
CS 480 Notes W2024 Jacob Schnell

Classical ML
• Training Paradigms: Supervised learning, with labelled data pairs (x, y), Unsupervised learning with

unlabeled data x, semi-supervised learning, with some labelled and some unlabeled data. Often models
predict f : X → Y such that f(xi) ≈ yi, when yi is continuous this is regression and when yi is discrete
this is classification. Datasets are often represented in matrix form, where a column is a data point and
a row is a feature. E.g., X ∈ Rn×d and Y ∈ Rn×t (often t = 1). Note that for finite datasets, there exist
infinitely many functions for which f(xi) = yi for all i, so we want to leverage prior information and select
simple f ’s. The optimal f is f ∗(x) = E[Y |X = x].

• Bias Variance Decomposition:

ED,X,Y ‖fD(X)− Y ‖22︸ ︷︷ ︸
test error

= EX‖ED[fD(X)]− f ∗(X)‖22︸ ︷︷ ︸
bias2

+ED,X‖fD(X)− ED[fD(X)]‖22︸ ︷︷ ︸
variance

+EX,Y ‖f ∗(X)− Y ‖22︸ ︷︷ ︸
hardness/noise

• Linear Function: A function is linear if f(αx+βy) = αf(x)+βf(y) or equivalently if it can be written
as f(x) = 〈x,w〉. If f(x) = 〈x,w〉 + b then f is said to be affine. Note for an affine function, w is
orthogonal to the decision boundary H = {x : 〈x,w〉+ b = 0}.

• Perceptron Algorithm: The goal is to find w ∈ Rd and b ∈ R such that yiŷi = yi(〈x,w〉 + b) > 0 for
all i (i.e., no mistakes). When the model makes a mistake, we update it by w ← w + yx and b ← b + y,
this always increases the confidence yŷ; repeat until convergence. Note that perceptrons don’t have unique
solutions and will cycle infinitely if there is no perfectly separating hyperplane. We can extend to a
multiclass case by either training C one vs all perceptron, or

(
C
2

)
one vs one perceptron according to which

classes are negative.
• Perceptron Convergence: Suppose ∃w∗ such that ∀i, yi〈xi,w

∗〉 > 0. Let C be such that ‖xi‖2 ≤ C
for all i and let w∗ be such that ‖w∗‖2 = 1. Let γ = min i|〈xi,w

∗〉| be the margin of error. Then the
Perceptron Algorithm will converge after C2/γ2 iterations. The idea is to show that after updating w,
〈w,w∗〉 increases by ≥ γ and 〈w,w〉 increases by ≤ C2 and consider cos(w,w∗) after converging.

• Perceptron Loss: For a linear classifier ŷ = sign(〈x,w〉) (can use bias hiding trick), we minimize
the perceptron loss l(w,xi, yi) = −yi〈xi,w〉I[mistake on xi]. Learning with SGD, we get wi+1 = wi −
ηi∇wl(wi,xi, yi) = wi+ηiyixiI[mistake on xi], which is the same as the perceptron algorithm when η = 1.

• Linear Regression: Consider a 1-padded dataset X ∈ Rn×(d+1). Then our class of functions is f(x) = Wx
for W ∈ R(d+1)×t and we minimize the least squares loss L(W) = Ê‖f(xi) − yi‖22 = 1

n
‖XW − Y ‖2F

where ‖A‖2F =
∑

ij A
2
ij. Using the optimality condition and setting the gradient w.r.t. W to 0, we, get

∇WL(W) = 2
n
XT (XW −Y) = 0 to get W = (XTX)−1XTY . Note when X is (close to) rank-deficient two

rows are almost linearly dependent but may have different y’s which leads to unstable W .
• Ridge Regression: We add a regularization term to the loss: L(W) = Ê[‖XW − Y ‖2F + λ‖W‖2F] which

yields a solution W = (XTX + nλI)−1XTY . The matrix XTX + nλI is far from rank-deficient for large
λ, which makes the solution more stable. Note, λ = 0 reduces to ordinary linear regression and λ → ∞
reduces to W → 0. Ridge regression is equivalent to augmenting our dataset with points xj =

√
nλej for

j = 1, . . . , d and yj = 0.
• Logistic Regression: For classification data Y = {0, 1}, we directly model the probability f(x;w) =

P (Y = 1|X = x) by modeling the log-odds with linear regression, i.e., log P (Y=1|X=x)
P (Y=0|X=x)

= 〈x,w〉. In
particular, for σ(x) = ex

1+ex
= 1

1+e−x the sigmoid function, we let f(x;w) = σ(〈x,w〉). We must learn
w with MLE by minimizing the NLL minw

∑n
i=1

[
− yi log f(xi;w) − (1 − yi) log(1 − f(xi;w))

]
using

SGD. Note ŷ = argmaxk P (Y = k|X = x) so that ŷ = 1 iff f(x;w) > 1
2
, which gives us a decision

boundary H = {x : 〈x,w〉 = 0}. A multiclass extension exists by learning separate w1, . . . ,wC and
using the softmax function σ̄k(a1, . . . , aC) = exp(ak)∑C

`=1 exp(a`)
for k = 1, . . . , C. Then P (Y = k|X = x;W =

[w1, . . . ,wC]) = σ̄k(〈x,w1〉, . . . , 〈x,wC〉) = exp(〈x,wk〉∑C
`=1 exp(〈x,w`〉)

, we still use ŷ = argmaxk P (Y = k|X = x;W).
1

CS 480 Notes W2024 Jacob Schnell

• Hard-Margin SVM: The aim is to maximize the margin of a perceptron, where the margin is the smallest
distance from a point to the decision boundary, γ = mini

yiŷi
‖w‖2 . I.e., want maxw,b γ. By scaling, we set the

numerator to 1, leaving us the optimization problem minw,b
1
2
‖w‖22 such that ∀i, yiŷi ≥ 1 (note perceptron

satisfies this but doesn’t minimize 1
2
‖w‖22). The Lagrangian dual problem is minw,b maxα≥0

1
2
‖w‖22 −∑

i αi[yi(〈xi,w〉+ b)− 1] (since αi =∞ whenever yiŷi < 1). Setting the derivative w.r.t. w and b to 0 and
swapping max to min we get minα≥0−

∑
i αi +

1
2
‖
∑

i αiyixi‖22 = minα≥0−
∑

i αi +
1
2

∑
ij αiαjyiyj〈xi,xj〉

such that
∑

i αiyi = 0. Support vectors (points on the boundary of the margin: H± = {x : 〈x,w〉+b = ±1})
have αi ∈ R+ and non-support vectors have αi = 0. We prefer the dual form since we can apply kernel
tricks to 〈xi,xj〉.

• Soft-Margin SVM: The aim to allow an SVM to make mistakes by using a hinge loss `hinge(yŷ) =
(1 − yŷ)+ which is 0 when yŷ ≥ 1. We now solve minw,b

1
2
‖w‖22 + C

∑
i(1 − yiŷi)

+. Optimizing the
Lagrangian dual problem yields min0≤α≤C −

∑
i αi +

1
2
αiαjyiyj〈xi,xj〉 such that

∑
i αiyi = 0. We see that

hard-margin SVM is simply the case where C = ∞. Correct points have αi = 0, incorrect points have
αi = C, and support vectors (on the boundary) have 0 ≤ αi ≤ C. We can recover w∗ =

∑
i α

∗
i yixi and b

by using a point on H±1.
• On the Hinge Loss: The optimal SVM classifier minimizes `0−1, but `hinge and `0−1 are classification-

calibrated since their optimal classifiers always have the same sign. So minimizing the hinge loss maximizes
P (Y = sign(Ŷ)) and minimizes the expected `0−1 loss.

• Kernel Trick: Data may not be linearly separable, but it might be in a higher dimension, e.g., in
φ(x) = (xxT ,

√
2x, 1). This blows up the dimension, but we only need 〈φ(x), φ(z)〉 = (〈x, z〉+ 1)2 for the

dual form. k : X×X → R is a (reproducing) kernel iff there is a φ : X → H such that 〈φ(x), φ(z)〉 = k(x, z)
(note φ may not be unique) iff the kernel matrix Kij = k(xi,xj) is symmetric and positive semidefinite for
any x1, . . . ,xn ∈ X . At inference time, compute f(x) = 〈φ(x),w∗〉 =

∑n
i=1 α

∗
i yik(x,xi).

• Gradient Descent: To solve minx f(x) choose initial x(0) ∈ Rd and repeat x(k) = x(k−1) − η∇xf(x
(k−1))

until convergence (η is the step size) since the gradient points in the direction of steepest ascent. We can
derive gradient descent as a local minimization of the Taylor expansion of f(x) at x(k−1), miny f(y) ≈
miny[f(x) +∇f(x)T (y − x) + 1

2η
‖y − x‖22], which is minimized by y = x− η∇f(x).

• Gradient Descent for Convex Functions: When f is convex (i.e., f(y) ≥ f(x) +∇f(x)T (y − x), so
f(y) is always above the tangent line at x) and L-smooth (i.e., LI−∇2f(x) is positive semi-definite), then
gradient descent has f(x(k)) − f(x∗) ≤ ‖x(0)−x∗‖22

2ηk
for η ≤ 1

L
. This means we achieve f(x) − f(x∗) ≤ ε in

O(1/ε) iterations. The proof follows by using a quadratic expansion and L-smooth to show f(x+) ≤ f(x)−
1
2
η‖∇f(x)‖22 (using η ≤ 1

L
). Then using convexity we can show f(x+)−f(x∗) ≤ 1

2η
(‖x−x∗‖22−‖x+−x∗‖22).

Summing over iterations, we get a telescoping sum to prove the result. When f is m-strong convex (i.e.,
f(x) − m‖x‖22 is convex) and L-smooth, we get f(x(k)) − f(x∗) ≤ γk L

2
‖x(0) − x∗‖22 for η ≤ 2

m+L
and

some γ ∈ (0, 1). This means we achieve f (x) − f(x∗) ≤ ε exponentially fast, in O(log1/γ(1/ε)) iterations.
When f is nonconvex, but differentiable and L-smooth, we find stationary points at a rate of O(1/

√
k),

which cannot be improved by deterministic algorithms.
• Stochastic Gradient Descent approximates ∇f(x) by taking the mean over a subset of the data. Each

step of gradient descent takes O(n
ε
) time whereas each SGD step takes O(1

ε2
) time, but SGD needs more

steps.

Neural Networks
• Multi-Layer Perceptron: Linear transformation followed by non-linear activation, repeated over mul-

tiple layers. E.g., a 2 layer MLP can be z = Ux+ c, h = σ(z), ŷ = Wh+ b where we learn U,W, c, b. We
train by using a loss ` to measure the difference between ŷ and y and use SGD to minimize the loss.

• Back-Propagation: To compute the gradients of our network for SGD, we need to use the chain rule to
propagate the gradient from one layer to the previous layer. This involves matrix calculus; it’s often easiest

2

CS 480 Notes W2024 Jacob Schnell

to try and guess a solution based on scalar calculus. Modern frameworks compute this using automatic
differentiation by constructing computational graphs of the forward process.

• Universal Approximation Theorem: For any continuous function f : Rd → Rc and any ε > 0,
there exists a k ∈ N and W ∈ Rk×d, b ∈ Rk, and U ∈ Rc×k so that supx ‖f(x) − g(x)‖2 < ε where
g(x) = U(σ(Wx+ b)). However, there are functions where a 2-layer MLP needs exponentially many nodes
but a 3-layer MLP only needs polynomially many. Deep neural networks are more parameter efficient.

• Dropout: For each training minibatch, use a different and random network using only a fraction q of all
nodes. This way nodes are less likely to collude to overfit. At inference time, use the full network and
multiply each node by 1

q
to have the same expected magnitude.

• Normalization: In batch normalization and layer normalization we normalize input features (subtract
by mean and divide by variance). In batch norm, the mean and variance are computed across features
(nodes) over the whole batch whereas in layer norm they’re computed across each input of the batch.
In both cases, we apply an affine transformation afterward and at inference time use a learned running
mean/variance.

• Convolutional Neural Networks: Instead of applying an MLP to all the pixels of an image, CNNs
learn a convolution kernel and apply it locally to each patch of the image. By stacking multiple kernels
rich and locally informed features are learned. Kernels can also be applied to padded images and strided
to change the output size. CNNs can also be viewed as an MLP with weight sharing by reshaping the
kernel as a circulant matrix. CNNs also commonly use [max, average] pooling to reduce feature map sizes.
Inception networks use multiple convolutions of different sizes and ResNets introduce skip connections to
improve gradient flow to early layers.

• Transformers: Inputs are first tokenized and then embedded to get a sequence of input feature vectors,
often a positional embedding is added to inform where in the sequence each token is from (since attention
is permutation equivariant). Attention takes in values Q,K, V (in self-attention Q = K = V , in cross-
attention only K = V) and returns a convex combination of rows of V for each row of Q, computed as
σ̄(QKT

√
d
)V . In multi-head attention, we apply multiple linear layers W q,W k,W v to the input and perform

attention on each of the transformed inputs, concatenating their outputs at the end. Inputs can also be
optionally masked, e.g., for training auto-regressive language modelling. A transformer encoder block is
made up of a self-attention layer, followed by a 2-layer MLP with a 4× hidden dimension. In a transformer
decoder block, we instead have masked self-attention, followed by cross-attention (keys and values from
the last output of the encoder), and finally an MLP as usual. For both encoders and decoders, a layer
norm and skip connection are applied after each stage. In language modelling, the outputs of the decoder
are passed to a linear layer and softmax to predict words and trained to minimize the NLL Ê− 〈Y, log Ŷ 〉
where Y is the ground-truth output as a one-hot vector.

Modern Machine Learning Paradigms
• Large Language Models: Large pre-trained models, BERT is an encoder-only architecture trained to

predict a randomly sampled masked word (and binary classification next sentence prediction task) and
GPT is a decoder-only architecture trained to predict the next word. These architectures are meant to be
fine-tuned on specific tasks afterwards, such as classification, entailment (text logically follows), similarity,
question answering, etc. Later, RoBERTa is trained for longer on more data with longer sequences and
bigger batches. Sentence-Transformer uses a Siamese network to compute sentence similarity (which is
better than the previous training of passing sentence pairs to BERT). GPT-2 is 10× larger than GPT and
trained on a huge dataset, it is comparable to BERT in performance but is good at zero-shot learning.
GPT-3 is 100× larger than GPT-2 and starts showing chain-of-thought and in-context learning. GPT-3.5
then trains GPT-3 using RLHF, by first fine-tuning on desired human outputs, then training a reward
model to predict human preference on various model outputs, and finally this reward model is used to
supervise the language model.

• Fenchel Conjuugate: The conjugate of f : R→ R is f ∗(s) = maxt st−f(t) and is convex. If f is convex
and continuous then (f ∗)∗ = f .

3

CS 480 Notes W2024 Jacob Schnell

• Generative Adversarial Networks: Consider training data x1, . . . ,xn ∼ q(x), we wish to find a model
to learn the data density q by minθ KL(q‖pθ) =

∫
−q(x) log q(x)

pθ(x)
dx ≈ − 1

n

∑n
i=1 log

q(xi)
pθ(xi)

. But it’s dif-
ficult to model pθ as an explicit p.d.f., instead we learn a push-forward map from standard Gaussian
noise to our data density, i.e., Tθ(Z) ∼ pθ and minimize the divergence to our data. We also don’t
know q(x) explicitly, so we will find a formulation to remove it. Consider f(t) = t log t − t, take the
conjugate and solve the maximum to get f ∗(s) = exp(s), and so f(t) = f ∗∗(t) = maxs st − exp(s).
Notice then KL(q‖pθ) =

∫
q
pθ

(
log q

pθ
− 1

)
pθdx =

∫
f(q(x)

pθ(x)
)pθ(x)dx =

∫ (
maxs s

q(x)
pθ(x)

− exp(s)
)
pθ(x)dx

= max
S:Rd→R

∫ (
S(x)q(x)− exp(S(x))pθ(x)

)
dx = Ex∼q[S(x)]−Ex∼pθ [exp(S(x))]. Then, parameterizing S as a

neural net, we get our objective minθ KL(q‖pθ) ≈ minθ maxφ
1
n

∑n
i=1 Sφ(xi) − 1

m

∑m
j=1 exp(Sφ(Tθ(zj))). Tθ

is our generator from Gaussian noise to data and Sφ is our discriminator distinguishing real and generated
data. In practice, we use the JS divergence JS(q‖pθ) = KL(q‖ q+pθ

2
) + KL(pθ‖ q+pθ

2
) to avoid issues where

pθ(x) ≈ 0. Through a similar derivation, we get the objective minθ JS(q‖pθ) ≈ minθ maxφ
1
n

∑n
i=1 Sφ(xi) +

1
m

∑m
j=1 log(1− exp(Sφ(Tθ(zj)))), applying a change of variable Sφ ← logSφ, we can change the objective

to minimizing binary cross-entropy loss where real data is positive. The two networks play a minimax
game, at equilibrium the discriminator cannot distinguish real from fake.

• Flow Models: We again learn the data density q, but this time explicitly parameterize our model as a
push-forward map from Gaussian noise to our data with the objective minθ KL(q‖pθ). Let r(z) be our noise
density and T be the push-forward, then a theorem tells us p(x) = (T#r)(x) = r(T−1x)| det(∇T−1x)| =
r(T−1x)/| det(∇T (T−1x))|. To train our model we need T−1 (which is slow) and to sample we need T , so
modelling the inverse doesn’t help. To solve this, we enforce that T is an increasing triangular map, so
that x1 = T1(z1), x2 = T2(z1, z2), . . . , xd = Td(z1, . . . , zd) and so that Tj(z1, . . . , zj) is increasing w.r.t. zj.
Enforcing this makes ∇T a lower triangular matrix with a positive diagonal, making it easy to compute
the determinant det(∇T) and since Tj is increasing in zj, we can find T−1

j by a binary search. Moreover, a
theorem tells us there is a unique increase triangular push-forward map from r to q (and so T characterizes
q). To ensure that early outputs are not disadvantaged, we compose multiple triangular maps, permuting
the outputs of one to get the input of the next. The most common flow model, real-NVP, simplifies the
model further by using only xi = T (zi) for i = 1, . . . , L and xj = T (z1, . . . , zL, zj) for j = L + 1, . . . , D,
alternating which partition of the outputs are transformed univariately and multivariately after each layer.
Neural Autoregressive Flow uses a neural network to model the pushforward and Polynomial Flow uses
polynomials to model the pushforward. We can view T as a multivariate generalization of the quantile
function.

• Neural ODE: In a normal model, we have xt+1 = xt + ηtft(xt) = Tt(xt), which is equivalent to dxt+1 =
ft(xt)dt. By a change of variables we get log pt+1(xt+1) = log pt(xt)− log | det(I + ηt · ∂xft(xt))| ≈ log pt −
ηt〈∂x, ft(xt)〉 since off-diagonal elements in the determinant are relatively small when ηt is small. This
yields d log pt(xt)

dt
= −〈∂x, ft(xt)〉.

• Diffusion Models: We again learn the data density q, but this time model an SDE transforming our
data to noise and reverse the SDE. Consider the SDE dxt+1 = ft(xt)dt + Gt(xt)dWt, discretized as
xt+1 ≈ xt + ηtft(xt) + gt(xt) where gt(xt) ∼ N (0, η2tGt(xt)Gt(xt)

T) so that xt+1 is a noisy version xt.
The Kolmogorov equations tell us ∂tpt = −〈∂x, ptft〉 + 1

2
〈∂x∂Tx , ptGtG

T
t 〉 (and the backward time equa-

tion −∂sps = 〈fs, ∂xps〉 + 1
2
〈Gs, G

T
s , ∂x∂

T
x ps〉). Note any SDE can be transformed to an ODE by using

ft − 1
2
(GtG

T
T)∂x − 1

2
(GtG

T
t)∂x log pt. Moreover, any SDE can be reversed as dx̄t+1 = f̄t(x̄t)dt+Gt(x̄t)dWt

where f̄t = −ft + (GtG
T
t)∂x + (GtG

T
t)∂x log pt. Note we choose f and G, and a certain choice allows

us to model SGD using an SDE, but we often choose f and G to be simple, and when G doesn’t
depend on x, the (GtG

T
t)∂x term disappears. The only piece we don’t know is the score function

sp = ∂x log pt, so we model it using a neural net. We optimize it by minθ F(pθ‖q) = 1
2
EX∼q‖∂x log pθ(X)−

∂x log q(X)‖22 = EX∼q[
1
2
‖sp(X)‖22 + 〈∂x, sp(X)〉+1

2
‖sq(X)‖22]. We can also use a denoising autoencoder

when we have a joint density q(x, z) for a latent variable Z, this is especially useful when it easy to find
q(x|z) (e.g., from the forward SDE when ft is affine). In this case we get F(p‖q) = 1

2
E(x,z)∼q[‖sp(x) −

4

CS 480 Notes W2024 Jacob Schnell

∂x log q(x|z)‖2+‖sq(x)‖22 − ‖∂x log q(x|z)‖22] since the cross-product terms are the same. In diffusion mod-
els, we only need to learn the score function with the objective min

θ
Ê

t∼µ,(xt,x0)∼q
λt‖st(xt; θ)−∂x log q(xt|x0)‖22,

where λt weights certain timesteps more heavily. At inference time, we run either the reverse SDE dx̄t+1 =
−ft + (GtG

T
t)∂x + (GtG

T
t)st(x̄t; θ)dt + Gt(x̄t)dWt or ODE dx̄t+1 = ft − 1

2
(GtG

T
t)∂x − 1

2
(GtG

T
t)st(x̄t; θ)dt

using a solver (e.g., Euler-Maruyama). Modern models (e.g., stable diffusion) also use an auto-encoder to
reduce images to lower dimensional latent features and add conditioning (e.g., text) either by concatenat-
ing it to the latent features or adding it to the attention mechanism of the score function (modelled using
a U-Net).

• Contrastive Learning: Contrastive learning is a self-supervised way of pre-training (especially vision)
models. One of the first popular methods is SimCLR, where images are passed through stochastic data
augmentations to generate two views, and then the model followed by a projection head produces features
for all augmented views. A contrastive loss encourages all features from the same image (positive pairs)
to be close and features from other images (negative pairs) to be far from one another, as measured by
the cosine similarity zi·zj

‖zi‖‖zj‖ . While this is a simple and effective method, it requires strong augmentations
and large batch sizes. MoCo addresses the memory issue by introducing a memory bank. In particular, of
the two views, one of them goes through the current encoder (query) and the other through a momentum-
moving average of the encoder (key) to form positive pairs. Negative pairs are taken from a queue of
previous batches, and the current keys are then added to the queue. BYOL simplifies the idea of an
online and momentum network further by having the features passed to the online network go through a
prediction head and then directly minimizing the `2 distance between the momentum network’s features
and the predicted features (still with two augmented views). The currently favoured method, CLIP, uses
natural language to help supervise the contrastive task using pairs of images and text captions, producing
both a pre-trained image and text encoder. The text caption goes through a text encoder and the image
goes through an image encoder, they are then both trained to use a contrastive loss to maximize the
similarity of positive pairs and minimize the similarity of negative pairs (caption from a different image).
Zero-shot prediction can then be achieved by producing a set of labels from the text encoder and selecting
the label which has the highest similarity with the encoded image.

Trustworthy Machine Learning
• Adversarial Attacks: Deep models are sensitive to inputs, and adding carefully constructed noise to an

input (e.g., image) can cause unexpected behaviour. In particular, there exist small ∆x such that f(x +
∆x) 6= f(x) due to f not being sufficiently smooth, or robust. The issue arises from the existence of hard
boundaries in our dataset, as such there exist adversarial examples for any (non-constant) classifier, and
so we have an accuracy-robustness trade-off. An adversarial example is found as max‖x−x0‖≤ε f(x, y;w),
e.g., where f(x, y;w) = − log py(x;w). Note w is constant, we optimize for x. In a targeted attack
we try to make the model predict a specific output, e.g., maximize f(x, y;w) = log pȳ(x;w) for ȳ 6= y.
Two common methods are the Fast Gradient Sign Method where we find examples by repeatedly doing
x← x+ ε sign(∇xf(x, y;w)) and Project Gradient Method x← +η∇xf(x, y;w), after each step in both
we must project x ← Proj(x) so that the example is within ε distance. Usual backprop can compute
gradients w.r.t. input x when we have the model (white box), but if we don’t have the model (black
box) then we must approximate this gradient as limδ↓0

f(x+δ)−f(x)
δ

. To improve model robustness, it is
common to train using adversarial attacks in a sort of minimax between the model and attacker. Data
augmentation/regularization and robustness are closely related, for instance, adversarial training on a
linear regression model is equivalent to adding lasso regression. Another way to improve robustness is with
robust losses, such as Huber’s loss (mix of MSE and MAD, equivalent to gradient clipping), or variational
losses which let the model ignore certain outliers from the loss.

• Data Poisoning: Given a training distribution µ, the goal is to produce a poison distribution ν such that
a model trained the mixed distribution χ ∝ µ + εdν (where εd is the poisoning fraction) performs worse
than it would when trained only on µ. This is formulated as maxν∈Γ L(µ̃;w

∗) where w∗ = argminw L(χ;w)

5

CS 480 Notes W2024 Jacob Schnell

where µ̃ is the validation set. Unlike adversarial attacks where the model is already trained and examples
are found to break the model, in data poisoning the examples must be selected to break the model before it
is even trained. We say that the parameter w is εd-poisoning reachable if there is a poisoning distribution
ν such that g(χ;w) = g(µ;w) + εdg(ν;w) = 0, i.e., w’s gradients vanish w.r.t. loss ` over over the
mixed distribution. This can be implemented by a gradient canceling attack minν

1
2
‖g(µ) + εdg(ν)‖22.

E.g., in logistic regression, we see that −0.28 ≈= inft
−t

1+exp(t)
≤ 〈w, g(ν)〉 ≤ supt

−t
1+exp(t)

= ∞, thus w is
εd-poisoning reachable iff 〈w, g(µ)〉+ εd〈w, g(ν)〉 = 0 iff εd ≥ max{ 〈w,g(µ)〉

0.28
, 0}.

• Differential Privacy: Even after anonymizing data, it’s still often possible to identify people by the
details of their responses. As a result, people may not want to divulge true information due to the risk of
being identified. A way around this is by randomizing responses, e.g., with a 50% chance select a random
answer and with a 50% chance answer honestly, this gives plausible deniability to everyone. Formally,
let M : D → Z be a randomized mechanism, then M is (ε, δ)-DP if for any D,D′ ∈ D differing by one
point, then P (M(D) ∈ E) ≤ exp(ε)P (M(D′) ∈ E) + δ. The idea is that the log odds of an event E
happening in either dataset is less than ε, then differencing will be harder since any event is (close to)
equally likely in each dataset. Alternatively, we can view DP as FPR ≤ exp(ε) · TPR + δ for H0 : D and
HA : D′, i.e., how hard it is to distinguish one dataset from the other. Alternatively, M is (α, ε)-RDP
if Dα(M(D)‖M(D′)) = 1

α−1
logEx∼q

(
p(x)
q(x)

)α

≤ ε where p and q are the densities of M(D) and M(D′)

respectively. Note limα↓1Dα = KL, and if M is (α, ε)-RDP then M is (ε + 1
α−1

log 1
δ
, δ
α
)-DP. Properties of

DP: (1) post-processing: if M is DP, then T ◦M is DP for any T , (2) parallel composition: if each Mk

is DP, then M(D) = (M1(D1), . . . ,MK(DK)) is DP, (3) sequential composition: (M(D), N(D,M(D))) is
(α, εM +εN)-RDP, (4) group of k: if D and D′ differ by k elements, then M is (kε, δ)-DP, (5) subsampling:
subsampling D from a larger dataset D amplifies privacy. The Gaussian mechanism, M(D) = f(D)+ε for
ε ∼ N (0,Σ), has sensitivity ∆2f = supD∼D′ ‖(f(D)−f(D′))TΣ−1(f(D)−f(D′))‖22 and is (α, α

2
∆2f)-RDP.

This leads us to DP-SGD, where you train as usual, but clip gradients to C (to ensure that ∆2f is bounded
C) and then add Gaussian noise σCε to make your model (α, α

2
∆2f)-RDP.

• Neuron Activation Modeling: Ways to understand neuron activations including fixing the network
and finding the test set examples that maximize the activation, or performing gradient ascent on the
input. Another way is gradient saliency, where the gradients of the input w.r.t. the neuron are visualized.
However, these don’t always work, e.g., for the OR problem consider fixing x1 = x2 = 1 and varying only
one input concludes that y = 1 is constant and x1, x2 don’t matter.

• Attribution: Suppose we have a reward function u : 2[n] → R (with u(∅) = 0) based on what subset
of features are present and want to determine marginal contribution φi of each feature. Probabilistic
values: we can find an additive approximation, e.g., by φi = u(S ∪ i)− u(S \ i) or φi = u([n])− u([n] \ i)
but these don’t take into account other features. A better approximation would make use of averaging:
φi =

∑
S 63i ps(u(S ∪ i) − u(S)) where ps is the probability of a set of size |S| = s. The choice ps is

important, the choice ps = 1
2n−1 leads to the Banzhaf value, but there is no guarantee

∑n
i=1 φi = 1. We also

can’t weigh each feature equally, since similar features will collude to get similar results. Shapley’s value:
with ps = s!(n−s−1)!

n!
(almost reciprocal of binomial coefficient) it is the only choice that satisfies (1) linear:

φi(u + v) = φi(u) + φi(v) for separate games u, v (2) symmetry: if u(S ∪ i) = u(S ∪ j) for all S 63 i, j,
then φi = φj, (3) null: if u(S ∪ i) = u(S) for all S 63 i, then φi = 0, and (4) efficient:

∑
i φi = u([n]).

Using Monte Carlo estimation, we can get φ̂i by sampling m subsets S 63 i with probability ∝
(
n−1
s

)
ps and

average u(S ∪ i)− u(S) over all samples. This estimation yields P (|φ̂i − φi| ≥ ε) ≤ 2 exp(−mε2/2), so to
get ‖φ̂− φ‖∞ ≤ ε with probability 1− δ, we need m ∈ O(n

ε2
log n

δ
) samples. A similar method can get an

estimation of Banzhaf value within (ε, δ)-`2 error or (ε√
n
, δ)-`∞ error in m ∈ O(1

ε2
log n

δ
). Random order

value: where π is a permutation [n], we define ψi(u, π) = u({π(1), . . . , π(k)}) − u({π(1), . . . , π(k − 1)})
where π(k) = i and let φ(u) = Eπψi(u, π). Least-square value: φ̂ = argminφ∈Rn

∑
S⊆[n] qs(u(S) − φ(S))2

such that u([n]) =
∑

i φi where qs = ps + ps−1 and can be approximated with m ∈ O(n
ε2
log n

δ
) samples.

Note that Shapley value ⊆ random order value ⊆ probabilistic value ⊆ least-square value.

6

