(h)

Or, if we keep dividing all the way (remembering that each time we change our value of N), then by representing the indices our FFT
coefficients in binary and reversing the bits, we unscramble our coefficients.

• 2D DFT: For an image of size M ×N and Nth and Mth roots of units WN and WM respectively,

Fk,` =
1

N

N−1∑
n=0

W−nk
N

(
1

M

∑
j=0

fn,jW
−j`
N

)

where k and j are the horizontal and vertical frequencies respectively. That is, we apply a DFT to each row, then to each column.

5 NLA and PageRank:
• Random Surfer: A surfer starts at some page and then follows links at random for k steps. Repeatedly visited pages are more

important.
• Google Matrix: Let there be R pages in a directed graph and let deg(j) mean the outdegree of a node. Let P be the matrix where

Pi,j = 1
deg(j)

if there is a link from j to i and 0 otherwise (each column that isn’t a dead end links should sum to 1). Let d be the vector
where di = 1 if deg(i) = 0 and 0 otherwise be the vector of dead ends. Let e be the all 1 vector. Then for some α (teleport probability),
the Google matrix is M = α(P + 1

R
edT) + (1− α) 1

R
eeT . This Google matrix is a Markov matrix.

• Given an initial probability vector (of which page to start on) p0, we may compute our next probability vector (of pages) by pn+1 = Mpn.
• Markov Matrices: Let Q be a Markov matrix. Q has 1 as an eigenvalue, and if Q is positive then |λ| = 1 has only one linearly

independent eigenvector. Moreover, every eigenvalue of Q has |λ| ≤ 1. The convergence rate of a positive Markov matrix is dictated by
its second largest eigenvalue |λ2|. For a Google matrix, |λ2| ≈ α.

• LU Factorization: To solve Ax = b, take the augmented matrix [A | b] and using row operations (subtractions), transform it to upper
triangular form, the resulting matrix (excluding b′) is U . Starting with L = In, whenever you perform the row subtraction Ri = Ri−aRj

(for j < i), set Lij = a. Note from the A = LU factorized form we can solve Ax = b by solving Lz = b and then Ux = z.
• LU Factorization with Pivoting: To solve PA = LU by pivoting (which has fewer numerical/floating-point errors) start with

P = In. Then before every row subtraction to get U , first swap rows so that the topmost element of the current column is maximal.
From PA = LU we can solve Ax = b by computing b′ = Pb, then Lz = b′, then Ux = z

• p-norms ‖x‖p =

(
n∑

i=1

|xi|p
)1/p

for x ∈ Rn. For matrices A ∈ Rn×n we have ‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p . That said, ‖A‖1 is the maximum

absolute column sum of A and ‖A‖∞ is the maximum absolute row sum of A. Moreover, ‖A‖2 = max
i

√
|λi| if λi are the eigenvalues of

ATA. Finally, we have the following properties:

– ‖x‖ = 0 ⇐⇒ x = 0.
– ‖αx‖ = |α| · ‖x‖ for α ∈ R.

3

CS 370 Cheat Sheet F2022 Jacob Schnell

– ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
– ‖Ax‖ ≤ ‖A‖ · ‖x‖ for x ∈ Rn.
– ‖AB‖ ≤ ‖A‖ · ‖B‖ for B ∈ Rn×n.
– ‖I‖ = 1.

• Linear Solving Conditioning: For a given matrix norm, the condition number of a matrix A is κ(A) = ‖A‖ · ‖A−1‖, if κ(A) ≈ 1 then
A is well-conditioned, if κ(A) � 1 then A is ill-conditioned. For a system Ax = b, we may bound the relative change in x with respect
to the relative change in b or A or the residual r = b−Axapprox (note r = 0 iff xexact = xapprox), respectively by

‖∆x‖
‖x‖ ≤ κ(A)

‖∆b‖
‖b‖ and ‖∆x‖

‖x+∆x‖ ≤ κ(A)
‖∆A‖
‖A‖ and ‖∆x‖

‖x‖ ≤ κ(A)
‖r‖
‖b‖

4

	Floating Point Numbers
	Polynomial Interpolation
	Ordinary Differential Equations
	Ordinary Differential Equations
	NLA and PageRank:

