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Unit 1 Topology and Real Analysis

Week 1 Normed Vector Spaces

1.1 Normed Vector Spaces

Definition. Normed Vector Space (NVS): A normed vector space is a vector space V
over R equipped with a function ‖ ‖ : V → [0,∞), called the norm on V , such that

1. ‖v‖ = 0 ⇐⇒ v = 0.

2. For all α ∈ R and v ∈ V , ‖αv‖ = |α| · ‖v‖.

3. (Triangle Inequality) For all u, v ∈ V , ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Note: We often denote a normed vector space by the pair (V, ‖ · ‖), where the first element
is the vector space and the second in the norm function. Geometrically,

• ‖v‖ denotes “the length of v" or “the distance between v and 0".

• ‖v − w‖ denotes “the distance between v and w".

Note. Motivation of NVS: The field of real analysis is the study of objects relating to
the real numbers, e.g. R, Rn, RR, etc. However, it is often preferable to use “nicer" elements
such as Q. NVSs allow us to measure distance, therefore to measure error, therefore to make
approximations.

Example: (R, | · |) is an NVS, so is (R, ‖ · ‖), ‖a‖ = 3|a|.

Definition. p Norm: Let V = Rn. For p ∈ Z≥1 and v = (v1, . . . , vn) ∈ Rn,

‖v‖p =

(
n∑
i=1

|vi|p
)1/p

is a norm on Rn, therefore (Rn, ‖ · ‖p) is an NVS.

Note. Euclidean Norm: A p norm with p = 2, i.e. the square root of the sum of the
squares of components, is called the Euclidean norm, and is the usual measure of distance
in Rn. Unless stated otherwise, always assume that Rn is equipped with ‖ · ‖2.

Example. Infinity Norm: When p = ∞, we have ‖v‖∞ = sup{|v1|, . . . , |vn|}. This is a
norm on Rn.

Example. RN: Note RN = {(an)∞n=1 : ai ∈ R} is the vector space of real sequences. Let
v = (v1, v2, . . .) ∈ V be a sequence, define the p norm

‖v‖p =

(
∞∑
i=1

|vi|p
)1/p

1 Topology and Real Analysis 4 1, Normed Vector Spaces
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and
‖v‖∞ = sup{|v1|, |v2|, . . .}

While these are not norms, e.g. when the sequence diverges (note the norm must be a
non-negative real number), we can find subspaces for which these are norms. E.g.

• `p = {v ∈ RN : ‖v‖p <∞} then (`p, ‖ · ‖p) is an NVS.

• `∞ = {v ∈ RN : ‖v‖∞ <∞} then (`∞, ‖ · ‖∞) is an NVS.

Example. C([a, b]): Note C([a, b]) = {f : [a, b] → R : f is continuous} is the set of
continuous, real functions defined on [a, b]. Again we define the p norm:

f ∈ C([a, b]), ‖f‖p =
(∫ b

a

|f(x)|pdx
)1/p

and
f ∈ C([a, b]), ‖f‖∞ = sup{|f(x)| : x ∈ [a, b]} EVT

= max{|f(x)| : x ∈ [a, b]}
These each turn C([a, b]) into a NVS. The latter norm is called the uniform norm and, unless
otherwise stated, we equip C([a, b]) with the uniform norm ‖ · ‖∞.

1.2 Convergence

Notation: By a sequence in V we always means (an)∞n=1 = (a1, a2, . . .) where each ai ∈ V .
We will abusively use the shorthand to denote this by (an) ⊆ V .

Definition. Convergence: Let V be a NVS and (an) ⊆ V . We say (an) converges to
a ∈ V , written an → a, if for all ε > 0, there is an N ∈ N such that ‖an − a‖ < ε for all
n ≥ N .

Definition. Divergence: Let V be a NVS and (an) ⊆ V . We say (an) diverges, if for all
a ∈ V , an 6→ a ((an) does not converge to a).

Example: Let (an) ⊆ `∞ with an = (1, 1
2
, . . . , 1

n
, 0, 0, . . .) and a = (1, 1

2
, 1
3
, . . .). Then

an → a. Let (bn) ⊆ `∞ with bn = (1, 1, . . . , 1︸ ︷︷ ︸
n

, 0, 0, . . .) and b = (1, 1, 1, . . .). Then bn 6→ b.

Definition. Boundedness: Let V be a NVS. (an) ⊆ V , A ⊆ V .

• We say A is bounded if there is an M > 0 such that ‖a‖ ≤M for all a ∈ A.

• We say (an) is bounded if {a1, a2, a3, . . .} is bounded. I.e. ∃M > 0, ∀n ∈ Z≥1, ‖an‖ ≤M)

Proposition: Let V be an NVS, (an) ⊆ V . If (an) is convergent then (an) is bounded.

Proof. Suppose an → a ∈ V . Let N be such that ‖an − a‖ < 1 for all n ≥ N . So for n ≥ N

‖an‖ = ‖an − a+ a‖ T.I.
= ‖an − a‖+ ‖a‖ < 1 + ‖a‖ ∈ V

Taking M = max{‖a1‖, . . . , ‖an−1‖, 1 + ‖a‖}, we have ‖an‖ ≤M for all n ∈ N.

1 Topology and Real Analysis 5 1, Normed Vector Spaces
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Proposition. Limit Laws: Let V be an NVS and (an), (bn) ⊆ V with an → a and bn → b.
Then

• an + bn → a+ b.

• For α ∈ R, αan → αa.

1.3 Completeness

Definition. Cauchy Sequence: Let V be an NVS and (an) ⊆ V . (an) is Cauchy if for all
ε > 0 there is an N ∈ N such that ‖an − am‖ < ε for all n,m ≥ N .

Proposition: Let V be an NVS. If (an) ⊆ V is convergent then (an) is Cauchy.

Proof. Let ε > 0. There is N ∈ N and a ∈ V such that ‖an − a‖ < ε
2
for all N ≥ N . So for

all n,m ≥ N ,
‖an − am‖ ≤ ‖an − a‖+ ‖am − a‖ <

ε

2
+
ε

2
= ε

Example: Define the subspace of `∞, C00 = {(xn) ∈ `∞ : ∃N, ∀n ≥ N, xn = 0} to be the
vector space of all convergent sequences with 0 tails. Note that (C00, ‖ ·‖∞) is a NVS. Define
(an) ⊆ C00 as an = (1, 1

2
, . . . , 1

n
, 0, 0, . . .) and a = (1, 1

2
, 1
3
, . . .) /∈ C00.

We know an → a in `∞, therefore (an) ⊆ `∞ is Cauchy, however, this implies (an) ⊆ C00 is
Cauchy. We know limits are unique, so since C00 is a subspace of `∞ and a /∈ C00, (an) ⊆ C00

diverges. Therefore, convergence implies Cauchy, but the converse is not true.

Definition. Completeness: Let V be a NVS. We say A ⊆ V is complete if whenever
(an) ⊆ A is Cauchy, then for some a ∈ A, an → A.

Definition. Banach Space: Let V be a NVS. We call V a Banach space if V is complete.
E.g. (R, | · |) is a Banach space.

Proposition: (Rn, ‖ · ‖∞) is a Banach space.

Proof. Suppose (ak) ⊆ Rn is Cauchy. Suppose ak = (a
(1)
k , a

(2)
k , . . . , a

(n)
k ) where the superscript

marks the component of the tuple. Let ε > 0, there is an N ∈ N such that ‖ak − a`‖∞ < ε
for all k, ` ≥ N . Therefore, for each 1 ≤ i ≤ n,

|a(i)k − a
(i)
` | ≤ ‖ak − a`‖∞ < ε.

i.e. (a(i)k )∞k=1 ⊆ R is a Cauchy sequence. Now R is known to be complete, hence suppose for
all 1 ≤ i ≤ n a

(i)
k → bi.

Now let b = (b1, . . . , bn). Let (a different) ε > 0. For each 1 ≤ i ≤ n, there exists Ni ∈ N
such that for all k ≥ Ni, |a(i)k − bi| < ε. Now let N = max{N1, N2, . . . , Nn}, for all k ≥ N ,

‖ak − b‖∞ = max{|a(i)k − bi| : 1 ≤ i ≤ n} < ε

Hence, (ak) must converge, therefore (Rn, ‖ · ‖∞) is a Banach space.

1 Topology and Real Analysis 6 1, Normed Vector Spaces
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Remark: Let v = (v1, v2, . . . , vn) ∈ Rn and 1 ≤ p <∞.

1. ‖v‖pp = |v1|p + · · ·+ |vn|p ≤ n‖v‖p∞.

2. ‖v‖∞ ≤ |v1|p + · · ·+ |vn|p = ‖v‖pp.

3. ‖v‖p ≤ p
√
n‖v‖∞ and ‖v‖∞ ≤ ‖v‖p.

Proposition: (Rn, ‖ · ‖p) is a Banach space for 1 ≤ p <∞.

Proof. Suppose (ak) ⊆ Rn is Cauchy (with respect to ‖ · ‖p). Therefore, there is an N ∈ N
such that for all k, ` ≥ N ,

‖ak − a`‖∞ ≤ ‖ak − a`‖p < ε

Therefore (ak) is Cauchy with respect to ‖ · ‖∞. This means (ak) converges to some a ∈ Rn

with respect to ‖ · ‖∞ since (Rn, ‖ · ‖∞) is a Banach space. Now let ε > 0 and pick an K
such that if k ≥ K, then ‖ak − a‖∞ < ε

p√n , so for k ≥ K

‖ak − a‖p ≤ p
√
n‖ak − a‖∞ < ε

and therefore (Rn, ‖ · ‖p) is a Banach space.

Proposition: `∞ is a Banach space.

Proof. Recall `∞ is the space of bounded sequences. Let (an) ⊆ `∞ be Cauchy. We write this
sequence as an = (a

(1)
n , a

(2)
n , a

(3)
n , . . .), where a(i)n ∈ R is the ith element of the nth sequence.

Let ε > 0. There is an N ∈ N such that ‖an − am‖∞ < ε for all n,m ≥ N . For each fixed i,

|a(i)n − a(i)m | ≤ sup{a(i)n − a(i)m : i ∈ N} = ‖an − am‖∞ < ε

Hence each sequence (a
(i)
n ) (ranging on n) is Cauchy. By the completeness of R, there is a

bi ∈ R such that a(i)n → bi (as n→∞) for each i ∈ N.

Let b = (b1, b2, b3, . . .) ∈ `∞. Let ε > 0. Now for some N ∈ N,

n,m ≥ N =⇒ |a(i)n − a(i)m | ≤ ‖an − am‖∞ < ε

for all i ∈ N. Now taking m → ∞, we have |a(i)n − bi| ≤ ε for all i ∈ N, and therefore
‖an − b‖∞ ≤ ε for all n ≥ N

Definition. Subsequence: A subsequence of (an) is a sequence (ank)
∞
k=1 such that n1 <

n2 < n3 < . . . .

Definition. Strongly Cauchy: A sequence (an) ⊆ V is said to be strongly-Cauchy if there

exists a convergent series
∞∑
n=1

εn of positive real numbers such that ||an+1 − an|| ≤ εn for all

n ∈ N.

1 Topology and Real Analysis 7 1, Normed Vector Spaces
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Week 2 Topology

2.1 Closed and Open Sets

Definition. Closed Set: Let V be a NVS. A subset C ⊆ V is said to be closed if whenever
(an) ⊆ C is such that whenever an → a ∈ V , then a ∈ C.

Definition. Open Set: Let V be a NVS. A subset U ⊆ V is said to be open if V \ U is
closed.

Definition. Topology: The collection {U ⊆ V : U is open} is called the topology on V .
The study of open and closed sets on a space is called topology.

Example: ∅, V ⊆ V are both closed sets (∅ is vacuously true), hence taking complements
they’re both open. [0, 1) ⊆ R is neither open nor closed since a sequence could converge to
1 and it is not open since a sequence could converge to 0.

Definition. Ball: For r > 0 and a ∈ V where V is a NVS. The closed ball of radius r
centred at a is Br(a) = {x ∈ V : ‖a− x‖ ≤ r}, this is a closed set (in particular, for V = R
Br(a) = [a−r, a+r]). The open ball of radius r centred at a is Br(a) = {x ∈ V : ‖a−x‖ < r},
this is an open set.

Proof. Proof Br(a) is a closed ball. Let (an) ⊆ Br(a) such that an → b ∈ V . By definition,
‖an− a‖ ≤ r for all n ∈ N. Since an → b, ‖an− a‖ → ‖b− a‖. Since ‖an− a‖ ≤ r and limits
preserve order (inequalities), ‖b− a‖ ≤ r, hence b ∈ Br(a) and so Br(a) is closed.

Remark: This leads to a similar closed set: {x ∈ V : ‖x − a‖ ≥ r} is closed. Note this
Br(a) is open.

Example: Where V = `∞ is the NVS, C0 = {(xn) ∈ `∞ : xn → 0} is closed.

Proof. Let (an) ⊆ C0 be such that an → a ∈ `∞. Let an = (a
(1)
n , a

(2)
n , . . .) for all n ∈ N.

Therefore, for all n ∈ N, lim
k→∞

a
(k)
n = 0.

Suppose a = (b1, b2, . . .). Let ε > 0. We can pick N1, N2 ∈ N such that, for all n ≥ N1,
‖an − a‖∞ < ε

2
and for all k ≥ N2, |a(k)N1

| < ε
2
. Now for k ≥ N2,

|bk| = |a(k)N1
− bk − a(k)N1

|

≤ |a(k)N1
− bk|+ |a(k)N1

|

≤ ‖aN1 − a‖∞ + |a(k)N1
| Since ‖ · ‖∞ is supremum over k

<
ε

2
+
ε

2
= ε

Hence, bk → 0 and so a = (b1, b2, . . .) ∈ C0, thereby making C0 closed.

Proposition. Standalone Definition of Openness: The following are equivalent for a
NVS V and U ⊆ V :

1 Topology and Real Analysis 8 2, Topology



MATH 247 Spring 2021: Notes Jacob Schnell

• U is open.

• For all a ∈ U , there exists an r > 0 such that Br(a) ⊆ U .

The logic follows that if U is closed at some point then taking a at that point, any positive
r contains points excluded in U .

Proof. ( =⇒ ) Assume U is open, hence V \ U is closed. For the sake of contradiction,
suppose ∃a ∈ U,@r > 0, Br(a) ⊆ U . For all n ∈ N, we can pick an ∈ B 1

n
(a) with an /∈ U .

Note that ‖an − a‖ < 1
n
, hence an → a. However (an) ⊆ V \ U which is closed, hence

a ∈ V \ U , this is a contradiction.

( ⇐= ) Assume for all a ∈ U , there is an r > 0 such that Br(a) ⊆ U . Let (an) ⊆ V \ U
with an → a ∈ V . For the sake of contradiction, suppose a ∈ U . Hence there is an r > 0
such that Br(a) ⊆ U . Since an → a, there is an N ∈ N such that ‖aN − a‖ < r. Therefore,
aN ∈ Br(a) ⊆ U and so aN ∈ U , a contradiction.

2.2 Closure and Interior

Proposition: Where V is a NVS, the following are true.

1. If {Uα}α∈I is a collection of open sets in V , then U =
⋃
α∈I

Uα is open. This is the union

of any finite or infinite number of open sets.

2. If {Cα}α∈I is a collection of closed sets in V , then C =
⋂
α∈I

Cα is closed. This is the

intersection of any finite or infinite number of closed sets.

3. If U1, . . . , Un ⊆ V are open, then U = U1∩· · ·∩Un is open. This is a finite intersection.

4. If C1, . . . , Cn ⊆ V are closed, then U = U1 ∪ · · · ∪ Un is closed. This is a finite union.

Proof. (1) Let a ∈
⋃
α∈I

Uα. So there exists an α ∈ I such that a ∈ Uα, however since Uα is

open, there is an r > 0 such that Br(a) ⊆ Uα ⊆
⋃
α∈I

Uα. Hence
⋃
α∈I

Uα is an open set by the

equivalent definition of openness.

(2) Notice
⋂
α∈I

Cα is closed if and only if V \
⋂
α∈I

Cα =
⋃
α∈I

(V \ Cα) is open (by De Morgan’s

law). We know by (1) that this is set is open since each of V \ Cα is open, hence
⋂
α∈I

Cα is

closed.

(3) Let a ∈ U1 ∩ · · · ∩Un. For all 1 ≤ i ≤ n, there is an ri > 0 such that Bri(a) ⊆ Ui. Hence
pick r = min{r1, . . . , rn}, hence Br(a) ⊆ Br1(a), . . . , Brn(a) and hence Br(a) ⊆ U1∩· · ·∩Un.
By the equivalent definition for openness, U1 ∩ · · · ∩ Un is open.

(4) Notice C1 ∪ · · · ∪Cn is closed if and only if V \ (C1 ∪ · · · ∪Cn) = (V \C1)∩ · · · ∩ (V \Cn)
is open (De Morgans’s law). We know by (3) this is true given each set in the intersection is
open.

1 Topology and Real Analysis 9 2, Topology
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Note: Notice the fact that the number of sets is finite in (3) and (4) is important as, for

instance,
∞⋂
n=1

(− 1
n
, 1
n
) = {0} is an intersection of infinitely many open sets, yielding a not

open (in fact closed) set. Similarly,
∞⋃
n=1

[0, 1− 1
n
] = [0, 1) is a union of closed sets yielding a

not open set.

Definition. Closure: The closure of a set A ⊆ V where V is a NVS is defined to be
A :=

⋂
A⊆C,C is closed

C.

Definition. Interior: The interior of a set A ⊆ V where V is a NVS is defined to be
Int(A) :=

⋃
U⊆A,U is open

U .

Remark: The idea is that A is the smallest closed set containing A and Int(A) is the largest
open set contained in A.

Definition. Limit Point: If A ⊆ V where V is a NVS, then a limit point of A is a ∈ V
such that there is a sequence (an) ⊆ A with an → a.

Definition. Interior Point: If A ⊆ V where V is a NVS, then an interior point of A is
a ∈ V such that there is an r > 0 where Br(a) ⊆ A.

Note: Notice this means every element and hence every interior point of a set A is a limit
point of A, however not every limit point is an interior point.

Proposition: For A ⊆ V where V is a NVS, (1) A = {limit points of A} and (2) Int(A) =
{interior points of A}.

Proof. (1) Let X = {limit points of A}. Let (an) ⊆ X be such that an → a ∈ V . For all
n ∈ N, there is a bn ∈ A such that ‖an − bn‖ < 1

n
since sequence in A can converge to any

point in X. This means

lim
n→∞

bn = lim
n→∞

bn − an + an = lim
n→∞

(bn − an) + lim
n→∞

an = 0 + a = a

since (bn) ⊆ A, and bn → a, a is a limit point, hence a ∈ X and so X is closed. X is a closed
set containing A, hence A ⊆ X.

Now let x ∈ X. Hence, there is a sequence (an) ⊆ A such that an → X. Now let C ⊆ V be a
closed set such that A ⊆ C. So (an) ⊆ C and since C is closed and an → x, x ∈ C. Therefore
each closed set containing A contains X, i.e. X ⊆ C and so X ⊆

⋂
A⊆C,C is closed

C = A or

A = X

(2) Let X = {interior points of A}. Let a ∈ Int(A). Notice that Int(A) ⊆ A, hence a ∈ A.
Further, notice Int(A) is open, hence there is an r > 0 such that Br(a) ⊆ Int(A) ⊆ A. This
means by definition, a is an interior point of A, hence Int(A) ⊆ X.

Now let x ∈ X. Since x is an interior point of A, there is an r > 0 such that Br(x) ⊆ A.
Necessarily, x ∈ Br(x). Therefore, for each x ∈ X, there is an open subset (ball) of A which
contains x. Since Int(A) is the union of all open subsets of A, Br(x) ⊆ Int(A) and hence
x ∈ Int(A). This implies X ⊆ Int(A) and therefore X = Int(A).
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Remark: Notice A is closed if and only if it contains all its limit points, hence A is closed
if and only if A = A. Similarly, by definition of a limit point and the equivalent definition
of openness, A is open if and only all its points are interior points, hence A is open if and
only if A = Int(A). Note also Int(A) ⊆ A ⊆ A.

2.3 Examples

Remark: Intuitively, the interior of A is all points in A which aren’t on a boundary and the
closure is all points on a in A or a boundary. For instance, with A = [0, 1), Int(A) = (0, 1),
A = [0, 1]. See start of module 2.3 for example in R2.

Example: Let A = {(an) ∈ `1 : an ∈ Q}. Then A = `1. For instance, let x = (x1, x2, . . .) ∈
`1 and let ε > 0. By the density of the rationals, for all n ∈ N, there is a yn ∈ Q such that

|xn− yn| < ε
2n
. Now let y = (y1, y2, . . .). So ‖x− y‖1 =

∞∑
n=1

|xn− yn| <
∞∑
n=1

ε
2n

= ε by the sum

of geometric series. Notice y is in fact in A since it is completely rational and given that
x − y converges (‖x − y‖1 < ∞) and x converges, we must have y converges. Since hence
`1 ⊆ A and therefore `1 = A.

Remark: This gives rise to a method of proof where if we can show find elements in A is
arbitrarily close to an element b, then there is a sequence (an) ⊆ A with an → b.

Example: Let V = `∞ be the NVS. Then C00 = C0 where C00 is the set of sequences which
have a tail of zeroes and C0 is the set of sequences converging to zero.

Clearly C00 ⊆ C0 and we know C0 is closed. So C00 ⊆ C0. Let x = (x1, x2, . . .) ∈ C0 and
let ε > 0. Since x → 0, there is an N ∈ N such that |xn| < ε for all n ≥ N . Now let
y = (x1, . . . , xN−1, 0, 0, . . .). Hence

‖x− y‖∞ = ‖(0, . . . , 0, xN , xN+1, . . . ‖∞ = sup{|xk| : k ≥ N} ≤ ε

2.4 More Properties

Remark: Note that if A ⊆ B then A ⊆ B and Int(A) ⊆ Int(B)

Proposition: Where V is a NVS and A,B ⊆ V :

1. A ∪B = A ∪B.

2. Int(A ∩B) = Int(A) ∩ Int(B).

3. A ∩B ⊆ A ∩B.

4. Int(A ∪B) ⊇ Int(A) ∪ Int(B).

Proof. (1) Since A ∪ B is closed and A ∪ B ⊆ A ∪ B, we have A ∪B ⊆ A ∪ B. Now since
A,B ⊆ A ∪B, we have that A,B ⊆ A ∪B. Therefore, A ∪B ⊆ A ∪B.
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(2) Notice A∩B ⊆ A,B so Int(A∩B) ⊆ Int(A), Int(B) therefore Int(A∩B) ⊆ Int(A)∩Int(B).
Now notice Int(A)∩ Int(B) ⊆ A,B so Int(A)∩ Int(B) ⊆ A∩B. Therefore Int(A)∩ Int(B) =
Int(Int(A) ∩ Int(B)) ⊆ Int(A ∩B) and thus Int(A ∩B) = Int(A) ∩ Int(B).

(3) Notice that A ∩B ⊆ A,B, so A ∩B ⊆ A,B therefore, A ∩B ⊆ A ∩B.

(4) Notice A,B ⊆ A ∪ B, so Int(A), Int(B) ⊆ Int(A ∪ B) and so Int(A) ∪ Int(B) ⊆ Int(A ∪
B).

Example: Here is a counterexample that A ∩B = A ∩ B: A = (0, 1), B = (1, 2). So
A ∩B = ∅ = ∅ and A ∩B = [0, 1] ∩ [1, 2] = {1}.

Here is a counterexample that Int(A ∪ B) = Int(A) ∪ Int(B): A = [0, 1], B = [1, 2]. So
Int(A ∪B) = (0, 2) and Int(A) ∪ Int(B) = (0, 1) ∪ (1, 2) = (1, 2) \ {1}.

Proposition: Let A ⊆ V where V is a NVS. Then (1) Int(V \ A) = V \ A and (2)
V \ A = V \ Int(A).

Proof. (1) Since V \ A ⊆ V \ A and V \ A is open, V \ A ⊆ Int(V \ A) by the largeness of
the interior. Now note that Int(V \ A) ⊆ V \ A, hence V \ Int(V \ A) ⊇ V \ (V \ A) = A.
So given V \ Int(V \ A) is closed, A ⊆ V \ Int(V \) by the smallness of the closure. Taking
complements, V \ A ⊇ Int(V \ A).

(2) By (1), Int(A) = Int(V \ (V \ A)) = V \ (V \ A), taking complements we get
V \ Int(A) = V \ A.

Definition. Boundary: For A ⊆ V where V is a NVS, the boundary of A is
∂(A) := A \ Int(A).

Proposition: For A ⊆ V where V is a NVS, (1) ∂(A) is closed and (2) A is closed if and
only if ∂(A) ⊆ A.

Proof. (1) Note ∂(A) = A \ Int(A) = A ∩ (V \ Int(A)) and A is closed and V \ Int(A) is
closed, hence their intersection is closed.

(2) ( =⇒ ) A is closed, hence A = A, thus ∂(A) ⊆ A = A. ( ⇐= ) Suppose ∂(A) ⊆ A.
Note ∂(A) = A \ Int(A), hence A = ∂(A) ∪ Int(A). Since ∂(A) ⊆ A and Int(A) ⊆ A, thus
A ⊆ A ⊆ A so A = A and so A is closed.

Week 3 Compactness

3.1 Compactness 1

Definition. Relatively Open (resp. Closed): Let V be a NVS. Let A,B ⊆ V . We say
B is relatively open (resp. closed) in A if there is an open (resp. closed) U ⊆ V such that
B = A ∩ U .
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Definition. Convergence Preserving: Let V and W be NVS’s and let A ⊆ V . A
function f : A → W is convergence preserving if for all (an) ⊆ A such that an → a ∈ A,
f(an)→ f(a).

Definition. Compact: Let V be a NVS. We say C ⊆ V is compact if every (an) ⊆ C has
a subsequence ank → a ∈ C.

Example: Every closed and bounded subset of Rn is compact. Note A is bounded if and
only if there is an M ∈ R such that ∀a ∈ A, ‖a‖ ≤M . Let (ak) ⊆ A. Note (ak) is bounded.
By A2 we know there is a subsequence (ak`) such that ak` → a ∈ Rn. Since A is closed,
a ∈ A.

Example: Consider the sequence (en) = ((1, 0, 0, . . .), (0, 1, 0, . . .), . . .). Notice (en) ⊆ A
has no convergent subsequence since the distance between any two points if 1 and hence
it cannot be Cauchy, which contradicts the fact that it converges. As a corollary of this
example, B1(0) ⊆ `∞ is closed and bounded, but not compact.

Proposition: Let V be a NVS. Let C ⊆ V be compact. Then C is closed and bounded.

Proof. (Closed) Let (an) ⊆ C be such that an → a ∈ V . By the compactness of C, there is
a subsequence (ank) such that ank → b ∈ C. However, we must have a = b ∈ C.

(Bounded) Suppose C is not bounded for contradiction. For all n ∈ N, we may find an ∈ C
such that ‖an‖ ≥ n. Consider (an) ⊆ C. Every subsequence of (an) is unbounded, hence it
diverges. This contradicts the hypothesis.

Theorem. Heine-Borel: A set C ⊆ Rn is compact if and only if it is closed and bounded.

Proposition: Let V be a NVS. Let C ⊆ V be compact. If A ⊆ C is closed, then A is
compact.

Proof. Let (an) ⊆ A ⊆ C. There is a sequence ank → a ∈ C. However, A is closed, hence
a ∈ A and so A is compact.

3.2 Open Covers

Definition. Open Cover: Let V be a NVS. Let A ⊆ V . An open cover of A is a collection
of open sets {Uα : α ∈ I} such that A ⊆

⋃
α∈I

Uα. In the case that |I| < ∞ we say the

collection a finite open cover.

Definition. Subcover: Let V be a NVS. Let A ⊆ V . Let {Uα : α ∈ I} be an open cover of
A. A subset of {Uα : α ∈ I} which is an open cover of A is called a subcover of {Uα : α ∈ I}.

Example: Let A = [0, 1] ⊂ R. An open cover of A is A ⊆
⋃

α∈[0,1]∩Q
(α − 1

4
, α + 1

4
). A finite

subcover is A ⊆ (−1
4
, 1
4
) ∪ (0, 1

2
) ∪ (1

4
, 3
4
) ∪ (1

2
, 1) ∪ (3

4
, 5
4
).
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Example: Let V = R2. Let A = Z×Z = {(a, b) : a, b ∈ Z}. Then A ⊆
⋃

a∈Z×Z
B 1

2
(α). Notice

there is no finite subcover as there are infinitely many α ∈ Z × Z each of which is covered
by exactly one ball.

Example: Let V = R, A = (0, 1]. Then A ⊆
⋃
α∈N

( 1
n
, 2). There is no finite subcover as taking

finitely many n will leave points near 0.

Theorem: Let V be a NVS. Let A ⊆ V . Then A ⊆ V is compact if and only if every open
cover of A has a finite subcover.

3.3 Compactness 2

Lemma. Lebesgue Number Lemma: Let V be a NVS. Let A ⊆ V be compact. Let
A =

⋃
α∈I

Uα be an open cover of A. There exists an R > 0, called the Lebesgue number, such

that for all a ∈ A, BR(a) ⊆ Uα for some α ∈ I.

Proof. Suppose for the sake of contradiction no such R > 0 exists. In particular, for all
n ∈ N there is an an ∈ A such that B 1

n
(an) 6⊆ Uα for all α ∈ I. Since (an) ⊆ A and A is

compact, there is a subsequence with ank → a ∈ A.

Now say a ∈ Uα0 for some α0 ∈ I. We can pick M ∈ N such that B 2
M
(a) ⊆ Uα0 . Moreover,

since ank → a, there is an N ∈ N such that ank ∈ B 1
M
(a) for k ≥ N (distance less than 1

M
).

Then, for k ≥ N such that nk > M , take x ∈ B 1
M
(ank). So

‖x− a‖ = ‖x− ank + ank − a‖ ≤ ‖x− ank‖+ ‖ank − a‖ <
1

M
+

1

M
=

2

M

Therefore, x ∈ B 2
M
(a) and so B 1

M
(ank) ⊆ B 2

M
(a) ⊆ Uα0 . Now since nk > M ,

B 1
nk

(ank) ⊆ B 1
M
(ank) ⊆ Uα0 . This is a contradiction by our first assumption.

Proposition: Let V be a NVS. If A ⊆ V is compact, then every open cover of A has a finite
subcover.

Proof. Suppose A ⊆ V is compact. Let A ⊆
⋃
α∈I

Uα be an open cover of A. We may find

a Lebesgue number R > 0 as in the above lemma. If there is a1, . . . , an ∈ A such that
A ⊆ BR(a1) ∪ · · · ∪BR(an), then we are done.

Otherwise, suppose no such cover exists. Find a1 ∈ A. Since no covering of open balls of
size R exist, there is an a2 ∈ A such that a2 /∈ BR(a1). Further, there is an a3 ∈ A such that
a3 /∈ BR(a1)∪BR(a2). We keep doing this indefinitely. We have then a sequence (an) ⊆ A and
by the compactness of A, a has a convergent subsequence. We have that since am /∈ BR(an)
therefore ‖am− an‖ ≥ R for all n < m. This means there is no Cauchy subsequence of (an),
therefore there is no convergent subsequence. This is a contradiction.
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3.4 Compactness 3

Lemma: Let V be a NVS. Let A ⊆ V . Suppose every open cover of A has a finite subcover.
If A ⊆

⋃
α∈I

Uα, where each Uα is relatively open in A, then there are α1, . . . , αn ∈ I such that

A ⊆ Uα1 ∪ · · · ∪ Uαn .

Proof. Suppose A ⊆
⋃
α∈I

Uα where each Uα = A ∩ Oα where O ⊆ V is open. So we have

A ⊆
⋃
α∈I

(A ∩Oα) = A ∩ (
⋃
α∈I

Oα) ⊆
⋃
α∈I

Oα. Hence,
⋃
α∈I

is an open covering of A, however we

have that all open coverings have finite subcovers by our hypothesis. Hence, there is a finite
subcovering A ⊆ Oα1 ∪ · · · ∪Oαn and therefore A ⊆ A∩ (Oα1 ∪ · · · ∪Oαn) = Uα1 ∪ · · · ∪Uαn
where each U is relatively open.

Proposition: Let V be a NVS. Suppose A ⊆ V is such that every open cover of A has a
finite subcover. Then A is compact.

Proof. Suppose A is as described. Consider (an) ⊆ A. For k ∈ N, let Ck = {an : n ≥ k}∩A.
We wish to show that

∞⋂
k=1

Ck 6= ∅. Notice each Ck is relatively closed in A. Hence every

Uk = A \ Ck is relatively open in A.

Now suppose for the sake of contradiction that
∞⋂
k=1

Ck = ∅, then by De Morgan’s law

A = A \ ∅ = A \

(
∞⋂
k=1

Ck

)
=
∞⋃
k=1

(A \ Ck) =
∞⋃
k=1

Uk

By our above lemma, there is i1, . . . , i` such that A ⊆ Ui1 ∪ · · ·∪Ui` . Now since by definition
C1 ⊇ C2 ⊇ C3 ⊇ · · · , we have U1 ⊆ U2 ⊆ U3 ⊆ · · · . Therefore, A ⊆ Ui` ⊆ A, hence A = Ui` .
We have then Ci` = A \ Ui` = A \ A = ∅. However, we necessarily have ai` ∈ Ci` = ∅ which
is a contradiction. Therefore, there is an a ∈

∞⋂
k=1

Ck. In particular, since a is in the tail of

all sequences, we may find n1 < n2 < · · · such that ‖ank − a‖ < 1
k
for all k ∈ N. Hence,

(ank) ⊆ A has anK → a ∈ A.

Week 4 Limits and Continuity

4.1 Limits

Definition. Limit: Let V,W be NVSs. Let A ⊆ V and f : A → W . We say the limit of
f(x) as x approaches a ∈ V is w ∈ W if: (1) a ∈ A \ {a} and (2) for all ε > 0 there is a
δ > 0 such that x ∈ A with 0 < ‖x− a‖ < δ then ‖f(x)− w‖ < ε. We write lim

x→a
f(x) = w.

Note this w is unique.
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Definition. Isolated Point: Let V be a NVS. Let A ⊆ V . If a /∈ A \ {a} then we say
a ∈ V is an isolated point with respect to A.

Note: Note that if a is isolated, then there is an r > 0 such that Br(a) ∩ A = {a} or
Br(a) ∩A = ∅. To see this, suppose no such r exists. Then for all n ∈ N, there is an an 6= a
such that an ∈ B 1

n
(a). This implies for all ε > 0, picking N = 1

ε
, there is an a 6= an ∈ B 1

n
(a)

for all n ≥ N and thus ‖a − an‖ < 1
n
< 1

N
= ε. Thus an → a, hence a is a limit point of

A \ {a}, or a ∈ A \ {a}.

Remark: We need a not to be a limit point in our definition of continuity since if it were
then there would be an r > 0 such that there is no x ∈ A with 0 < ‖x− a‖ < r.

Proposition. Limits Preserve Order: Let V be a NVS. Let A ⊆ V and a ∈ A \ {a}.
Let f, g : A → R. If lim

x→a
f(x) and lim

x→a
g(x) exist and f(x) ≤ g(x) for all x ∈ A, then

lim
x→a

f(x) ≤ lim
x→a

g(x).

Proposition. Squeeze Theorem: Let V be a NVS. Let A ⊆ V and a ∈ A \ {a}. Let
f, g, h : A→ R. If f(x) ≤ g(x) ≤ h(x) and lim

x→a
f(x) = lim

x→a
h(x) = L exists, then lim

x→a
g(x) =

L as well.

Remark: We will use all limit laws freely as their proofs are similar to the real case.

Example: To find lim
(x,y,z)→(0,0,0)

xy2 + x2z + xyz√
x2 + y2 + z2

, notice

0 ≤

∣∣∣∣∣xy2 + x2z + xyz√
x2 + y2 + z2

∣∣∣∣∣
≤ |xy

2 + x2z + xyz|√
x2

(*)

=
|xy2 + x2z + xyz|

|x|

≤ |x|y
2 + x2|z|+ |x||y||z|

|x|
= y2 + |x||z|+ |y||z|

Using limit laws it is easy to see the limit approaches 0. * Note in the case that x = 0 we
have the above is vacuously true since we multiply by 0 in the denominator.

Example: To prove lim
(x,y)→(0,0)

xy2

x2+y4
does not exist, consider two sequences. First, as ( 1

n
, 0)→

(0, 0) we have the limit goes to 0. Second, as ( 1
n2 ,

1
n
) → (0, 0) we have the limit goes to 1

2
.

Since the limit is unique, there can be no such limit.

4.2 Continuity

Notation: Unless specified otherwise, all functions are of the form f : A→ W where A ⊆ V
and V and W are NVSs.
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Definition. Continuous at a Point: We say f is continuous (cts) at a ∈ A if for all ε > 0
there is a δ > 0 such that if x ∈ A with ‖x− a‖ < δ then ‖f(x)− f(a)‖ < ε.

Remark: If a ∈ A \ {a} (i.e. a is not isolated) then f is continuous at a if and only if
limx→a f(x) = f(a). If a /∈ A \ {a} then f is necessarily continuous at a. This follows since
if a is isolated then there is an r > 0 such that Br(a)∩A = {a}. Hence for any ε > 0 picking
δ = r will have all x ∈ A with ‖x− a‖ < δ be such that x = a.

Definition. Continuous Function: If f is continuous at every a ∈ A, then we say f is
continuous.

Proposition: The following are equivalent

1. f is continuous

2. f preserves convergence

3. For all open U ⊆ W , f−1(U) is relatively open in A.

Proof. Notice we have already proved (2) ⇐⇒ (3) if assignment 2. (1 =⇒ 2) Suppose f
is continuous. Let (an) ⊆ A such that an → a ∈ A. Let ε > 0 be given. There is a δ > 0
such that if x ∈ A and ‖x− a‖ < δ then ‖f(x)− f(a)‖ < ε.

Taken N ∈ N such that ‖an − a‖ < δ for all n ≥ N . Then for n ≥ N , ‖f(an) − f(a)‖ < ε,
therefore f(an)→ f(a).

(2 =⇒ 1) Assume f preserves convergence. For the sake of contradiction, suppose f
is discontinuous at a. Therefore, there is an ε > 0 and a sequence (an) ⊆ A such that
‖an − a‖ < 1

n
, but ‖f(an) − f(a)‖ ≥ ε. Therefore an → a but f(an) 6→ f(a), this is a

contradiction.

Example: Consider Pi : Rn → R for 1 ≤ i ≤ n. Then Pi(x1, . . . , xn) = xi is continuous
(called the ith projection). Proof: Let (ak) ⊆ Rn such that ak → a ∈ Rn. Suppose
ak = (a

(1)
k , a

(2)
k , . . . , a

(n)
k ) and a = (b1, b2, . . . , bn). We know a

(i)
k → bi but this implies Pi(ak)→

Pi(a) therefore Pi is continuous.

Proposition: (1) If f, g : A → W are continuous then f + g and αf (for α ∈ R) are
continuous. (2) If f : A → W1 is continuous and g : B → W2 where B ⊆ W1 is continuous,
then g ◦ f is continuous.

Proof. (1) Let (an) ⊆ A is such that an → a. Since f, g are continuous f(an) → f(a) and
g(an)→ g(a). By the limit laws, f(an)+g(an)→ f(a)+g(a) and αf(an)→ αf(a), therefore
f + g and αf are continuous.

(2) Let (an) ⊆ A such that an → a. Since f is continuous, f(an) → f(a). Since g is
continuous, g(f(an))→ g(f(a)) so g ◦ f is continuous.

Definition. Isometric Isomorphism: An isometric isomorphism between two NVS’s V
and W is an isomorphism (invertible linear transformation) T : V → W such that ||T (x)|| =
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||x|| for all x ∈ V . If there exists an isometric isomorphism between V and W , we say V
and W are isometrically isomorphic and write V ∼= W .

Theorem. Completion: Let V be a NVS. Let ∼ be the equivalence relation such that if
a = (an) ⊆ V and b = (bn) ⊆ V , then a ∼ b if and only if lim

n→∞
‖an − bn‖ = 0. Let V̂ be

the set of equivalence classes of Cauchy sequences of V . Then V̂ is a Banach NVS equipped
with the norm (distance) ‖[a]− [b]‖ := lim

n→∞
‖an−bn‖. Further, V is isometrically isomorphic

to a subspace of V̂ .

Proof. See A4 Q4.

4.3 Uniform Continuity

Definition. Uniformly Continuous: Let V,W be NVSs and A ⊆ V . We say f : A→ W
is uniformly continuous fif for all ε > 0 there is a δ > 0 such that if x, a ∈ A with ‖x−a‖ < δ
then ‖f(x)− f(a)‖ < ε.

Remark: The big idea is that one δ works for all a ∈ A. Notice uniform continuity implies
continuity.

Definition. Lipschitz: Let V,W be NVSs and A ⊆ V . f : A→ W is Lipschitz if there is
an M > 0 such that ‖f(a)− f(b)‖ ≤M‖a− b‖ for all a, b ∈ A.

Proposition: Let f : A→ W . If f is Lipschitz then f is uniformly continuous.

Proof. Let ε > 0 be given. Let δ = ε
M
. If a, b ∈ A with ‖a − b‖ < δ, then

‖f(a)− f(b)‖ ≤M‖a− b‖ < Mδ = ε and so f is uniformly continuous.

Example: Let f : [a,∞) → R with f(x) = x2. f is not uniformly continuous. To see
this, let an = n + 1

n
and bn = n for n ∈ N. Notice ‖an − bn‖ = 1

n
→ 0, however ‖f(an) −

f(bn)‖ = (n + 1
n
)2 − n2 = 2 + 1

n2 ≥ 2. Hence picking ε = 1, there is no point δ such that
‖an − bn‖ < δ =⇒ ‖f(an)− f(bn)‖ since their difference is always at least 2.

Example: Let f : (0, 1] → R with f(x) = ln x. f is not uniformly continuous. To see
this, let an = 1

n
and bn = 1

n2 for n ∈ N. Notice ‖an − bn‖ = 1
n
− 1

n2 = n−1
n2 → 0. However,

‖f(an)− f(bn)‖ = ln( 1
n
)− ln( 1

n2 ) = ln(n2)− ln(n) = ln(n) ≥ ln(2) for n ≥ 2. Thus even as
an → 0 and bn → 0 the difference of the function values is atleast ln 2.

Theorem: If C ⊆ V is compact and f : C → W is continuous then f is uniformly
continuous.

Proof. Suppose for the sake of contradiction f is not uniformly continuous. Then there is
(an), (bn) ⊆ C such that for some ε > 0, ‖an − bn‖ < 1

n
but ‖f(an)− f(bn)‖ ≥ ε.

By compactness: ank → a ∈ C and bnk = bnk − ank + ank → 0 + a = a. By continuity,
f(ank) → f and f(bnk) → f(b), therefore ‖f(ank) − f(bnk)‖ → 0, however we have that
‖f(ank)− f(bnk)‖ ≥ ε, a contradiction.
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4.4 Extreme Value Theorem

Proposition: Let C ⊆ V be compact, and f : C → W be continuous. Then f(C) is
compact.

Proof. Let (f(an)) ⊆ f(C) with an ∈ C. So (an) ⊆ C and by compactness ank → a ∈ C.
Since f is continuous, f(ank)→ f(a) ∈ f(C), therefore f(C) is compact.

Lemma: If A ⊆ R is bounded and non-empty, then inf A, supA ∈ A.

Proof. For all n ∈ N, supA − 1
n
< an ≤ supA where (an) ⊆ A. Therefore, by squeeze

theorem an → supA making supA ∈ A. The proof for inf A follows similarly.

Theorem. Extreme Value Theorem: (EVT) Let V be a NVS. Let ∅ 6= C ⊆ V be
compact and f : C → R be continuous. There is a, b ∈ C such that f(a) = min f(C) and
f(b) = max f(C).

Proof. Since C is compact, f(C) is compact and therefore closed and bounded. Thus by
our lemma, sup f(C), inf f(C) ∈ f(C) = f(C) (by closedness). Therefore, there are a, b ∈ C
such that f(a) = inf f(C) = min f(C) and f(b) = sup f(C) = max f(C).

Proposition: Let V,W be NVSs. Let K ⊆ V be compact. Define C(K,W ) := {f :
K → W : f is continuous}. Then C(K,W ) equipped with the uniform norm ‖f‖∞ =
max{‖f(x)‖ : x ∈ K} is a NVS.

Proof. Notice f : K → W is continuous and ‖ · ‖ : W → R is continuous. Therefore,
‖ · ‖ ◦ f : K → R is continuous. By the extreme value theorem max{‖f(x)‖ : x ∈ K} exists.
The rest of the properties of a norm follow from max properties.

Week 5 Sequences and Spaces of Functions

5.1 Sequences of Functions

Definition. Connected: Let V be a NVS. A subset A ⊆ V is said to be connected if there
does not exist non-empty, disjoint, relatively open U,W ⊆ A such that A = U ∪W .

Proposition. Path-Connected: Let A ⊆ V . A is connected if and only if for all a, b ∈ A
there exists a continuous function f : [0, 1]→ A such that f(0) = a and f(1) = b.

Proof. See A5 Q2 for backwards direction. Forwards direction left as exercise.
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Definition. Pointwise Convergence: Let V,W be NVSs and A ⊆ V . Let fn : A → W
be a sequence of functions and let f : A → W . We say fn converges pointwise to f if
fn(x)→ f(x) for all x ∈ A.

Definition. Uniform Convergence: Let V,W be NVSs and A ⊆ V . Let fn : A→ W be
a sequence of functions and let f : A → W . We say fn converges to f uniformly if for all
ε > 0 there is an N ∈ N such that ‖fn(x)− f(x)‖ < ε for all n ≥ N and x ∈ A.

Remark: fn → f pointwise if ∀x ∈ A, ∀ε > 0,∃N ∈ N,∀n ≥ N, ‖fn(x) − f(x)‖ < ε.
fn → f uniformly if ∀ε > 0,∃N ∈ N,∀x ∈ A,∀n ≥ N, ‖fn(x) − f(x)‖ < ε. That is uniform
convergence requires one N for all x ∈ A, whereas pointwise requires for all x ∈ A that there
is an N .

Remark: We define ‖fn − f‖∞ := sup{‖fn(x) − f(x)‖ : x ∈ A} where fn, f : A → W
and A ⊆ V . Note that fn → f uniformly if and only if ‖fn − f‖∞ < ∞ eventually and
‖fn − f‖∞ → 0 for a tail where ‖fn − f‖∞ <∞.

5.2 Examples

Example: Consider fn : (0, 1) → R given by fn(x) = nx
1+nx

. Clearly for x ∈ (0, 1), fn(x) =
nx

1+nx
→ 1 hence fn → 1 pointwise. However, forn ≥ 1, |fn( 1n)−1| =

1
2
, hence ‖fn−f‖∞ 6→ 0.

So the convergence is not uniform.

Example: Consider fn : C0 → R given by fn((ak)) = an (C0 is space of 0 tail sequences).
Notice for (ak) ∈ C0 fn((ak)) = an → 0 as n → ∞ since an → 0. Hence fn → 0 pointwise.
Now notice for n ∈ N, |fn(1, 1, . . . , 1︸ ︷︷ ︸

n times

, 0, 0, . . .)−0| = |1−0| = 1 hence ‖fn−0‖∞ ≥ 1 implying

‖fn − 0‖∞ 6→ 0 and thus fn → 0 uniformly.

Example: Consider fn : [0, 1]× [0, 1]→ R given by fn(a, b) = an

n
+ 1

b+n
. Notice both an

n
→ 0

and 1
b+n
→ 0 hence fn → 0 pointwise. Now notice |fn(a, b) − 0| = an

n
+ 1

b+n
≤ 1

n
+ 1

n
= 2

n
,

thus |fn(a, b) − 0| → 0. Since this was for arbitrary a, b, we have ‖fn − 0‖∞ ≤ 2
n
→ 0 thus

fn → 0 uniformly.

5.3 Theorem A

Example: Consider fn : [0, 1] → R given by fn(x) = xn. Notice each fn is continuous,
however

fn → f =

{
1 if x = 1

0 if x 6= 1

pointwise, where f is not continuous. Notice however this is not true for continuous sequences
of uniformly convergent functions.

Theorem: Let V,W be NVSs and A ⊆ V . Let (fn) be a sequences of functions fn : A→ W .
If fn is continuous for all n ∈ N and fn → f uniformly, then f is continuous.
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Proof. Let ε > 0. Let (an) ⊆ A be such that an → a. We may find N ∈ N such that
‖fN − f‖ < ε

3
. Since fN is continuous, there is an M ∈ N such that ‖fN(an) − fN(a)‖ < ε

3

for all n ≥M . For n ≥M ,

‖f(an)− f(a)‖ = ‖f(an)− fN(an) + fN(an)− fN(a) + fN(a)− f(a)‖
≤ ‖f(an)− fN(an)‖+ ‖fN(an)− fN(a)‖+ ‖fN(a)− f(a)‖
≤ ‖f − fN‖∞ + ‖fN(an)− fN(a)‖+ ‖fN − f‖∞
<
ε

3
+
ε

3
+
ε

3
= ε

5.4 Theorem B

Theorem: Let V be a NVS, A ⊆ V be compact, and W be a Banach space. Then
(C(A,W ), ‖ · ‖∞) is a Banach space.

Proof. Let (fn) ⊆ C(A,W ) be Cauchy. Let ε > 0 be given. There is an N ∈ N such that
‖fn − fm‖∞ < ε, for all n,m ≥ N . Then for any x ∈ A and n,m ≥ N , ‖fn(x) − fm(x)‖ ≤
‖fn − fm‖∞ < ε. hence (fn(x)) ⊆ W is Cauchy. Since W is a Banach space, we know that
fn(x)→ f(x) ∈ W , for some f(x) ∈ W . Since this is true for all x ∈ A, we have constructed
a function f : A→ W such that x 7→ f(x). Notice further that fn → f pointwise.

Now for all x ∈ A and n ≥ N , we have lim
m→∞

‖fn(x) − fm(x)‖ ≤ ε since limits preserve
order. Therefore, (recall fm(x) → f(x) and ‖ · ‖ is continuous, i.e. preserves convergence)
‖fn(x) − f(x)‖ ≤ ε. Since x was arbitrary, ‖fn − f‖∞ ≤ ε. Therefore fn → f uniformly.
By the previous theorem, f ∈ C(A,W ), and so fn → f ∈ C(A,W ) so C(A,W ) is a Banach
space.

Unit 2 Differentiation

Week 6 Multi-variable Derivatives

6.1 Partial Derivatives

Definition. Scalar Function: A scalar function is a function of the form f : A → R for
A ⊆ Rn.

Remark: If f : A→ Rm for A ⊆ Rn is a function, then there are scalar functions f1, . . . , fm
such that f = (f1, f2, . . . , fm).

Example: Consider f : R3 → R2 defined as f(x, y, z) = (czey, x2 + z2). Then f1(x, y, z) =
xzey and f2(x, y, z) = x2 + z2 are the associated scalar functions, i.e. f = (f1, f2).
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Definition. Partial Derivative of Scalar Function: Let A ⊆ Rn and let f : A→ R. Let
{e1, . . . , en} be the standard basis for Rn. For 1 ≤ i ≤ n, we define the ith partial derivative
of f at a = (a1, a2, . . . , an) ∈ A by

fxi(a)
Notation
=

∂f

∂xi
(a) := lim

h→0

f(a+ hei)− f(a)
h

,

provided the limit exists.

Remark: For a ∈ A ⊆ Rn and f : A→ R, writing f(x1, . . . , xn).

1. fxi(a) is the derivative at a with respect to the variable xi, treating xj for j 6= i as
constant. (Since we add a scalar multiple of ei, leaving all other variable alone.)

2. fxi(a) is the slope of the tangent line to the surface y = f(x1, . . . , xn) which is parallel
to ei.

Example: Let f : R2 → R, f(x, y). Let a = (a1, a2) ∈ R2. We have

fx(a) = lim
h→0

f(a+ h, e1)− f(a)
h

= lim
h→0

f(a1 + h, a2)− f(a1, a2)
h

this is why we say we are holding the other variable(s) constant.

Notation: Since we can think of fxi =
∂f
∂xi

as a function, plugging in variables as we wish,
we write

fxi(x1, x2, . . . , xn) =
∂

∂xi
f(x1, x2, . . . , xn)

to denote the derivative function.

Example: Consider f : R3 → R given by f(x, y, z, ) = xy2z + exy. Then we have

fx(x, y, z) =
∂

∂x
f(x, y, z) = y2z + yexy

fy(x, y, z) =
∂

∂y
f(x, y, z) = 2xyz + xexy

fz(x, y, z) =
∂

∂z
f(x, y, z) = xy2

This further shows why we say we consider the other variables as constant, because you can
evaluate it as a usual derivative with respect only to your current variable consider all else
as constant.

Definition. Partial Derivative: Let A ⊆ Rn and let f : A→ Rm where f = (f1, . . . , fn).
For a ∈ A and 1 ≤ i ≤ n, the ith partial derivative of f is

fxi(a)
Notation
=

∂f

∂xi
(a) :=

(
∂f1
∂xi

(a),
∂f2
∂xi

(a), . . . ,
∂fm
∂xi

(a)

)
provided it exists.

Example: Consider f : R2 → R3 given by f(x, y) = (2x2y, 4x, exy). We have then

fx(x, y) = (4xy, 4, yexy)

fy(x, y) = (2x2, 0, xexy)
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6.2 Differentiability

Remark: Recall for A ⊆ R, f : A→ R, we say f is differentiable at a ∈ A if and only if (1)
a ∈ Int(A) (i.e. it’s not a boundary point) and (2)

lim
h→0

f(a+ h)− f(a)
h

= f ′(a) exists ⇐⇒ lim
h→0

f(a+ h)− f(a)−mh
h

= 0 for some m ∈ R

Part of the reason we need a ∈ Int(A) is that for small enough h, the limit is possibly
existent. If it weren’t, then for all h 6= 0, a+ h is not in the domain of f .

Remark: T : R → R is a linear transformation if and only if T (x) = mx for some m ∈ R.
(Proof) Let x ∈ R. So T (x) = x · T (1) = mx. Let x, y ∈ R and c ∈ R. Then T (cx + y) =
m(cx+ y) = cmx+my = cT (x) + T (y).

Therefore,

lim
h→0

f(a+ h)− f(a)−mh
h

= 0

if and only if f over [a, a+ h] can be approximated arbitrarily well by the line T (x) = mx.

Notation: Recall L(Rn,Rm) = {T : Rn → Rm : T is linear}.

Definition. Differentiability: Let A ⊆ Rn and f : A→ Rm. We say f is differentiable at
a ∈ A if (1) a ∈ Int(A) and (2) there is a line T ∈ L(Rn,Rm) such that

lim
h→0

f(a+ h)− f(a)− T (h)
‖h‖

= 0

Note: This means equivalently f is differentiable if and only if there is a matrix A such that

lim
h→0

f(a+ h)− f(a)− Ah
‖h‖

= 0

Remark: By (1) of differentiability, f(a + h) is defined for small enough h. Thus for an
open ball centered at a, the way the function f changes can be arbitrarily well approximated
by the change in a linear transformation.

Remark: Recall from MATH 146 that for T ∈ L(Rn,Rm). Where B is the standard matrix
of T (matrix representation of T relative to standard basis), T (x) = Bx for all x ∈ Rn.
Recall that from A1Q2 we have the operator norm ‖A‖op := sup{‖Ax‖ : x ∈ Rn, ‖x‖ = 1}
is a norm and such that ‖Ax‖op ≤ ‖A‖op · ‖x‖.

Theorem: Let A ⊆ Rn and f : A→ Rm. If f is differentiable at a ∈ A, then f is continuous
at a.

Proof. Since f is differentiable at a, there is a T ∈ L(Rn,Rm) such that

lim
h→0

f(a+ h)− f(a) + T (h)

‖h‖
= 0

lim
h→0

f(a+ h)− f(a) +Bh

‖h‖
= 0
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where B = [T ]E where E is the standard basis. This implies we may find δ > 0 such that if
0 < ‖h− 0‖ = ‖h‖ < δ then∥∥∥∥f(a+ h)− f(a)−Bh

‖h‖

∥∥∥∥ < 1

‖f(a+ h)− f(a)−Bh‖ < ‖h‖
‖f(a+ h)− f(a)‖ − ‖Bh‖ < ‖h‖

‖f(a+ h)− f(a)‖ < ‖Bh‖+ ‖h‖
‖f(a+ h)− f(a) < ‖B‖op · ‖h‖+ ‖h‖

So as h→ 0 we have ‖B‖op ·‖h‖+‖h‖ → 0. Therefore by the squeeze theorem lim
h→0

f(a+h) =

f(a). Letting x = a+ h, we have lim
x→a

f(x) = f(a), hence f is continuous at a.

Definition. Differentiable on Set: Let U ⊆ Rn be open and f : U → Rm. We say f is
differentiable (on U) if f is differentiable at every point in U .

Remark: The openness in the above definition is required because we require each differ-
entiable point to be an interior point.

6.3 Total Derivative

Example: Let f : R2 → R be given by

f(x, y) =

(x2 + y2) sin

(
1√
x2+y2

)
if (x, y) 6= 0

0 if (x, y) = 0

We will show f is differentiable at (0, 0). (Notice (0, 0) ∈ Int(A).) Consider B = (0, 0).
Then

lim
h→0

f(a+ h)− f(a)−Bh
‖h‖

= lim
h→0

f(h)

‖h‖

= lim
(x,y)→(0,0)

(x2 + y2) sin

(
1√

x2 + y2

)
· 1√

x2 + y2

= lim
(x,y)→(0,0)

√
x2 + y2 sin

(
1√

x2 + y2

)
= 0 By squeeze theorem,

√
‖x2 + y2‖ → 0

How do we know to choose B?

Remark. Investigation of B: Let A ⊆ Rn and f : A → Rm. Suppose f is differentiable

at a ∈ A. Then there is a B ∈ Mm×n(R) such that lim
h→0

f(a+ h)− f(a)−Bh
‖h‖

= 0. Now let
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{e1, . . . , en} be the standard basis vector for Rn. since R 3 t→ 0R we have Rn 3 tei → 0Rn ,
we also have (since h is arbitrary)

lim
t→0

f(a+ tei)− f(a)−Btei
|t|

= 0

Therefore

lim
t→0+

f(a+ tei)− f(a)− tBei
t

= 0

lim
t→0+

f(a+ tei)− f(a)
t

= Bei

and

lim
t→0−

f(a+ tei)− f(a)− tBei
−t

= 0

lim
t→0−

f(a+ tei)− f(a)
−t

= −tBei

lim
t→0−

f(a+ tei)− f(a)
t

= tBei

Thus we have

Bei = lim
t→0

f(a+ tei)− f(a)
t

Bei =
∂f

∂xi
(a)

Coli(B) =

(
∂f1
∂xi

(a),
∂f2
∂xi

(a), . . . ,
∂fn
∂xi

(a)

)
In particular, for B = (bij), we have bij = ∂fi

∂xj
(a).

Definition. Total Derivative: Let A ⊆ Rn and f : A → Rm. For a ∈ A we call the
matrix

Df(a) =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn...

... . . . ...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


∈Mm×n(R)

the total derivative of f at c, provided it exists.

Theorem: Let A ⊆ Rn and f : A → Rm. If f is differentiable at a ∈ A, then (1) for all
1 ≤ j ≤ n, ∂f

∂xj
(a) exists (it is Colj(Df(a)) exactly) and (2)

lim
h→0

f(a+ h)− f(a)−Df(a)h
‖h‖

= 0
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See investigation above for proof.

Definition. Gradient: Let A ⊆ Rn and f : A → R be a scalar function. For a ∈ A, we
call Df(a) the gradient of f at a and label it by ∇f(a). That is

∇f(a) =
(
∂f

∂x1
(a),

∂f

∂x2
(a), . . . ,

∂f

∂xn
(a)

)

Remark: In the example at the start of the lecture, we chose B simply by computing
∇f(0, 0) = (0, 0).

Notation: Let U ⊆ Rn be open and f : U → Rm. Notice we have then the following

fxi(a) =
∂f

∂xi
(a) =

(
∂f1
∂xi

(a),
∂f2
∂xi

(a), . . . ,
∂fm
∂xi

(a)

)
∈Mm×1

and
∇fi(a) =

∂fi
∂x

(a) =

(
∂fi
∂x1

(a),
∂fi
∂x2

(a), . . . ,
∂fi
∂xn

(a)

)
∈M1×n

thus for 1 ≤ i ≤ m and 1 ≤ j ≤ n

Rowi(Df(a)) = ∇fi(a) =
∂fi
∂x

(a) and Colj(Df(a)) = fxj(a) =
∂f

∂xj
(a)

6.4 Continuous Partials

Remark: We know that if f : A → Rm for A ⊆ Rn is differentiable at a, then each ∂fi
∂xj

(a)

exists, but is the converse true?

Example: Consider f : R2 → R given by

f(x, y) =

{
xy

x2+y2
if (x, y) 6= 0

0 if (x, y) = 0

So we have fx(0, 0) = lim
h→0

f(h,0)−f(0,0)
h

= 0 and fy(0, 0) = 0 by symmetry. Hence ∇f(0, 0) = 0.
However, f is not continuous at 0, hence it cannot be differentiable. To see this consider
( 1
n
, 1
n
)→ 0 as n→∞. We have

f

(
1

n
,
1

n

)
=

(
1
n2

)(
2
n2

) =
1

2
→ 1

2

hence ( 1
n
, 1
n
)→ (0, 0) but f( 1

n
, 1
n
) 6→ f(0, 0).

Theorem: Let U ⊆ Rn be open and let f : U → R. If a ∈ U and for all 1 ≤ j ≤ n ∂f
∂xj

exists on U and is continuous at a, then f is differentiable at a.
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Proof. Suppose a = (a1, . . . , an). Since U is open, there is r > 0 such that Br(a) ⊆ U . For
any h = (h1, . . . , hn) 6= 0 such that a+ h ∈ Br(a), we have

f(a+ h)− f(a) = f(a1 + h1, . . . , an + hn)− f(a1, . . . , an)
= f(a1 + h1, . . . , an + hn)− f(a1, a2 + h2, . . . , an + hn)

+ f(a1, a2 + h2, . . . , an + hn)− f(a1, a2, a3 + h3, . . . , an + hn)

+ f(a1, a2, a3 + h3, . . . , an + hn)− f(a1, a2, a3, a4 + h4, . . . , an + hn)

...
+ f(a1, . . . , an−1, an + hn)− f(a1, a2, . . . , an) (1)

However, by the single variable Mean Value Theorem, for every 1 ≤ j ≤ n there exists a cj
between aj and aj + hj such that

f(a1, . . . , aj−1, aj + hj, . . . , an + hn)− f(a1, . . . , aj, aj+1 + hj+1, . . . , an + hn)

aj + hj − aj

=
∂f

∂xj
(a1, . . . , aj−1, cj, aj+1 + hj+1, . . . , an + hn) (2)

This means, by (1) and (2) we get

f(a+ h)− f(a) =
n∑
j=1

hj
∂f

∂xj
(a1, . . . , aj−1, cj, aj+1 + hj+1, . . . , an + hn)

Now for 1 ≤ j ≤ n let

δj :=
∂f

∂xj
(a1, . . . , aj−1, cj, aj+1 + hj+1], . . . , an + hn)−

∂f

∂xj
(a1, . . . , an)

and let δ = (δ1, . . . , δn). Then we have

f(a+ h)− f(a)−∇f(a) · h = h · δ

(Recall ∇f(a) is the vector of partials at a, i.e. the negative terms of δ.) Since all the partial
derivatives are continuous at a, as h→ 0 each δj → 0 and so δ → 0Rn . Therefore,

0 ≤ lim
h→0

|f(a+ h)− f(a)−∇f(a) · h|
‖h‖

= lim
h→0

|δ · h|
‖h‖

≤ lim
h→0

‖δ‖ · ‖h‖
‖h‖

= lim
h→0

δ = 0

where the second inequality holds from the Cauchy-Schwarz inequality. Therefore,

lim
h→0

|f(a+ h)− f(a)−∇f(a) · h|
‖h‖

= 0

and so
lim
h→0

f(a+ h)− f(a)−∇f(a) · h
‖h‖

= 0

By definition, this means f is differentiable at a.
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Example: Let U = R2 \ {(0, 0)}. Consider f : U → R given by

f(x, y) =
sin(xy)

x2 + y2

We have then
fx(x, y) =

(x2 + y2) cos(xy)y − 2x sin(xy)

(x2 + y2)2

exists on U and is continuous on U . By symmetry, fy(x, y) exists and is continuous on U as
well. Thus by the above theorem we have f is differentiable on U .

Remark: The converse of the above theorem is not true. It is possible that a function is
differentiable at a but has a partial derivative discontinuous at a.

Example: Let f : R2 → R be given by

f(x, y) =

(x2 + y2) sin

(
1√
x2+y2

)
if (x, y) 6= 0

0 if (x, y) = 0

From a previous example we recall f is differentiable at (0, 0). Now observe

fx(x, y) = 2x sin

(
1√

x2 + y2

)
− cos

(
1√

x2 + y2

)
x√

x2 + y2

for all (x, y) 6= (0, 0). Now notice that ( 1
n
, 0)→ (0, 0) but

fx

(
1

n
, 0

)
=

2

n
sin(n)− cos(n)

diverges. Therefore, fx is not continuous at (0, 0), hence why the converse of the above
theorem does not hold.

Week 7 More on Derivatives

7.1 Differentiation Rules

Theorem: Let U ⊆ Rn be open and let a ∈ U . Let f : U → Rm. There is a unique matrix
A ∈Mm×n(R) such that

lim
h→0

f(a+ h)− f(a)− Ah
‖h‖

= 0

and this matrix is exactly Df(a). Notice this means f is differentiable at a if and only if
Df(a) exists and if an A prove f is differentiable at a then it is the total derivative of f at
a.

2 Differentiation 28 7, More on Derivatives



MATH 247 Spring 2021: Notes Jacob Schnell

Proof. Let A ∈ Mm×n(R) be such that lim
h→0

f(a+h)−f(a)−Ah
‖h‖ = 0. So we know that f is

differentiable at a ∈ U and we know that Df(a) also satisfies this limit. That is

lim
h→0

f(a+ h)− f(a)− Ah
‖h‖

= 0 = lim
h→0

f(a+ h)− f(a)−Df(a)h
‖h‖

Notice we have then for any 1 ≤ i ≤ n

lim
h→0

f(a+ h)− f(a)− Ah
‖h‖

− f(a+ h)− f(a)−Df(a)h
‖h‖

= 0

lim
h→0

(Df(a)h− A)h
‖h‖

= 0

lim
t→0+

(Df(a)− A)tei
‖tei‖

= 0

lim
t→0+

(Df(a)− A)tei
|t|

= 0

lim
t→0+

(Df(a)− A)ei = 0

Coli(Df(a)) = Coli(A)

Therefore each column is equal, thus Df(a) = A, proving it is unique.

Theorem. Sum and Scalar Multiplication Rules: Let A ⊆ Rn be open and a ∈ A.
Let f, g : A→ Rm be differentiable at a. For all α ∈ R f + αg is differentiable at a and

D(f + αg)(a) = Df(a) + αDg(a)

Proof. Let P = f + αg. Notice we have by our limit laws

lim
h→0

P (a+ h)− P (a)− (Df(a) + αDg(a))h

‖h‖

= lim
h→0

f(a+ h)− f(a)−Df(a)h
‖h‖

+ α
g(a+ h)− g(a)−Dg(a)

‖h‖
= 0 + α0 = 0

Remark. Dot Product: Recall the dot product of two vectors x, y ∈ Rn is the scalar

given by x · y =
n∑
i=1

xiyi ∈ R.

Theorem. Dot Product Rule: Let A ⊆ Rn be open and a ∈ A. Let f, g → Rm

be differentiable at a. Define the dot product of f, g to be f · g : A → R defined by
(f · g)(x) = f(x) · g(x). Then f · g is differentiable at a and

D(f · g)(a) = g(a)Df(a) + f(a)Dg(a)

We consider f(a) and g(a) as row vectors in this case.
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Proof. Notice we have

lim
h→0

f(a+ h)− f(a)−Df(a)h
‖h‖

= 0 = lim
h→0

g(a+ h)− g(a)−Dg(a)h
‖h‖

So we have

lim
h→0

(f · g)(a+ h)− (f · g)(a)− g(a)Df(a)h− f(a)Dg(a)h
‖h‖

= g(a) · lim
h→0

f(a+ h)− f(a)−Df(a)h
‖h‖

+ f(a) · lim
h→0

g(a+ h)− g(a)−Dg(a)h
‖h‖

+ lim
h→0

f(a) · g(a)− g(a) · f(a+ h)− f(a) · g(a+ h) + f(a+ h) · g(a+ h)

‖h‖

= 0 + lim
h→0

g(a) · (f(a)− f(a+ h))− g(a+ h) · (f(a)− f(a+ h))

‖h‖

= lim
h→0

(g(a)− g(a+ h)) · (f(a)− f(a+ h))

‖h‖

However, by the Cauchy-Schwarz inequality,

|g(a)− g(a+ h)) · (f(a)− f(a+ h))|
‖h‖

≤ ‖g(a)− g(a+ h)‖ · ‖f(a)− f(a+ h)‖
‖h‖

Therefore

0 ≤ lim
h→0

|(f · g)(a+ h)− (f · g)(a)−Xh|
‖h‖

≤ lim
h→0

‖g(a)− g(a+ h)‖ · ‖f(a)− f(a+ h)‖
‖h‖

= lim
h→0

‖g(a)− g(a+ h)‖
‖h‖

· ‖f(a)− f(a+ h)‖
‖h‖

· ‖h‖

= lim
h→0

‖g(a)− g(a+ h)−Dg(a)h+Dg(a)h‖
‖h‖

· ‖f(a)− f(a+ h)−Df(a)h+Df(a)h‖
‖h‖

· ‖h‖

≤ lim
h→0

‖g(a)− g(a+ h)−Dg(a)h‖+ ‖Dg(a)h‖
‖h‖

· ‖f(a)− f(a+ h)−Df(a)h‖+ ‖Df(a)h‖
‖h‖

· ‖h‖

= lim
h→0

(
‖g(a)− g(a+ h)−Dg(a)‖

‖h‖
+
‖Dg(a)h‖
‖h‖

)
·
(
‖f(a)− f(a+ h)−Df(a)‖

‖h‖
+
‖Df(a)h‖
‖h‖

)
· ‖h‖

= lim
h→0

‖Dg(a)h‖
‖h‖

· ‖Df(a)h‖
‖h‖

· ‖h‖

≤ lim
h→0

‖Dg(a)‖op · ‖h‖
‖h‖

· ‖Df(a)‖op · ‖h‖
‖h‖

· ‖h‖

= lim
h→0
‖Dg(a)‖op · ‖Df(a)‖op · ‖h‖

= (‖Dg(a)‖op · ‖Df(a)‖op) · lim
h→0
‖h‖

= 0

As desired.
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7.2 Chain Rule

Theorem. Chain Rule: Let A ⊆ Rn and B ⊆ Rm be open. Let f : A → Rm and
g : B → Rk with f(A) ⊆ B. If f is differentiable at a ∈ A and g is differentiable at
f(a) ∈ B, then (g ◦ f) is differentiable at a with

D(g ◦ f)(a) = Dg(f(a)) ·Df(a)

Proof. We wish to show

lim
h→0

(g ◦ f)(a+ h)− (g ◦ f)(a)−Xh
‖h‖

= 0

where X = Dg(f(a))Df(a). Let b = f(a). Let

ε(h) = f(a+ h)− f(a)−Df(a)h
δ(k) = g(b+ k)− g(b)−Dg(b)k

so that
lim
h→0

ε(h)

‖h‖
= 0 and lim

k→0

δ(k)

‖k‖
= 0

Let k = f(a+ h)− f(a). Note that k → 0 as h→ 0 by the continuity of f at a. Then,

lim
h→0

(g ◦ f)(a+ h)− (g ◦ f)(a)−Xh
‖h‖

= lim
h→0

g(f(a+ h))− g(f(a))−Dg(f(a))Df(a)h
‖h‖

= lim
h→0

g(f(a+ h)− f(a) + f(a))− g(b)−Dg(b)Df(a)h
‖h‖

= lim
h→0

g(k + b)− g(b)−Dg(b)Df(a)h
‖h‖

= lim
h→0

g(k + b)− g(b)−Dg(b)(−ε(h) + f(a+ h)− f(a))
‖h‖

= lim
h→0

Dg(b)ε(h) + g(k + b)− g(b)−Dg(b)(f(a+ h)− f(a))
‖h‖

= lim
h→0

Dg(b)
ε(h)

‖h‖
+
δ(k)

‖h‖

Now since
0 ≤ ‖Dg(b)ε(h)‖

‖h‖
≤ ‖Dg(b)‖op

‖ε(h)‖
‖h‖

→ 0

as h→ 0, we see that lim
h→0

Dg(b)
ε(h)

‖h‖
= 0. Now,

lim
h→0

δ(k)

‖h‖
= lim

h→0

δ(k)

‖k‖
· ‖k‖
‖h‖
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However,
‖k‖ = ‖Df(a)h+ ε(h)‖ ≤ ‖Df(a)‖op‖h‖+ ‖ε(h)‖

Therefore,
‖k‖
‖h‖
≤ ‖Df(a)‖op‖h‖+ ‖ε(h)‖

‖h‖
→ ‖Df(a)‖op

as h→ 0. Hence, ‖k‖‖h‖ is bounded. Since
δ(k)
‖k‖ → 0 as h→ 0, we have

lim
h→0

δ(k)

‖h‖
= lim

h→0

δ(k)

‖k‖
· ‖k‖
‖h‖

= 0

as desired.

7.3 Mean Value Theorem

Remark. Naive MVT: Recall the single variable mean value theorem is

Let f : [a, b] → R be continuous. If f is differentiable on (a, b), then there is a
c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Hence, we might conjecture we can extend the mean value theorem as

Let U ⊆ Rn be open. Let f : U → Rm be differentiable. If a, b ∈ U then there is
a c ∈ L(a, b) such that

f(b)− f(a) = Df(c)(b− a)

where L(a, b) := {(1− t)a+ tb : t ∈ [0, 1]} is the line through a and b.

However, our conjecture is disproved by the counterexample f : R → R2 given by f(x) =
(cosx, sinx). So f(0) = f(2π) = (1, 0), but

Df(x) =

[
− sinx
cosx

]
6= 0

for all x ∈ R. Hence we wish to work with only one direction at a time. I.e. for all x ∈ Rm

find a c ∈ L(a, b) such that

x · (f(b)− f(a)−Df(c)(b− a)) = 0 ⇐⇒ x · (f(b)− f(a)) = x · (Df(a)(b− a))

Lemma: Let a, b ∈ Rn. The function ϕ : R → Rn given by ϕ(t) = (1 − t)a + tb is
differentiable with Dϕ(t) = b− a.
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Proof.

lim
h→0

ϕ(t+ h)− ϕ(t)− (b− a)h
‖h‖

= lim
h→0

(1− t− h)a+ (t+ h)b− (1− t)a− tb− (b− a)h
‖h‖

= lim
h→0

−ha+ hb(b− a)h
‖h‖

= 0

Theorem. Mean Value Theorem: Let U ⊆ Rn be open. If f : U → Rm is differentiable
and a, b ∈ U such that L(a, b) ⊆ U , then for all x ∈ Rm there exists c ∈ L(a, b) such that

x · (f(b)− f(a)) = x · (Df(c)(b− a))

Proof. Let a, b ∈ U such that L(a, b) ⊆ U . Let x ∈ Rm be fixed. (1) Let ϕ(t) = (1−t)a+t(b).
Since ϕ([0, 1]) = L(a, b) ⊆ U is open, there is a δ > 0 such that ϕ((0 − δ, 1 + δ)) ⊆ U . (2)
For t ∈ (−δ, 1+ δ), D(f ◦ϕ)(t) = Df(ϕ(t))(b−a) by the chain rule and the previous lemma.

Let F : (−δ, 1 + δ) → R be given by F (t) = x · (f ◦ ϕ)(t). By the dot product rule,
F ′(t) = x ·Df(ϕ(t))(b−a) (recall x is a constant vector). Hence, by the single variable mean
value theorem, we have that there is a t0 such that

F (1)− F (0) = F ′(t0)(1− 0)

x · (f ◦ ϕ)(1)− x · (f ◦ ϕ)(0) = x ·Df(ϕ(t0))(b− a)
x · (f(b)− f(a)) = x ·Df(ϕ(t0))(b− a)

Thus let c = ϕ(t0) ∈ L(a, b) and we have the result.

7.4 Tangent Hyperplanes

Remark. Motivation: Notice that in the n = 1 case, if f : U → R (for open U ⊆ R1) is
differentiable at a ∈ U , then f ′(a)“ = ”∇f(a) is the slope of the tangent line to the curve
y = f(x) at x = a. We want to try and derive information from ∇f(a) about the tangent
hyperplane in higher dimensions.

For instance, the information we can determine for f : U → R where U ⊆ R2 is open. We
want to derive information about the tangent plane to the surface z = f(x, y) at (x, y) =
a ∈ U .

Definition. Hyperplane: A hyperplane in Rn is a subspace of the form

P = {(x1, x2, . . . , xn) ∈ Rn : a1x1 + a2x2 + · · ·+ anxn = d}

Where a1, . . . , an ∈ R are fixed and not all zero and d ∈ R. Notice a hyperplane in R2 is a
line and in R3 it is a plane.
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Definition. Normal (vector): Let P = {x1, . . . , xn) : a1x1 + · · · + anxn = d} be a
hyperplane in Rn. We call ~n = (a1, . . . , an) the normal or normal vector of P .

Remark. Hyperplanes Geometrically: Let P = {x1, . . . , xn) : a1x1 + · · · + anxn = d}
be a hyperplane. Let b = (b1, . . . , bn) ∈ P . So we have d = a1b1 + · · · + anbn. Now let
x = (x1, . . . , xn) ∈ Rn. So

x ∈ P ⇐⇒ d = a1x1 + · · ·+ anxn

⇐⇒ 0 = a1x1 + · · ·+ anxn − b
⇐⇒ 0 = a1(x1 − b1) + · · ·+ an(xn − bn)
⇐⇒ 0 = n · (x− b) dot product

Therefore, P = {x ∈ Rn : n · (x − b) = 0}. I.e. x ∈ P if and only if n is orthogo-
nal/perpendicular to x− b.

