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Week 1.

Definition 1 (Fields). A field F is a set on which two operations

• addition, F× F→ F, (a, b) 7→ a+ b (the sum of a and b)

• multiplication, F× F→ F, (a, b) 7→ a · b (the product of a and b)

are defined, and such that the following conditions hold for all elements a, b, c ∈ F.

(F 1) a+ b = b+ a and a · b = b · a (Commutativity of addition and multiplication).

(F 2) (a+b)+c = a+(b+c) and (a·b)· = a·(b·c) (Associativity of addition and multiplication).

(F 3) There exists distinct elements 0 and 1 in F such that 0+a = a and 1 ·a = a (Existence
of identity elements for addition and multiplication).

(F 4) For each element a ∈ F, there exists an element c ∈ F, called and additive inverse for a
such that a+ c = 0; and for each nonzero element b ∈ F\{0}, there exists and element
d ∈ F, called a multiplicative inverse for b, such that b · d = 1 (Existence of inverse for
addition and multiplication).

(F 5) a · (b+ c) = a · b+ a · c (Distributivity of multiplication over addition).

Remark 1. Roughly speaking, a field is a set

1. Containing distinct elements 0, 1 and possibly others.

2. Having four operations (addition, multiplication, subtraction, and division) so that,
with the exception of division by zero, the sum, product, difference, and quotient of any
two elements in the set is an element of the set.

3. Satisfying the “obvious” algebraic laws (commutativity, associativity, distributivity, ex-
istence of identities and inverses elements for addition and multiplication)

Definition 2 (Vector Spaces). A vector space over a field F is a set V on which two
operations

• addition, V × V → V , (x, y) 7→ x+ y (the sum of x and y),

• scalar multiplication, F× V → V , (a, x) 7→ ax (the product of a and x),

are defined, and such that the following conditions hold for all elements x, y, z ∈ V and
a, b ∈ F:

(VS 1) x+y=y+x
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(VS 2) (x+y)+z=x+(y+z)

(VS 3) There exists a zero vector, 0, in V such that x+ 0 = x

(VS 4) For each element x ∈ V , there exists an element y ∈ V called an additive inverse for
x, such that x+ y = 0.

(VS 5) 1x = x

(VS 6) (ab)x=a(bx)

(VS 7) a(x+y)=ax+ay

(VS 8) (a+b)x=ax+bx

The elements of the field F are called scalars and the elements of the vector space V are
called vectors.

Remark 2. Thanks to conditions (VS 1) and (VS 2), vector addition is equal irrespective
of parentheses around terms, so simply write x+ y + z + w + · · · , omitting all parentheses.

Remark 3. Qn is a vector space over Q, Rn is a vector space over Q and R, Cn is a vector
space over Q, R, and C.

Definition 3 (Matrices). Let F be a field. Let m,n ≥ 1 be fixed integers. An m× n matrix
with entries from the field F is a rectangular array of the form

a11 a12 · · · a1,n
a21 a22 · · · a2,n
...

...
...

am,1 am,2 · · · am,n


where aij ∈ F for 1 ≤ i ≤ m, 1 ≤ j ≤ n. We abbreviate the notation for this matrix by
writing (aij), i = 1, . . . ,m and j = 1, . . . , n. We call aij the ij-entry of the matrix, i.e. the
entry at the ith row and the jth column. The m × n matrix whose entries are all zero is
called the zero matrix, denoted O. Two m × n matrices A = (aij) and B = (bij) are said
to be equal if all their corresponding entries are equal, that is if aij = bij for all 1 ≤ i,≤ m,
1 ≤ j ≤ n.

Matrix addition: Let A = (aij) and B = (bij) be two m × n matrices with entries from F.
We defined A+B to be an m×n matrix whose entries are the sum of corresponding entries

of A and B. That is, (A+B)ij
def
= aij + bij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Scalar multiplication: Let A = (aij) be an m× n matrix with entries from F and c ∈ F. We
define cA to be an m × n matrix whose entries are the corresponding ones of A, multiplied
by c. That is, (cA)ij = c(Aij) for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Example 3 (The Space of Matrices). Denote Mm×n(F) the set of all m × n matrices with
entries from the field F. Then the set Mm×n with matrix addition and scalar multiplication
is a vector space over F.
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Example 4 (Function Spaces). Let D be any nonempty set and FD be the set of all functions
from D to F. The set FD is a vector space with the following operations

(f + g)(x)
def
= f(x) + g(x) and (cf)(x)

def
= cf(x), x ∈ D,

for all f, g ∈ FD and c ∈ F.

Definition 4 (Polynomials). A polynomial with coefficients from a field F is an expression
of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where n is a non-negative integer, ak ∈ F for 0 ≤ k ≤ n (called the coefficient of xk) and
x is variable. The polynomial in which all coefficients are zero is called the zero polynomial
f(x) = 0. Two polynomials from a field F,

f(x) = anx
n + · · ·+ a1x+ a0 and g(x) = bmx

m + · · ·+ b1x+ b0

are said to be equal if m = n and ak = bk for 0 ≤ k ≤ n.

Denote Pn(F) the set of all polynomials of degree at most n.

Pn(F) = {anxn + · · ·+ a1x+ a0 : a0, . . . , an ∈ F}

Denote F[x] the set of all polynomials (of all degrees) with coefficients from F.

Polynomial addition: Let f, g ∈ F[x]

f(x) = anx
n + · · ·+ a1x+ a0 and g(x) = bmx

m + · · ·+ b1x+ b0

and assume without loss of generality n ≥ m. Then let bj = 0 for j > m, such that

g(x) = bnx
n + · · ·+ bmx

m + · · ·+ b1x+ b0

We define the sum f + g as

(f + g)(x)
def
= (an + bn)x

n + · · ·+ (a1 + b1)x+ (a0 + b0)

Scalar Multiplication: Let f ∈ F[x], f(x) = anx
n + · · · + a1x + a0 and c ∈ F. We define

cf ∈ F[x] as

(cf)(x)
def
= canx

n + · · ·+ ca1x+ ca0

Example 5 (The Space of Polynomials). The set F[x] with the above operations of addition
and scalar multiplication is a vector space over F.

Theorem 1.1 (Cancellation Law for Vector Addition). Let V be a vector space. If x, y, z ∈
V such that x+ z = y + z, then x = y.

Corollary 1.1.1. Let V be a vector space and x ∈ V .

1. There is exactly one vector in V that can be the zero vector.
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2. There is exactly one vector y ∈ V such that x+ y = 0, y is called the additive inverse.

Definition 5. Let V be a vector space and x, z ∈ V .

• Denote −x the unique vector y ∈ V such that x+ y = 0.

• Denote x− z the sum of x+ (−z).

Theorem 1.2. Let V be a vector space over F, x ∈ V , and a ∈ F. Then we have the
following (0 denotes the zero vector)

1. 0x = 0.

2. a0 = 0.

3. (−a)x = −(ax) = a(−x). In particular (−1)x = −x

Definition 6. A subset W of a vector space V over a field F is called a subspace of V if
the following three conditions hold for the operations defined in V :

(S 1) W 6= ∅, W is nonempty.

(S 2) If x ∈ W and y ∈ W , then x+ y ∈ W , W is closed under vector addition.

(S 3) If c ∈ F and x ∈ W , then cx ∈ W , W is closed under scalar multiplication.

Theorem 1.3. If W is a subspace of a vector space V over a field F, then W is a vector
space over F under the operations of V restricted to W .

Remark 4. To check condition (S1) in the definition of subspaces, we normally check
whether 0 ∈ W or not.

Week 2.

Definition 7. Let V be a vector space over F and S a nonempty subset of V . A vector
x ∈ V is called a linear combination of vectors of S if there exists a finite number of vectors
u1, . . . , un ∈ S and scalars a1, . . . , an ∈ F such that

x = a1u1 + · · ·+ anun

Note n ≥ 1. We also say that x is linear combination of u1, . . . , un and call a1, . . . , an the
coefficients of the linear combination.

Define the span of S, span(S), to be the set of all linear combinations of vectors in S.

For convenience, we define the span of the empty set to be span(∅) = {0}.

Solving systems of linear equations by elimination. The method of elimination
can be used to solve systems of linear equations over any field. In general, the “allowed
simplifications” of this method are:

4 Week 2



MATH 146 Winter 2021: Cheat sheet Jacob Schnell

• Add a scalar multiple of one equation to another equation.

• Multiply an equation by a nonzero scalar.

• Swap two equations.

Only eliminate all occurrences (but one) of a variable once.

If an equation of the form 0 = c is obtained where c 6= 0, then no solutions.

(If an equation of the form 0 = 0 is found, you can delete it.)

If no contradiction is found, then replace the variables not eliminated by parameters, move
the parameters to the right-hand side, and add dummy equations ai = (parameter for ai) to
them. The resulting equations should describe all solutions to the original system.

Theorem 1.4. Let S be a subset of a vector space V . Then span(S) is a subspace of V .
Moreover, span(S) is the smallest subspace of V which contains S, in the sense that

1. span(S) is a subspace of V containing S, and

2. If W is any other subspace of V containing S, then span(S) ⊆ W

Definition 8. Let V be a vector space and S be a subset of V . We say that S generates
(or spans) V if span(S) = V .

Remark 6. Let V be a vector space and S a subset of V . Since span(S) is a subset of V , to
prove span(S) = V , it is sufficient to prove that every vector in V can be written as a linear
combination of vectors in S.

Definition 9. Let V be a vector space and S be a subset of V .

• The set S is called linearly dependent if there exist a finite number of distinct vectors
u1, . . . , un in S and scalars c1, . . . , cn, not all zero, such that

c1u1 + · · ·+ cnun = 0

In this case, we also say that the vectors of S are linearly dependent. Note that n ≥ 1.

• The set S is called linearly independent if S is not linearly dependent. That is, for
every choice of distinct u1, . . . , un ∈ S with n ≥ 1, whenever c1, . . . , cn ∈ F are scalars
satisfying

c1u1 + · · ·+ cnun = 0

then ci = 0, for all i = 1, . . . , n. In this case we also say that the vectors of S are
linearly independent.

Remark 7
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1. For any vectors u1, . . . , un in V , we always have the following representation of 0 ∈ V
as a linear combination of u1, . . . , un:

0u1 + · · ·+ 0un = 0

(all coefficients are 0). This is called the trivial representation of 0 as a linear combi-
nation of u1, . . . , un.

2. The empty set is linearly independent since linearly dependent sets must be nonempty
by definition.

3. The set S = {0} is linearly dependent.

4. When S is a finite nonempty set, S = {u1, . . . , un}, where care has been taken to list
the elements of S without repeats, then the definitions of linear independence and linear
dependence can be simplified as follows:

• {u1, . . . , un} is linearly dependent if and only if there exist (c1, . . . , cn) ∈ Fn,
(c1, . . . , cn) 6= (0, . . . , 0) with

c1u1 + · · ·+ cnun = 0

In other words, the equation witnessing linear dependence can be assumed to men-
tion all of the vectors in S.

• {u1, . . . , un} is linear independent if and only if the following condition is satisfied:
Whenever c1, . . . , cn ∈ F are such that

c1u1 + · · ·+ cnun = 0

then ci = 0 for all i = 1, . . . , n. In other words, the definition of linear indepen-
dence only needs to be checked for linear combinations involving all of the vectors
in S.

5. Any subset of a vector space that contains the zero vector is linearly dependent.

Theorem 1.5 Let S be a subset of a vector space V . Then S is linearly dependent if and
only if either S = {0} or some vector in S is a linear combination of other vectors in S.

Week 3.

Definition 10 (Basis). Let V be a vector space. A subset S of V is called a basis for V if
it satisfies the following two conditions:

1. S is linearly independent.

2. S spans V .
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If S is a basis for V , we also say that the vectors of S form a basis for V .

Example 17 (Standard Bases).

1. The empty set is the standard (and only) basis for the zero vector space for the zero
vector space.

2. In Fn, the set {e1, . . . , en}, where ej ∈ Fn is the vector whose jth coordinate is 1 and
other coordinates are 0 is the standard basis of Fn

3. In Mm×n(F), the set {Eij ∈ Mm×n(F) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} where Eij is an m × n
where the ijth entry is 1, and all other entries are 0 is the standard basis of Mm×n(F).

4. In Pn(F), the set {1, x, . . . , xn} is the standard basis of Pn(F).

5. In F[x], the set {1, x, x2, . . .} is the standard basis of F[x].

Theorem 1.6. Let {v1, . . . vn} be a basis for a vector space V . Then every x ∈ V can be
uniquely expressed as a linear combination of v1, . . . , vn. That is, there is a unique n-tuple
(a1, . . . , an) ∈ Fn such that x = a1v1 + · · ·+ anvn.

Definition 11

• A set is countably infinite if there is a 1-1 mapping between the set and N. For example,
Z and Q are countably infinite.

• A set is countable if it is a finite set or it is countably infinite.

• A set is uncountable if it is not countable. For example, R, C, and (0, 1) are uncount-
able.

Theorem 1.7. If a vector space V is generated by a countable set S, then some subset of S
is a basis for V .

Theorem 1.8 (Existence Theorem). Every vector space has a basis.

Theorem 1.9 (Replacement Theorem). Suppose V is a vector space with a finite spanning
set S. Let T be a linearly independent subset in V . Then

1. |T | ≤ |S|.

2. There exists a set H ⊆ S containing exactly (|S|−|T |) vectors such that T∪H generates
V .

Corollary 1.9.1 Suppose V is a finitely spanned vector space. Then all bases of V are
finite and have the same number of elements.

Definition 12.
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• A vector space is called finite-dimensional if it has a basis consisting of a finite number
of vectors.

• Let V be a finite-dimensional vector space. The unique number of vectors in each basis
for V is called the dimension of V and is denoted by dimV .

• Convention: dim{0} = 0.

• A vector space that is not finite-dimensional is called infinite-dimensional

To find the dimension of a vector space, one can find a basis for that vector space and count
the number of elements in that basis.

Corollary 1.9.2 Let V be a vector space with dimension n.

1. Any finite spanning set for V contains at least n vectors.

2. A generating set for V that contains exactly n vectors is a basis for V .

3. Any linearly independent subset of V has at most n vectors.

4. Any linearly independent subset of V that contains exactly n vectors is a basis for V .

5. Every linearly independent subset of V can be extended to a basis for V .

6. Let W be a subspace of V . Then dimW ≤ dimV . The equality happens if and only if
W = V .

7. Let W be a subspace of V . Then any basis for W can be extended to a basis for V .

Week 4.

Definition 13

• For each x ∈ V , we define x+W the following subset of V :

x+W = {x+ w : w ∈ W}

The set x+W is called a coset of W in V and x is called a representative of the coset
x+W .

• For x, y ∈ V , if x− y ∈ W , we write x ≡ y (mod W ).

• Denote V/W (pronounced “V mod W”) the collection of cosets of W in V :

V/W = {x+W : x ∈ V }

Proposition 1. Let W be a subspace of a vector space V and x, y ∈ V .
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1. x ∈ x+W .

2. x +W = y +W if and only if x − y ∈ W . In particular, x +W = W if and only if
x ∈ W .

Remark 8.

1. The relation ≡ (mod W ) is an equivalence relation on V . That is, ≡ (mod W ) is
reflexive, symmetric, and transitive.

2. It’s easiest to think of V/W as the collection of cosets of W in V , it can be difficulty
to visualize.

Original Domain Z Vector space V
Modding by m subspace W

Equivalence relation ≡ (mod m) ≡ (mod W )
Equivalence class [k] x+W

Set of equivalence class Zm V/W

3. The construction of V/W is analogous to the construction of Zm

Definition 14. Let V be a vector space over F and W be a subspace of V . Operations of
addition and scalar multiplication by F are defined naturally on V/W by representatives:

(x+W ) + (y +W )
def
= (x+ y) +W

a(x+W )
def
= (ax) +W

for any a ∈ F and x, y ∈ V .

Lemma 1. Under the assumptions in definition 14, the two operations are well-defined. It
means for elements in V/W ,

1. If x1+W = x2+W and y1+W = y2+W then (x1+W )+(y1+W ) = (x2+W )+(y2+W )

2. If x1 +W = x2 +W , then a(x1 +W ) = a(x2 +W ) for any a ∈ F.

Theorem 1.10 (Quotient Space). The set V/W with the two operations defined in definition
14 is a vector space over F. The vector space V/W is called the quotient space of V by W .

Theorem 1.11. Let V be a finite dimensional vector space and W be a subspace of V . Let
{v1, . . . , vn} be a basis for V such that {v1, . . . , vk} is a basis for W (k ≤ n). Then

1. The set {vk+1 +W, . . . , vn +W} is a basis for V/W

2. dim(V/W ) = dimV − dimW

Remark 9. There are also cases where both V and W are infinite dimensional, but dim(V/W )
is finite. For example, V = F∞ and W = {(0, x2, x3, . . .) : xk ∈ F}. Note that any element
of V/W is just determined by the value of the first coordinate x1, hence dim(V/W ) = 1.

Definition 15. Let V be a vector space over F and W1,W2 be subspaces of V .
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1. Define the sum of subspaces W1 and W2 as follows:

W1 +W2
def
= {v1 + v2 : v1 ∈ W1, v2 ∈ W2}

2. If in addition, W1 ∩W2 = {0} we say W1 and W2 are independent, or disjoint, and we
write W1 ⊕W2 for W1 +W2. The set W1 ⊕W2 is also called the (internal) direct sum
of the subspaces W1 and W2.

3. If W1 ⊕ W2 = V (i.e. W1 + W2 = V and W1 ∩ W2 = {0}), then W2 is called a
complementary subspace of W1.

Remark 10. Let V be a vector space over F and W1,W2 be subspaces of V . Then the direct
sum of W1 and W2, W1 ⊕W2 is defined whenever W1 ∩W2 = {0}.

Lemma 2. Let V be a vector space over F and W1,W2 be subspaces of V . Then

1. W1 ∩W2 is a subspace of W1, W2, and V .

2. W1 +W2 is the smallest subspace of V containing W1 and W2.

3. V = W1 ⊕ W2 if and only if for every vector v in V , there exists unique elements
w1 ∈ W1 and w2 ∈ W2 so that v = w1 + w2.

Theorem 1.12. Let V be a vector space over F and W1,W2 be two finite dimensional
subspaces of V . Then

1. W1 +W2 is finite dimensional and

dim(W1) + dim(W2) = dim(W1 +W2) + dim(W1 ∩W2)

2. If V is finite dimensional and W1 ⊕W2 = V , then

dimW1 + dimW2 = dimV

Remark 11.

1. (Existence of Complementary Subspaces) Every linearly independent subset of a vec-
tor space V can be extended to a basis for V (regardless of if the set countable or
not or of the dimension of V ). Therefore, every subspace of a vector space V has a
complementary subspace.

2. This complementary subspace is not necessarily unique.
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Week 5.

Definition 16. Let V and W be vector spaces over F. A function T : V → W is called a
linear transformation from V to W , or is said to be linear if, for all x, y ∈ V , we have

(L 1) T (x+ y) = T (x) + T (y) and

(L 2) T (cx) = cT (x)

Proposition 2. Let T : V → W be a mapping. T is linear if and only if T (cx + y) =
cT (x) + T (y) for all x, y ∈ V and c ∈ F.

Example 23 Let V and W be vector spaces. The following function are linear:

(a) T0 : V → W,T0(x) = 0 for all x ∈ V . The function T0 is called the zero transformation.

(b) IV : V → V, IV (x) = x for all x ∈ V . The function IV is called the identity transfor-
mation.

Proposition 3. Let T : V → W be linear. Then

1. T (0) = 0.

2. T (x− y) = T (x)− T (y) for all x, y ∈ V .

3. T (a1x1 + · · ·+ anxn) = a1T (x1) + · · ·+ anT (xn).

Theorem 2.1. Let {v1, . . . , vn} be a basis for a vector space V , and let {w1, . . . , wn} be
arbitrary elements of a vector space W . Then there exists a unique linear mapping T : V →
W such that

T (v1) = w1, . . . , T (vn) = wn

Corollary 2.1.1. Let {v1, . . . , vn} be a basis for a vector space V and {w1, . . . , wn} be
arbitrary elements of a vector space W . Let T : V → W be the unique linear mapping such
that

T (v1) = w1, . . . , T (vn) = wn.

Then for all a1 ∈ F, we have

T (a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn

Definition 17. Let V and W be vector spaces, and let T : V → W be linear. Define the
following sets:

• Null space (or kernel) of T : N (T )
def
= {x ∈ V : T (x) = 0W}.
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• Range (or image) of T : R(T ) def
= {T (x) : x ∈ V }

Theorem 2.2. Let T : V → W be linear. Then N (T ) is a subspace of V and R(T ) is a
subspace of W .

Example 24. The differential operator is defined as Dn : Pn(R) → Pn(R), Dn(p(x)) =
p′(x) = d

dx
p(x).

Theorem 2.3. Let V and W be vector spaces, and let T : V → W be linear. If {v1, . . . , vn}
is basis for V , then {T (v1), . . . , T (vn)} generates R(T ).

Definition 18. Let T : V → W be linear. If dim(N (T )) < ∞, define nullity(T )
def
=

dim(N (T )). If dim(R(T )) <∞, define rank(T )
def
= dim(R(T )).

Theorem 2.4 (Rank-Nullity Theorem). Let V and W be vector spaces and T : V → W be
linear. If dim(V ) <∞, then

rank(T ) + nullity(T ) = dim(V )

Definition 19. Let T : V → W be linear. Then

• T is called one-to-one (or injective) if T (x) = T (y) implies x = y, or equivalently
x 6= y implies T (x) 6= T (y).

• T is called onto (or surjective) if R(T ) = W .

• T is called an isomorphism (or a bijection) if T is one-to-one and onto.

Lemma 3. Let T : V → W be linear. Then T is one-to-one if and only if N (T ) = {0}.

Theorem 2.5. Let W be a vector space over a field F and let V be a finite-dimensional
vector space over F with a basis {v1, . . . , vn}. Consider a linear transformation T : V → W .
Then T is an isomorphism if and only if {T (v1), . . . , T (vn)} is a basis for W .

Remark. From theorem 2.5, to construct an isomorphism (if there exists one) between two
finite-dimensional vector spaces, we choose a basis {v1, . . . , vn} for V and a basis {w1, . . . , wn}
for W . Then define a linear transformation T : V → W such that T (vk) = wk for
k = 1, . . . , n. By theorem 2.1, such a linear transformation exists. By theorem 2.5, T is
an isomorphism.

Definition 20. Let V and W be two vector spaces over a field F. The vector space V is
said to be isomorphic to the vector space W if there is an isomorphism T : V → W . We
write V ∼= W .

Theorem 2.6. Let V and W be two finite-dimensional vector spaces over a field F. Then
V is isomorphic to W if and only if dimV = dimW .

Theorem 2.7. Let V and W be two vector spaces over a field F of equal finite dimension.
Let T : V → W be linear. Then the following statements are equivalent
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1. T is one-to-one.

2. T is onto.

3. rankT = dimV .

Week 6.

Definition 21. Let V and W be vector spaces over F. We let L(V,W ) denote the set of
all linear transformation T : V → W .

Theorem 2.8. Let V and W be vector spaces over F. Then L(V,W ) is a subspace of W V .

Definition 22 (Matrix-Vector Multiplication). Let A ∈ Mm×n(F) and x ∈ Fn. We consider
x as an n× 1 column vector

x = (x1, . . . , xn)
T =

x1...
xn

 .
Then Ax is the m× 1 column vector in Fm defined as:

Ax =


a11 a12 · · · a1,n
a21 a22 · · · a2,n
...

...
...

am,1 am,2 · · · am,n



x1
x2
...
xn

 =



n∑
k=1

a1,kxk
n∑
k=1

a2,kxk

...
n∑
k=1

am,kxk


That is the ith entry of Ax is the entries in the ith row of A each multiplies by the corre-
sponding entries in x, then summed up.

Definition 23. If F is a field and A ∈ Mm×n(F), then LA denotes the function Fn → Fm

given by LA(x) = Ax.

Matrix notation. Let A ∈ Mm×n(F)

• Recall aij denotes the entry of A in the ith row and jth column. Thus aij ∈ F.

• We often write aj to denote the jth column of A. Thus aj ∈ Fm and

A =



a11 a12 · · · a1,j · · · a1,n
a21 a22 · · · a2,j · · · a2,n
...

...
. . .

...
...

ai,1 ai,2 · · · ai,j · · · ai,n
...

...
...

. . .
...

am,1 am,2 · · · am,j · · · am,n


and aj =



a1,j
a2,j

...
ai,j

...
am,j
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• We also write a = [a1 a2 · · · an] when a1, . . . , an ∈ Fm are the columns of A.

Lemma 4. Suppose A ∈ Mm×n(F) and write A = [a1 a2 · · · an] where a1, . . . , an ∈ Fm are
the columns of A.

1. For any x = (x1, . . . , xn)
T ∈ Fn we have

Ax = x1a1 + x2a2 + · · ·+ xnan

That is, Ax is the linear combination of the columns of A whose coefficients are the
entries in x.

2. If e1, . . . , en are the standard basis vector for Fn, then Aej = aj equals the jth column
of A.

Corollary 2.8.1 (Matrix Equality Theorem). Let A,B ∈ Mm×n(F). Then A = b if and
only if Ax = Bx for all x ∈ Fn.

Theorem 2.9. Let A ∈ Mm×n(F). Then the function LA : Fn → Fm is a linear transforma-
tion.

Proposition 4. In the above situation, L : Mm×n(F) → L(F n, Fm) is a one-to-one linear
transformation.

Definition 24. Let V be a finite dimensional vector space. An ordered basis for V is a
basis {v1, . . . , vn} endowed with a specific order.

Definition 25. Let β = {u1, . . . , un} be an ordered basis for a finite dimensional vector
space V . For x ∈ V , let a1, . . . , an be the unique scalars such that x = a1u1 + · · · + anun.
We define the co-ordinate vector of x relative to β to be

[x]β
def
=

a1...
an

 ∈ Fn

Theorem 2.10. Let V be an n-dimensional vector space over F and β be an ordered basis
for V . The map [ ]β : V → Fn is an isomorphism.

Definition 26. Let V and W be finite dimensional vector spaces over F and let T : V → W
be a linear transformation. Let β = {v1, . . . , vn} and γ = {w1, . . . , wn} be ordered bases for
V and W respectively. The matrix representation of T in the ordered bases β and γ is the
matrix [T ]γβ with entries from F defined as

[T ]γβ
def
=
[
[T (v1)]γ [T (v2)]γ · · · [T (vn)]γ

]
.

When T : V → V is linear and β is an ordered basis of the finite dimensional vector space
V , denote [T ]β = [T ]ββ.

Remark 12 Under the assumptions of definition 26 for T : V → W , if we denote A = [T ]γβ,
then
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1. A ∈ Mm×n(F), where (# of rows of A) = m = dimW and (# of columns of A)
= n = dimV .

2. For all j = 1, . . . , n, the jth column of A is [T (vj)]γ. If we write A = (aij) as usual,
then the jth column of A is (a1j, a2j, . . . , amj)

T , so by the definition of [T (vj)]γ we have

T (vj) =
m∑
k=1

akjwk

Example 33 Let A ∈ Mm×n(F) and consider LA : Fn → Fm. Let β and γ be the standard
ordered bases of Fn and Fm respectively. Then [LA]

γ
β = A

Theorem 2.11. Let T : V → W be linear and β = {v1, . . . , vn} and γ = {w1, . . . , wm} be
ordered bases of V and W respectively. Then

[T (x)]γ = [T ]γβ · [x]β ∀x ∈ V

Proposition 5. Let V and W be finite dimensional vector spaces over F and let β and γ
be ordered bases of V and W respectively.

1. For T, U ∈ L(V,W ) and c ∈ F, we have

[T + U ]γβ = [T ]γβ + [U ]γβ, [cT ]γβ = c[T ]γβ

2. For every C ∈ Mm×n(F) there exists a unique T ∈ L(V,W ) such that [T ]γβ = C.

In other words, the map [ ]γβ : L(V,W )→ Mm×n(F) is an isomorphism, where m = dim(W )
and n = dim(V ).

Corollary 2.11.1. The map L : Mm×n(F)→ L(Fn,Fm) is an isomorphism.

Definition 27. Let F be a field. Suppose A ∈ Mm×n(F) and B ∈ M(n× p)(F). (Note that
the number of columns in A equals the number of rows in B; this is required.) The matrix
product AB is the m × p matrix C ∈ Mm×n(F) whose row-i, column-j entry is the sum of
products formed multiplying the entries in the ith row of A with the entries of jth column of
B. That is

a11 a12 · · · a1,k · · · a1,n
a21 a22 · · · a2,k · · · a2,n
...

...
. . .

...
...

ai,1 ai2 · · · ai,k · · · ai,n
...

...
...

. . .
...

am,1 am,2 · · · am,k · · · am,n





b11 b12 · · · b1,j · · · b1,p
b21 b22 · · · b2,j · · · b2,p
...

...
. . .

...
...

bk,1 bk,2 · · · bk,j · · · bk,p
...

...
...

. . .
...

bn,1 bn,2 · · · bn,j · · · bn,p


=



c11 c12 · · · c1,j · · · c1,p
c21 c22 · · · c2,j · · · c2,p
...

...
. . .

...
...

ci,1 ci,2 · · · ci,j · · · ci,p
...

...
...

. . .
...

cm,1 cm,2 · · · cm,j · · · cm,p


where each entry ci,j of the product is given by ci,j = ai,1b1,j + ai,2b2,j + · · ·+ ai,nbn,j, or in

summation notation,

ci,j =
n∑
k=1

ai,kbk,j
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If A and B are matrices and the number of columns of A does not equal the number of
columns of B, then AB is not defined.

Remark 13.

1. If p = 1 so B and AB column vectors, then the definition above is the matrix-vector
product defined earlier.

2. In general (i.e. when B has several columns), B and AB have the same number of
columns and the jth column of AB is obtained by multiplying A by the jth columns
of B. That is if B = [b1 b2 · · · bp] and AB = C = [c1 c2 · · · cp], then cj = Abj for
j = 1, . . . , p.

3. Combining the previous item with lemma 4(1), we see that the jth columns of AB is
the linear combination of columns of A formed using the entries in the jth columns of
B as coefficients.

4. This gives us an efficient algorithm to find the matrix product. Multiply the columns
of A by the rows of B to form n m × p matrices which you then sum. (This isn’t
something they actually taught us, be wary of using it.)

Matrix notation:

• We usually use O to denote a zero matrix, i.e. a matrix in which every entry is 0. If
we need to specify its number number of rows and columns, we may write Om×n.

• For each n ≥ 1 we let In denote the n × n identity matrix. This is the matrix whose

i, j entry is given by the Kronecker delta δij =

{
1, if i = j

0, if i 6= j
for example

1 0 0
0 1 0
0 0 1

.

Lemma 5

1. A(B + C) = AB + AC, where A ∈ Mm×n(F) and B,C ∈ Mn×p(F).

2. (D + E)A = DA+ EA, where A ∈ Mm×n(F) and D,E ∈ Mq×m(F).

3. α(AB) = (αA)B = A(αB), ∀α ∈ F, where A ∈ Mm×n(F) and B ∈ Mn×p(F).

4. (AB)T = BTAT , where A ∈ Mm×n(F) and B ∈ Mn×p(F).

5. ImA = AIn = A, where A ∈ Mm×n(F).

6. AOn×p = Om×p and Oq×mA = Oq×n, where A ∈ Mm×n(F).

Theorem 2.12. Let T : V → W and U : W → Z be linear transformations between vector
spaces. Then the composition function U ◦ T : V → Z given by (U ◦ T )(x) = U(T (x)) for
x ∈ V is also linear.
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Remark: We usually denote U ◦ T by UT .

Theorem 2.13 (Matrix of Composition of Linear Transformations). Let V,W , and Z be
finite dimensional vector spaces having ordered bases α = {v1, . . . , vp}, β = {w1, . . . , wn}, and
γ = {z1, . . . , zm}, respectively. Let T : V → W and U : W → Z be linear transformations.
Denote A = [U ]γβ ∈ Mm×n(F), B = [T ]βα ∈ Mn×p(F) and C = [UT ]γα ∈ Mm×p(F). Then

C = AB. That is, [UT ]γα = [U ]γβ · [T ]βα.

Corollary 2.13.1.

1. LAB = LALB, whenever A ∈ Mm×n(F) and B ∈ Mn×p(F).

2. A(BC) = (AB)C, whenever the sizes of A,B,C make all the matrix products defined.

Week 7.

Definition 28. A square matrix A ∈ Mn×n(F) is invertible if there exists a matrix B ∈
Mn×n(F) such that AB = BA = In. We the matrix B is called the inverse of A, denoted by
A−1.

Definition 29. Let T : V → W be a linear mapping between vector spaces V and W . If
there exists a function U : W → V such that UT = IV and TU = IW , then T is said to be
invertible and U is said to be an inverse of T .

Lemma 6. Suppose T : V → W is linear and invertible. Then the inverse of T is unique.

Theorem 2.14. Let T : V → W be linear. Then T is invertible if and only if T is an
isomorphism.

Lemma 7. Suppose T : V → W is an isomorphism. Then T−1 is also linear.

Theorem 2.15. Let V and W be finite dimensional vector spaces, and α and β be ordered
bases of V and W respectively. Let T : V → W be linear. Then

1. T is an isomorphism if and only if [T ]βα is an invertible matrix.

2. In particular, if A ∈ Mn×n(F), then LA isomorphism if and only if A is invertible.

Lemma 8.

1. If a matrix A in invertible, then A−1 is also invertible and (A−1)−1 = A.

2. If A is invertible and c ∈ F with c 6= 0, then (cA)−1 is also invertible and 1
c
· A−1.

3. If A is invertible (AT )−1 = (A−1)T

4. A,B ∈ Mn×n(F) are invertible, then AB is also invertible and (AB)−1 = B−1A−1.

5. Conversely, if A,B ∈ Mn×n(F) is invertible, then A and B are invertible matrices.
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Theorem 2.16 (Invertible Matrix Theorem part 1). Let A ∈ Mn×n(F). The following
statement are equivalent:

• A is invertible.

• There exists a matrix C ∈ Mn×n(F) such that AC = In.

• There exists a matrix B ∈ Mn×n(F) such that BA = In.

Theorem 2.17. Let α and β be two ordered bases for a finite dimensional vector space V
and let Q = [IV ]

β
α. Then

1. Q is invertible, called the change of co-ordinate matrix from α to β.

2. For any x ∈ V , we have [x]β = Q[x]α.

Remark 15. Suppose V is a finite dimensional vector space over F. Let α = {v1, . . . , vn}
and β = {w1, . . . , wn} be ordered bases for V and x ∈ V . Then the change of co-ordinate
matrix from α to β is

[IV ]
β
α =

[
[v1]β · · · [vn]β

]
Theorem 2.18. Let T : V → W be linear and V be a finite dimensional vector space. Let α
and β two ordered bases of V and Q be the change of co-ordinate matrix from α to β. Then

[T ]α = Q−1[T ]βQ

Definition 30. Let A and B be the matrices in Mn×n(F). We say B is similar to A if there
exists an invertible matrix Q such that B = Q−1AQ

Definition 31. Let A be an m×n matrix. The following operations of the rows and columns
of A are called elementary row / column operations:

1. Type 1: interchanging any two rows or columns of A: Ri ↔ Rj or Ci ↔ Cj.

2. Type 2: multiplying any row or column of A by a non-zero scalar: Ri ← aRi or
Ci ← aCi.

3. Type 3: adding any scalar multiple of a row or column of A to another: Ri ← Ri+aRj

or Ci ← Ci + aCj.

Definition 32. An n × n elementary matrix is a matrix obtained by performing a single
elementary matrix operation on In.

Theorem 3.1. Let A ∈ Mm×n(F) and suppose B is obtained by performing an elementary
row operation on A. Then there exists and m×m elementary matrix E such that B = EA.
In fact, E is obtained by performing the elementary row operation Im as was performed on
A.
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Conversely, if E is an m×m elementary matrix, then EA is the matrix obtained from A by
performing the same elementary row operation as that which obtained E from In.

Theorem 3.2. Let A ∈ Mm×n(F) and suppose B is obtained by performing an elementary
column operation on A. Then there exists and n×n elementary matrix E such that B = AE.
In fact, E is obtained by performing the elementary column operation Im as was performed
on A.

Conversely, if E is an m×m elementary matrix, then EA is the matrix obtained from A by
performing the same elementary column operation as that which obtained E from In.

Theorem 3.3. Elementary matrices are invertible and the inverse of an elementary matrix
is an elementary matrix of the same type.

Week 8.

Definition 33. Let A ∈ Mm×n(F). We define the rank of the matrix A, denoted rank(A),
to be the rank of the linear transformation LA : Fn → Fm for x ∈ Fn. That is rank(A) =
dimR(LA) = dimLA(Fn).

Remark 16.

1. Let A ∈ Mm×n(F). We have

R(LA) = span{LA(e1), . . . , LA(en)} = span{Ae1, . . . , Aen} = span{a1, . . . , an}

Therefore rank(A) = dimR(LA) = dim span{a1, . . . , an}. That is the rank of a matrix
is the dimension of the subspace generated by its columns.

2. Since {a1, . . . , an} generates R(LA) and any finite spanning set for R(LA) contains at
least dimR(LA) = rank(A) vectors, we have n ≥ rank(A).

Since R(LA) is a subspace of Fm, dimR(LA) ≤ dim(Fm) = m. Hence rank(A) ≤ m.
Therefore rank(A) ≤ min(m,n).

Lemma 9. Let T : V → W be a linear and one-to-one mapping from a vector space V to a
vector space W . Let V0 be a subspace of V . Then

1. T (V0) = {T (x)|x ∈ V0} is a subspace of W .

2. If dim(V0) <∞, then dim(V0) = dim(T (V0)).

Theorem 3.4. Let A be an m × n matrix. If P and Q are invertible m × m and n × n
matrices respectively, then

rank(AQ) = rank(PA) = rank(PAQ) = rank(A)
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Corollary 3.4.1 (Invertible Matrix Theorem Part 2). Let A ∈ Mn×n(F). Then A is
invertible if and only if rank(A) = n.

Corollary 3.4.2 Elementary row and column operations are rank-preserving.

Theorem 3.5. Let A ∈ Mm×n(F). Then by means of a finite number of elementary row
and column operations, A can be transformed into the matrix

D =

[
Ir O1

O2 O3

]
where O1, O2, O3 are zero matrices. Moreover, r = rank(A).

Corollary 3.5.1. Let A be an m×n with rank(A) = r. Then there exist invertible matrices

B and C of sizes m×m and n× n respectively such that D = BAC, where D =

[
Ir O1

O2 O3

]
is the m× n matrix in which O1, O2, O3 are zero matrices.

Theorem 3.6. Let A ∈ Mm×n(F) be of rank r. Then by means of a finite number of
elementary row and column operations A can be transformed into the matrix

Dupper =



1 d12 d13 · · · d1,r d1,r+1 · · · d1,n
0 1 d23 · · · d2,r d2,r+1 · · · d2,n
...

...
...

...
...

...
0 0 0 · · · 1 dr,r+1 · · · dr,n
0 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · 0 0 · · · 0


Remark 17. Theorem 3.6 suggest a system way to transform a matrix A to the matrix
Dupper:

Step 1 Find a non-zero entry of A.

Step 2 Apply at most one type-1 row operation and at most one type-1 column operation to
move that entry to the (1, 1) position.

Step 3 Apply at most one type-2 row (or column) operation so that the entry at the (1,1)
position is 1F.

Step 4 Apply at most (m-1) type-3 elementary row operations so that all the remaining entries
in the first are 0. The updated matrix is now of the form

1 d12 · · · d1n
0
... B
0


Step 5 Repeat steps 1-4 on the matrix B. Continue this process until you get a matrix of the

form of Dupper.
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Step 6 Then rank(A) = r =number of non-zero rows of Dupper

Corollary 3.6.1 Let A be an m× n. Then

1. rank(AT ) = rank(A).

2. rank(A) =the dimension of the subspace generated by the columns of A = the dimension
of the subspace generated by the rows of A.

Theorem 3.7 Let A and B be matrices such that the product AB is defined. Then

rank(AB) ≤ min{rank(A), rank(B)}

Definition 34. Let A ∈ Mm×n(F). Define

Col(A)
def
= {Ax|x ∈ Fn}
= {all linear combinations of columns of A}
= span{columns of A}, called the column space of A

Row(A)
def
= Col(AT ) = {ATy|y ∈ Fm}
= {all linear combinations of rows of A}
= span{rows of A}, called the row space of A

N (A)
def
= {x ∈ Fn|Ax = 0}, called the null space of A

N (AT )
def
= {y ∈ Fm|ATy = 0}, called the left null space of A

Denote nullity(A)
def
= dimN (A)

Theorem 3.8. Let A ∈ Mm×n(F). Then

1. Col(A) and N (AT ) are subspaces of Fm; Row(A) and N (A) are subspaces of Fn.

2. rank(A) = dimCol(A) = dimRow(A).

3. nullity(AT ) = m− rank(A) and nullity(A) = n− rank(A).

4. If F = R, then Rm = Col(A)⊕N (AT ) and Rn = Row(A)⊕N (A).

Theorem 3.9 (Invertible Matrix Theorem Part 3). Let A ∈ Mn×n(F). Then the following
statements are equivalent.

1. A is invertible.
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2. The columns of A form a basis for Fn.

3. The rows of A form a basis for Fn.

4. A is a product of elementary matrices.

Theorem 3.10.

1. If A is an invertible n × n matrix, it is possible to transform (A|In) into the matrix
(In|A−1) by means of a finite number of elementary row operations.

2. Conversely, suppose A is an n×n matrix and there exists an n×n matrix B such that
(A|In) (In|B) via a finite number of elementary row operations, then A is invertible
and B = A−1.

Remark 18. Theorem 3.10 suggest an algorithm suggests an algorithm to check whether a
square matrix is invertible or not how to find A−1. It is called the Gauss-Jordan method to
find the inverse of a square matrix.

Step 1 If the first column of A is a zero vector, A is not invertible. Otherwise the first column
of (A|In) has a non-zero entry. From now on we consider the matrix (A|In).

Step 2 By means of at most one type-1 and one type-2 elementary row operation we can move
that non-zero entry to the (1,1) position and its new value is 1.

Step 3 By means of at most (n−1) type-3 row operations, we change all the remaining entries
in the first row to be 0. Thus, we have transformed (A|In) to a matrix of the form

1 d12 · · · d1,2n
0
... Q
0


Step 4 Repeat steps 1-3 on the matrix Q until you get the matrix

C ′ =


1 d12 · · · d1,n d1,n+1 · · · d1,2n
0 1 · · · d2,n d2,n+1 · · · d2,2n
...

...
...

...
...

0 0 · · · 1 dn,n+1 · · · dn,2n


From steps 1-4 we have been going forward to transform (A|In) to a matrix whose main
diagonal has 1 and whose entries below the main diagonal are zero. For the remaining
steps we move backwards to produce zeroes above the main diagonal.

Step 5 By means of at most (n − 1) type-3 row operations we can transform all entries at of
the n-th column of C ′ to zeroes, except for the last entry. E.g. we get C ′  Cn

Cn =


1 d12 · · · 0 d1,n+1 · · · d1,2n
0 1 · · · 0 d2,n+1 · · · d2,2n
...

...
...

...
...

0 0 · · · 1 dn,n+1 · · · dn,2n


22 Week 8



MATH 146 Winter 2021: Cheat sheet Jacob Schnell

Step 6 By means of at most (n− 2) type-3 row operations, we can transform all entries of the
(n − 1)-th column of Cn to zeroes, except for the entry at the (n − 1, n − 1) position.
That is Cn  Cn−1.

Step 7 We can continues this process until we get the matrix of the form (In|B). B is the
inverse of A.

Week 9.

Definition 35

• The system of equations

a11x1 + a12x2 + · · ·+ a1,nxn = b1

a21x1 + a22x2 + · · ·+ a2,nxn = b2
...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

where aij, bi ∈ F for all i = 1, . . . ,m and j = 1, . . . , n and x1, . . . , xn are variables
taking values in F, is called a system of m linear equation in n unknowns over the field
F. Note that this system can be written as the matrix product Ax = b, where

A =


a11 a12 · · · a1,n
a21 a22 · · · a2,n
...

...
...

am,1 am,2 · · · am,n

 , b =


b1
b2
...
bm

 , and x =


x1
x2
...
xn


• The matrix A is called the coefficient matrix of the system.

• The m× (n+ 1) matrix (A|b) is called the augmented matrix of the system Ax = b.

• A solution to the system is an n-tuple c =


c1
c2
...
cn

 ∈ Fn such that Ac = b.

• The set of all solutions to the system is called the solution set of the system.

• The system is said to be consistent if its solution set is nonempty. Otherwise, the
system is said to be inconsistent.

• The system is said to be homogeneous if the b = 0. Otherwise, the system is said to be
inhomogeneous.

• The system Ax = 0 is said to be the homogeneous system corresponding to the system
Ax = b.
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• We often denote the solution set to Ax = b by K and the solution set to Ax = 0 by
KH .

Theorem 3.11. Let A ∈ Mm×n(F) and consider the homogeneous system Ax = 0. The
solution set KH to Ax = 0 is a subspace of Fn and dimKH = n− rank(A).

Remark 19. Let KH be the solution set to Ax = 0. Then

1. KH 6= ∅. Indeed, 0 ∈ KH is the trivial solution of Ax = 0.

2. KH = {0} if and only if rank(A) = n. in this case, we say the matrix A is of full
column rank.

3. If m < n, then rank(A) ≤ m < n by theorem 3.7, so the system Ax = 0 has a non-zero
solution. In other words a homogeneous system of linear equations with more unknowns
than equations has a non-zero solution.

Theorem 3.12 Given A ∈ Mm×n(F) and b ∈ Fm, let

K = {X ∈ Fn|Ax = b} and KH = {x ∈ Fn|Ax = 0}.

Then for any solution c to Ax = b (e.g. c ∈ K) we have

K = c+KH = {c+ k|k ∈ KH}

Hence if Ax = b is consistent, then its solution set K is a coset of the solution set of its
corresponding homogeneous system KH .

Theorem 3.13 (Invertible Matrix Theorem Part 4). Let A be an n × n matrix. Then the
following are equivalent:

1. A is invertible.

2. For some b ∈ Fm, the equation Ax = b has a unique solution.

3. For all b ∈ Fm, the equation Ax = b has a unique solution.

Theorem 3.14. Let Ax = b be a system of linear equations. Then the system is consistent
if and only if rank(A) = rank(A|b).

Definition 36. Two systems of linear equation are said to be equivalent if they have the
same solution set.

Theorem 3.15. Let Ax = b be a system of m linear equations in n unknowns and let C be
a m×m invertible matrix. Then the system (CA)x = Cb is equivalent to Ax = b.

Corollary 3.15.1. Let Ax = b be a system of m linear equations in n unknowns. If
(A|b)  (A′|b′) via a sequence of a finite number of elementary row operations, then the
system A′x = b′ is equivalent to the system Ax = b.

Definition 37. A matrix is said to be in reduced row echelon form (RREF) if the following
four conditions are met:
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1. Non-zero rows (if any) are at the top of the matrix and zero rows (if any) are at the
bottom.

2. The first non-zero entry in each non-zero row is 1, called a leading one.

3. The leading one in a non-zero row is the only non-zero entry in its column.

4. The leading one in each non-zero row is to the right of the leading one in any row above
it.

Every matrix can be transformed into a matrix in RREF via a finite sequence of elementary
row operations. We call such a transformation a row reduction. Gaussian Elimination is an
efficient algorithm to row reduce any matrix.

Gaussian Elimination to Row Reduce a Non-zero Matrix into RREF

Suppose we wish to row reduce the matrix A ∈ Mm×n.

Step 1 In the leftmost non-zero column, use at most one type-1 and at most one type-2 ele-
mentary row operation to get a 1 in the first row. (This will be a leading one.)

Step 2 By means of at most (m − 1) type-3 elementary row operations using the first row,
create zeroes in all the remaining entries of the leftmost non-zero column, e.g. below
the leading one created in step 1.

Step 3 Consider the submatrix one column to the right and one row below the leading one we
just obtained. Use at most one type-1 and at most one type-2 elementary row operation
to get a 1 at the top of the first non-zero columns of this submatrix. (This will be a
leading one.)

Step 4 Use elementary type-3 row operations to obtain zeroes below the 1 created in step 3.
(Do not create zeroes above the leading one now; we do this later.)

Step 5 Repeat steps 3-4 until no non-zero rows remain. This completes the forward phase.

Step 6 Now we will create zeroes above the leading ones. Working backwards, beginning with
the last non-zero row, use type-3 row operations to create zeroes above the leading one.

Step 7 Repeat step 6 with the previous (second-to-last, then third-to-last, etc.) leading one
until it has been performed on every non-zero row except the first. This completes the
backward phase, and at this point the matrix should be in RREF.

Theorem 3.16 Gaussian elimination transforms any matrix into RREF.

Definition 38. Let B be the RREF of the coefficient matrix A of the system of linear
equations Ax = b. If the j-th column of B does not contain a leading one, then we call xj a
free variable.

Remark 20. Let B be the RREF of the coefficient matrix A of the system of linear equations
Ax = b. Then
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1. rank(A) = rank(B) =number of leading ones in B =number of non-zero rows in B.

2. Number of free variable= n−number of leading ones= n− rank(A)

Algorithm for Solving a System of Linear Equations. To solve the system Ax = b
for A ∈ Mm×n(F) and b ∈ Fm, follow these steps:

Step 1 Write the augmented matrix of the system (A|b)

Step 2 Use elementary row operations to row reduce the augmented matrix into RREF (A′|b′).
E.g. use Gaussian elimination.

Step 3 Write the system of linear equations corresponding to the RREF.

Step 4 If the system contains an equation of the form 0 = 1, then stop as the system is
inconsistent.

Step 5 Otherwise assign parametric values t1, . . . , tn − r to the free variables in the system,
then solve the remaining variables in terms of the parameters. Here r denotes the
number of non-zero rows in A′ or the number of leading zeroes.

Step 6 Reorganize the equations from the previous step as a vector equation in the form x =
x0 + t1u1 + · · ·+ tn−run−r.

Step 7 The solution set to Ax = b is the set

K = {x0 + t1u1 + · · ·+ tn−run0r|t1, . . . , tn−r ∈ F} = x0 + span{u1, . . . , un−r}

Notice if the solution set to K is the coset x0 + span{u1, . . . , un−r}, then the solution
set to KH is span{u1, . . . , un−r}.

Theorem 3.17 Let (A|b) be the augmented matrix of a consistent system of m linear equa-
tions in n variables. Suppose the RREF of (A|b) has r non-zero rows. If the general solution
to Ax = b obtained by the algorithm outlined above is of the form

x = x0 + t1u1 + · · ·+ tn−run−r t1, . . . , tn−r ∈ F

then x0 ∈ Fn is a solution to the Ax = b and {u1, . . . , un−r} is a basis for the solution set of
the corresponding homogeneous system.

Theorem 3.18 The RREF of a matrix is unique.

Week 10.

Definition 39. Let A ∈ Mn×n(F). We define the determinant of A, det(A) or |A|, as
follows:

• For n = 1, det(A)
def
= A11
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• For n ≥ 2, det(A) =
n∑
i=1

(−1)i+1Ai1 · det(Ãi1), where Ãi1 denotes the (n− 1)× (n− 1)

matrix obtained from A by deleting row i and column 1.

Remarks.

• The above definition of determinants is called cofactor expansion along the first column.

• More generally, if A is an n×n matrix with n > 1, then Ãij denotes the (n−1)×(n−1)
matrix obtained from A by deleting row i and column j.

• The scalar (−1)i+j det(Ãij) is called the cofactor of entry A in row i, column j.

• The recursive definition of determinants expresses A as the sum of entries in the first
column multiplied by their corresponding cofactors.

Theorem 4.1 Let A ∈ M2×2. Then A is invertible if and only if det(A) 6= 0. Moreover, if
A is invertibl, then

A−1 =
1

det(A)

[
A22 −A12

−A21 A11

]
Example 48 For all n ≥ 1, det(In) = 1.

Lemma 10. If A ∈ Mn×n(F) is upper-triangular, then det(A) is equal to the product of its
entries along the main diagonal. That is,

if A =


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

 then det(A) =
n∏
i=1

aii

Lemma 11. If A ∈ Mn×n and A has a row of zeros, then det(A) = 0.

Theorem 4.2. The det mapping is “linear in each row.” That is, if we fix n ≥ 1, 1 ≤ i ≤ n
and a1, . . . , ai−1, ai+1, . . . , an ∈ Fn, then for all b, c ∈ Fn and α ∈ F,∣∣∣∣∣∣∣∣∣∣∣

a1
...

b+ αc
...
an

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

a1
...
b
...
an

∣∣∣∣∣∣∣∣∣∣∣
+ α

∣∣∣∣∣∣∣∣∣∣∣

a1
...
c
...
an

∣∣∣∣∣∣∣∣∣∣∣
where b+ αc, b, and c are inserted in row i.

Theorem 4.3 (Determinant after a type 2 elementary row operation). Let A ∈ Mn×n(F)
and B be the matrix obtained from A by multiplying a row of A by a scalar c. Then det(B) =
c det(A).
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Lemma 12. If a square matrix A has two identical rows, then det(A) = 0.

Theorem 4.4 (Determinant after a type 1 elementary row operation). Let A ∈ Mn×n(F)
and suppose A

Ri↔Rj−−−−→ B. Then det(B) = − det(A).

Theorem 4.5 (Determinant after a type 3 elementary row operation). Let A ∈ Mn×n(F)
and suppose A

Ri←Ri+cRj−−−−−−−→ B. Then det(B) = det(A).

Corollary 4.5.1. Let E be an elementary matrix obtained from In by an elementary row
operation. Then

1. If E is obtained by a type 1 row operation det(E) = −1.

2. If E is obtained by a type 2 row operation with scalar c 6= 0, det(E) = c.

3. If E is obtained by a type 3 row operation, det(E) = 1.

In all cases, det(E) 6= 0.

Corollary 4.5.2. Let E be an elementary matrix obtained from In by an elementary row
operation. Then

1. det(ET ) = det(E).

2. det(E−1) = 1
det(E)

Theorem 4.6. Let E be an n× n elementary matrix and A ∈ Mn×n(F). Then det(EA) =
det(E) det(A).

Corollary 4.6.1. Let A ∈ Mn×n and E1, . . . , Ek be elementary matrices. Then

1. det(E1E2 · · ·EkA) = det(E1) det(E2) · · · det(Ek) det(A).

2. det(E1E2 · · ·Ek) = det(E1) det(E2) · · · det(Ek)

Theorem 4.7 (Invertible Matrix Theorem part 5). Let A ∈ Mn×n(F). Then A is invertible
if and only if det(A) 6= 0.

Corollary 4.7.1. Let A ∈ Mn×n(F). If rank(A) < n, then det(A) = 0.

Theorem 4.8. Let A,B ∈ Mn×n(F). Then det(AB) = det(A) det(B) = det(BA).

Theorem 4.9. Let A ∈ Mn×n(F). Then det(A) = det(AT ).

Corollary 4.9.1. Suppose A ∈ Mn×n(F). If B is obtained from A by swapping to columns,
then det(B) = − det(A).

Theorem 4.10. The determinant of A can be evaluated by cofactor expansion along any
column. That, for any fixed 1 ≤ i ≤ n, we have

det(A) =
n∑
i=1

(−1)i+jAij · det(Ãij) =
n∑
i=1

Aij ·

(−1)i+j det(Ãij)︸ ︷︷ ︸
cofactor A at i, j
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Corollary 4.10.1. The determinant of A can be evaluated by cofactor expansion along any
row. That is, for any fixed 1 ≤ i ≤ n, we have

det(A) =
n∑
j=1

(−1)i+jAij · det(Ãij) =
n∑
j=1

Aij ·

(−1)i+j det(Ãij)︸ ︷︷ ︸
cofactor A at i, j


The following is optional, up until the start of week 11

Lemma 13. Suppose A ∈ Mn×n(F) and let A’s columns be a1, . . . , an. Fix 1 ≤ i, j ≤ n and
let B be the matrix obtained from A by replacing column i with ej. That is,
A =

[
a1 · · · ai−1 ai ai+1 · · · an

]
and B =

[
a1 · · · ai−1 ej ai+1 · · · an

]
. Then

det(B) = (−1)i+j det(Ãji)

Lemma 14. Suppose C ∈ Mn×n(F), and let its entry at row i column j be Cij. Fix
1 ≤ i, j ≤ n and let Xij be the n × n matrix obtained from In by replacing column i with
Colj(C). That is, Xij =

[
e1 · · · ei−1 Colj(C) ei+1 · · · en

]
. Then det(Xij) = Cij.

Theorem 4.11 (Formula for A−1). Suppose A ∈ Mn×n(F) and A is invertible. Then
A−1 = 1

det(A)
Q where Q is the n×n matrix whose row i, column j entry (i.e. Qij) is the row

j, column i cofactor of A (for all i and j). That is,

Qij = (−1)i+j det(Ãji)

Corollary 4.11.1. Suppose A ∈ Mn×n(Q) and suppose that every entry of A is an integer.
If | det(A)| = 1, then (A is invertible and) every entry of A−1 is also an integer.

Theorem 4.12 (Leibniz Expansion). If A ∈ Mn×n(F) then

det(A) =
∑
σ

sgn(σ)A1σ(1)A2σ(2) · · ·Anσ(n)

where the sum is over all n element permutations σ of {1, . . . , n}, σ(i) denotes the ith element
of the permutation σ (e.g. if σ = {2, 1, 3}, then σ(2) = 1), and sgn(σ) = +1 if the parity
of σ is even, i.e. σ is obtained from the set {1, . . . , n} via an even number of swaps, and
sgn(σ) = −1 if the parity of σ is odd, i.e. σ is obtained from the set {1, . . . , n} via an odd
number of swaps.

Week 11.

Definition 40. Let A ∈ Mn×n(F).

• A nonzero vector v ∈ Fn is called an eigenvector of A if there exists a scalar λ ∈ F such
that Av = λv. Such a λ is called the eigenvalue of A corresponding to the eigenvector
v and (λ, v) is called an eigenpair of the matrix A.
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• If λ ∈ F is an eigenvalue of A, the set

Eλ = {eigenvectors of A corresponding to λ} ∪ {0}
= {v ∈ Fn|Av = λv}
= {v ∈ Fn|(A− λIn)v = 0} = N (A− λIn)

is called the eigenspace of A corresponding to λ.

Remark 22. Let A ∈ Mn×n and λ ∈ F be an eigenvalue of A. From the above definitions,

1. A vector v ∈ Fn is an eigenvector of A corresponding to the eigenvalue λ if and only if
v is a non-zero solution to the linear system (A− λIn)v = 0.

2. Since Eλ = N (A − λIn), Eλ is a subspace of Fn. So dim(Eλ) ≤ n. Also, since Eλ
contains at least one eigenvector, Eλ 6= {0}. Hence, 1 ≤ dim(Eλ) ≤ n.

Theorem 5.1. Let A ∈ Mn×n(F). Then a scalar λ is an eigenvalue of A if and only if
det(A− λIn) = 0

Definition 41. Let A ∈ Mn×n(F). The polynomial of variable t, pA(t)
def
= det(A − tIn) is

called the characteristic polynomial of A. That is

pA(t) = det(A− tI − n) =

∣∣∣∣∣∣∣∣∣
a11 − t a12 · · · a1n
a21 a22 − t · · · a2n
...

...
. . .

...
an1 an2 · · · ann − t

∣∣∣∣∣∣∣∣∣
Theorem 5.2 (Properties of Characteristic Polynomials). Let A ∈ Mn×n(F). Denote

tr(A) =
n∑
i=1

aii, called the trace of A.

1. Then

pA(t) = (−1)ntn + (−1)n−1tr(A)tn−1 + cn−2t
n−2 + · · ·+ c1t+ det(A)

That is, pA(t) is a polynomial of degree n with leading coefficient (−1)n and constant
coefficient det(A). Also, the coefficient of tn−1 in pA(t) is (−1)n−1tr(A). In addition,
the matrix A has at most n distinct eigenvalues.

2. If B ∈ Mn×n(F) is similar to A, then pB(t) = pA(t). (Recall: Let A,B ∈ Mn×n(F).
The matrix B is said to be similar to A if there exists an invertible matrix P such that
B = P−1AP .)

Nomenclature. We call a linear transformation T : V → V from a vector space V to itself
a linear operator.

Definition 42.
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• Let T : V → V be a linear operator on a vector space V . A scalar λ ∈ F if called
an eigenvalue of the linear operator T if there exists a non-zero vector v ∈ V such
that T (v) = λv. Such a vector v is called an eigenvector of T corresponding to the
eigenvalue λ and (λ, v) is called an eigenpair of the linear operator T .

• Let T : V → V be a linear operator on an n-dimensional vector space V with or-
dered basis β. We defined the characteristic polynomial of T to be the characteristic
polynomial of A = [T ]β

Theorem 5.3. Let T : V → V be a linear operator on a vector space V . Then

1. A scalar λ ∈ F is an eigenvalue of T if and only if (T − λIdV ) is not invertible.

2. Let λ be an eigenvalue of T . A vector v ∈ V is an eigenvector of T corresponding to λ
if and only if v 6= 0 and v ∈ N (T − λIdV ).

Theorem 5.4. Let V be an n-dimensional vector space with ordered basis β. Then the
characteristic polynomial of the linear operator T does not depend on the chosen basis. That
is, if α is another ordered basis for V , the characteristic polynomial of T (and so of [T ]β) is
also the characteristic polynomial of [T ]α.

Definition 43.

• A linear operator T on a finite-dimensional vector space V is said to be diagonalizable
if there is an ordered basis β for V such that [T ]β is a diagonal matrix.

• A square matrix A is said to be diagonalizable if LA is diagonalizable.

Theorem 5.5. Let T : V → V be a linear operator on an n-dimensional vector space
V . Then T is diagonalizable if and only if there is an ordered basis β for V consisting of
eigenvectors of T . Moreover, if T is diagonalizable and β = {v1, . . . , vn} is an ordered basis
for V consisting of eigenvectors of T , then the diagonal entries of [T ]β are eigenvalues of T
corresponding to the eigenvectors v1, . . . , vn.

Theorem 5.6. Let A ∈ Mn×n(F). Then A is diagonalizable if and only if there is an ordered
basis β for Fn consisting of eigenvectors of A. Moreover, if A is diagonalizable and β is an
ordered basis for Fn consisting of eigenvectors of A, then [LA]β is a diagonal matrix whose
diagonal entries are eigenvalues of A corresponding to the vectors in β.

Theorem 5.7 (Diagonalizable Matrices). Let A ∈ Mn×n(F). Then A is diagonalizable if and
only if there exists an invertible matrix P and a diagonal matrix D such that P−1AP = D.

Remark 26.

1. From the proof of theorem 5.7, if there exists and invertible matrix P and a diagonal
matrix D such that P−1AP = D, then the columns of P are eigenvectors of A and
the diagonal entries of D are the eigenvalues of A corresponding to the columns of P .
Note that this factorization is not unique. Even if we sort the entries of D in a given
order to ensure D is unique, P is still not.
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2. If A ∈ Mn×n(F) is diagonalizable with invertible matrix P and diagonal matrix D such
that P−1AP = D ⇐⇒ A = PDP−1, then by induction we can prove

Am = PDmP−1

for all m ≥ 1. Note further that if D = diag(λ1, . . . , λn), then Dm = diag(λm1 , . . . , λ
m
n ).

Week 12.

Theorem 5.8. Let V be a vector space and T : V → V be linear. Let v1, . . . , vk be
eigenvectors of T , with eigenvalues λ1, . . . , λk respectively. Assume that these eigenvalues
are distinct, i.e. ∀i 6= j, λi 6= λj. Then Eλi ∩ Eλj = {0} for all 1 ≤ i 6= j ≤ k, and
{v1, . . . , vk} is linearly independent.

Corollary 5.8.1

1. Let T : V → V be linear on an n-dimensional vector space V . If T has n distinct
eigenvalues, then T is diagonalizable.

2. Let A ∈ Mn×n(F). If A has n distinct eigenvalues, A is diagonalizable.

Remark 27 The converse of corollary 5.8.1 is not true, for instance take A = In which has
only one eigenvalue λ = 1.

Theorem 5.9. Let T : V → V be linear and let λ1, . . . , λk be distinct eigenvalues of T . For
each i = 1, . . . , k, Let Si be a finite, linearly independent subset of the eigenspace Eλi. Then

1. Si ∩ Sj = ∅, ∀1 ≤ i 6= j ≤ k.

2. The set S =
k⋃
i=1

= S1 ∪ S2 ∪ · · · ∪ Sk is a linearly independent subset of V and

|S| =
k∑
i=1

|Si|.

Definition 44. A polynomial f(t) ∈ F[t] splits over F is there are scalars c, a1, . . . , an (not
necessarily distinct) in such that f(t) = c(t− a1)(t− a2) · · · (t− an).

Theorem 5.10. Let V be a finite-dimensional vector space. The characteristic polynomial
of any diagonalizable linear operator T : V → V splits.

Remark. The converse of theorem 5.10 is not true.

Definition 45. Let V be a finite dimensional vector space and T : V → V be linear. Let λ
be an eigenvalue of T and p(t) be the characteristic polynomial of T .

• The algebraic multiplicity of λ is the largest positive integer k for which (t − λ)k is a
factor of p(t).
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• The geometric multiplicity of λ is the dimension of the eigenspace Eλ.

Theorem 5.11. Let T : V → V be a linear operator on a finite dimensional vector space V ,
and let λ be an eigenvalue of T having algebraic multiplicity mλ. Then 1 ≤ dim(Eλ) ≤ mλ.

Theorem 5.12. Let T : V → V be a linear operator on a finite dimensional vector space
V . Let λ1, . . . , λk be all distinct eigenvalues of T and let m1, . . . ,mk be their multiplicities.
Then T is diagonalizable if and only if

1. pT (t) splits, i.e. pT (t) = (−1)n(t− λ1)m1(t− λ2)m2 · · · (t− λk)mk and

2. For each i = 1, . . . , k, dim(Eλi) = mi.

Remark 28. The proof of theorem 5.12 provides a procedure to find the diagonalized fac-
torization of A if it exists.

Step 1 Computer the characteristic polynomial pA(t). If pA(t) does not split, A is not diago-
nalizable.

Step 2 Find all eigenvalues of A (i.e. roots of pA(t)). Suppose λ1, . . . , λk are all distinct
eigenvalues of A and mi is the algebraic multiplicity of λi for all 1 ≤ i ≤ k.

Step 3 Find a basis for each eigenspace Eλi for all 1 ≤ i ≤ k. If there is a 1 ≤ j ≤ k such
that dim(Ej) 6= mj, then A is not diagonalizable. Otherwise, A is diagonalizable. In

particular, β =
⋃k
i=1 βi = β1∪· · ·∪βk is an ordered basis for V , where for all 1 ≤ j ≤ k

βj is an ordered basis for Eλj . Hence, if we let P be the square matrix whose columns
are vectors from β and let D be the diagonal matrix whose entries are the eigenvalues
of A corresponding to the columns of P , then A = PDP−1, as desired.

Definition 46. Let A ∈ Mn×n(F) and f(t) = aN t
N + · · ·+ a1t+ a0 ∈ F[t]. Define

f(A)
def
= aNA

N + · · ·+ a1A+ a0In ∈ Mn×n(F)

Lemma 15. Let f, g ∈ F[t] and A ∈ Mn×n(F). Recall (fg)(t)
def
= f(t)g(t) ∈ F[t]. Then

• (f + g)(A) = f(A) + g(A).

• (cf)(A) = cf(A) for c ∈ F.

• (fg)(A) = f(A)g(A).

• f(A)g(A) = g(A)f(A).

Lemma 16. Suppose A ∈ Mn×n(F). Then there exists a non-zero polynomial f ∈ F[t] such
that f(A) = 0.

Definition 47. A field F is called algebraically closed if every polynomial in F[t] of degree
at least 1 has a root in F.
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Lemma (unnamed). Let A ∈ Mn×n(F) be an upper-triangular matrix. Then pA(A) = 0
where pA(t) is the characteristic polynomial of A.

Theorem 5.13 (Cayley-Hamilton Theorem). Let F be algebraically closed. For every A ∈
Mn×n(F), we have pA(A) = 0, where pA(t) is the characteristic polynomial of A.

Theorem 5.14 Let F be algebraically closed. Every A ∈ Mn×n(F) is similar to an upper-
triangular matrix.
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