Definition. Tangent Hyperplane: Let A ⊆ Rn and a ∈ A. A hyperplane a ∈ P ⊆ Rn

with normal n is said to be tangent to A at a if

n · ak − a
‖ak − a‖

→ 0

for all sequences (ak) ⊆ A \ {a} such that ak → a.

Remark. Intuition of Tangent Hyperplanes: Recall that a, b ∈ Rn are orthogonal if
a · b = 0. So n · aj−a

‖aj−a‖ → 0 says unit vectors in the direction of ak − a become closer and
closer to being orthogonal to n as k →∞.

Example: The following is a visual representation of a tangent hyperplane tangent to a
sphere

Theorem: Let U ⊆ Rn be open and a ∈ U . Let f : U → R. If f is differentiable at a, then
the surface

S = {(x, z) ∈ Rn+1 : z = f(x), x ∈ U}
has a tangent hyperplane at (a, f(a)) with normal n = (∇f(a),−1).
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Proof.

Example: Find the tangent plane, P , to the surface z = 2x2 + y2 at (1, 1, 3). Consider
f : R2 → R given by f(x, y) = 2x2+y2. Notice fx and fy exist and are continuous on R2 thus
f is differentiable on R2. Now consider ∇f(x, y) = (4x, 2y), in particular ∇f(1, 1) = (4, 2).
So we have the normal of the tangent plane is n = (4, 2,−1). Notice we know that the
points of P are such that 4x + 2y − z = d and we already know (1, 1, 3) ∈ P . Therefore,
d = 4 · 1 + 2 · 1− 3 = 3. Thus

P = {(x, y, z) : 4x+ 2y − z = 3, x, y, z ∈ R}

Week 8 Applications of Differentiation

8.1 Higher Order Derivatives

Definition. Higher Order Partial: Higher order partial derivatives are defined recursively
by

∂kf

∂x1∂x2 · · · ∂xk
:=

∂

∂x1

(
∂k−1f

∂x2 · · · ∂xk

)
,

if it exists. We call k the order of the partial derivative. We also use the notation

fxkxk−1···x1 =
∂kf

∂x1∂x2 · · · ∂xk
.

Also note that I am not assuming the xi’s are distinct here.

Definition. Ck(U,Rm): Let f : U → Rm be a function on an open set U ⊆ Rn. We say
f ∈ Ck(U,Rm) if all partial derivatives of f of order less than or equal to k exist on U and
are continuous on U . If m = 1 we write Ck(U,R) = Ck(U).

Remark: For f : U → R differentiable at a ∈ U , we may think of ∇f(a) as a function from
Rn to R by

∇f(a)(h1, . . . , hn) =
∂f

∂x1
(a)h1 + · · ·+

∂f

∂xn
(a)hn = ∇f(a) · (h1, . . . , hn)

Definition. Higher Order Total Derivative: Let U ⊆ Rn be open and let f : U → R.
Let k ∈ N. Assume all partial derivatives of order less than or equal to k exist at a ∈ U . We
define the kth order total derivative of f at a by Dkf(a) : Rn → R by

Dkf(a)(h1, . . . , hn) =
n∑

i1=1

· · ·
n∑

ik=1

∂k

∂xi1 · · · ∂xik
(a)hi1hi2 · · ·hik

Example: Let f : R2 → R. Then

D2f(a)(h1, h2) = fxy(a)h
2
1 + fxy(a)h1h2 + fyx(a)h2h1 + fyy(a)h

2
2
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8.2 Taylor’s Theorem

Theorem. Taylor’s Theorem: Let p ∈ N. Let U ⊆ Rn and f ∈ Cp(U). For all x, a ∈ U
with L(x, a) ⊆ U , there exists c ∈ L(x, a) such that

f(x) = f(a) +

p−1∑
k=1

1

k!
Dkf(a)(x− a) + 1

p!
Dpf(c)(x− a)

Proof. Let x, a ∈ U and let h = x−a = (h1, . . . , hn). Since L(x, a) ⊆ U and U is open, there
is a δ > 0 such that a + th ∈ U for all t ∈ I := (−δ, 1 + δ). Now, the function g : I → R
given by g(t) = f(a+ th) is differentiable and by the chain rule

g′(t) = Df(a+ th)h =
n∑
i=1

∂f

∂xi
(a+ th)hi

Moreover, it may be shown by induction that for 1 ≤ j ≤ p,

g(j)(t) =
n∑

i1=1

· · ·
n∑

ij=1

∂jf

∂xi1∂xi2 · · · ∂xij
(a+ th)hi1 · · ·hij

Note that this exactly a higher-order total derivative. Hence we have for all 1 ≤ j ≤ p− 1

g(j)(0) = Djf(a)(h)

and
g(p)(t) = Dpf(a+ th)(h)

Therefore, g : I → R is p-times differentiable and in particular we have g : R → R thus by
the single variable Taylor’s Theorem

g(1)− g(0) =
p−1∑
k=1

1

k!
g(k)(0) +

1

p!
g(p)(t)

for some 0 ≤ t ≤ 1. Thus,

f(x)− f(a) = f(a+ h)− f(a) = g(1)− g(0) =
p−1∑
k=1

1

k!
Dkf(a)(h) +

1

p!
Dpf(a+ th)(h)

and so taking c = a+ th, the result is achieved.

8.3 Optimization

Definition. Local Max (resp. Local Min): Let U ⊆ Rn be open and let f : U → R.
Let a ∈ U . We say f(a) is local max (resp. local min) of f if there is an r > 0 such that
f(x) ≤ f(a) (resp. f(x) ≥ f(a)) for all x ∈ Br(a). We say f(a) is local extremum of f if it
is a local min or max.
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Remark: Suppose f : U → R is differentiable at a ∈ U and that f(a) is a local extremum
of f . Suppose a = (a1, . . . , an). Then gi(t) = f(a1, . . . , ai−1, t, ai+1, . . . , an) has a local

extremum at t = ai. Hence, g′i(ai) =
∂f

∂xi
(a) = 0 for all 1 ≤ i ≤ n. Therefore, ∇f(a) = 0.

Definition. Saddle Point: Let U ⊆ Rn be open and let f : U → R. Let a ∈ U . If
∇f(a) = 0 but f(a) is not a local extremum of f , we say a is a saddle point of f .

Example: Consider f(x, y) = x2− y2. So ∇f(x, y) = (2x, 2y) and so ∇f(0, 0) = 0, however
f has no local extrema, hence (0, 0) is a saddle point of f .

Lemma: Let U ⊆ Rn be open and let f ∈ C2(U). If a ∈ U such that D2f(a)(h) > 0 for all
0 6= h ∈ Rn, then there is an m > 0 such that

D2f(a)(x) ≥ m‖x‖2

for all x ∈ Rn.

Proof. Consider the compact set K = {x ∈ Rn : ‖x‖ = 1} (Heine-Borel). Since f ∈ C2(U),
we have that D2f(a) is continuous and positive on K. By the EVT, there is an m > 0 such
that m = min{D2f(a)(x) : x ∈ K}. For 0 6= x ∈ Rn, we then see that x

‖x‖ ∈ K and so

D2f(a)

(
x

‖x‖

)
=

1

‖x‖2
D2f(a)(x) ≥ m

Note that we extract 1
‖x‖ as a square because we take the second derivative. I.e. we are

summing across the product of two components of x, each divided by ‖x‖, hence we square.

Lemma: Let U ⊆ Rn be open and let f ∈ C2(U). Suppose a ∈ U is such that ∇f(a) = 0.
Let r > 0 be such that Br(a) ⊆ U . There is a function ε : Br(0)→ R such that

lim
h→0

ε(h) = 0

and
f(a+ h)− f(a) = 1

2
D2f(a)(h) + ‖h‖2ε(h)

for ‖h‖ sufficiently small.

Proof. Consider

ε(h) :=
f(a+ h)− f(a)− 1

2
D2f(a)(h)

‖h‖2

for 0 6= h ∈ Br(0) and define ε(0) := 0. We must show ε(h) → 0 as h → 0. Let h ∈ Br(0).
Since ∇f(a) = 0, by Taylor’s Theorem we have that

f(a+ h)− f(a) = 1

2
D2f(c)h
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for some c ∈ L(a, a+ h). So

0 ≤ |ε(h)| · ‖h‖ =
∣∣∣∣12D2f(c)(h)− 1

2
D2f(a)(h)

∣∣∣∣
≤
∑
i

∑
j

∣∣∣∣ ∂2f

∂xi∂xj
(c)− ∂2f

∂xi∂xj
(a)

∣∣∣∣ |hihj|
≤
∑
i

∑
j

∣∣∣∣ ∂2f

∂xi∂xj
(c)− ∂2f

∂xi∂xj
(a)

∣∣∣∣ ‖h‖

and
1

2

∑
i

∑
j

(
∂2f

∂xi∂xj
(c)− ∂2f

∂xi∂xj
(a)

)
→ 0

as h→ 0 because c→ a as h→ 0 and f ∈ C2(U).

Theorem. Second Derivative Test: Let U ⊆ Rn be open, let f ∈ C2(U). Let a ∈ U . If
∇f(a) = 0, then:

1. If ∀h 6= 0, D2f(a)(h) > 0, then f(a) is a local min.

2. If ∀h 6= 0, D2f(a)(h) < 0, then f(a) is a local max.

3. If ∃h, k ∈ Rn such that D2f(a)(h) > 0 and D2f(a)(k) < 0, then a is a saddle point.

Proof. Let r > 0 such that Br(a) ⊆ U . There is a function ε : Br(0)→ R such that

lim
h→0

ε(h) = 0

and
f(a+ h)− f(a) = 1

2
D2f(a)(h) + ‖h‖2ε(h)

for ‖h‖ sufficiently small.

1. Suppose D2f(a)(h) > 0 for all 0 6= h ∈ Rn. Let m > 0 be such that

D2f(a)(x) ≥ m‖x‖2,

for all x ∈ Rn. Then,

f(a+ h)− f(a) = 1

2
D2f(a)(h) + ‖h‖2ε(h) ≥

(m
2
+ ε(h)

)
‖h‖2 > 0

for all ‖h‖ sufficiently small, since m > 0 and ε(h)→ 0 as h→ 0. Therefore f(a+h) >
f(a) for all ‖h‖ sufficiently small, and so f(a) is a local minimum of f .

2. Follow from (1) by replacing f with −f .
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3. Let h ∈ Rn. For small t ∈ R,

f(a+ th)− f(a) = 1

2
D2f(a)(th) + ‖th‖2ε(th)

= t2
(
1

2
D2f(a)(h) + ‖h‖2ε(th)

)
.

Letting t→ 0, we have that ε(th)→ 0 and so f(a+ th)− f(a) takes the same sign as
D2f(a)(h), which can be both positive and negative. Therefore a is a saddle point.

Lemma: Let a, b, c ∈ R and let D := b2 − ac. Consider ϕ : R2 → R given by ϕ(h, k) =
ah2 + 2bhk + ck2. (1) If D < 0 then a and ϕ(h, k) have the same sign for all h, k 6= 0. (2) If
D > 0 then ϕ(h, k) takes on positive and negative values on its domain.

Theorem: Let U ⊆ R2 be open. Let f ∈ C2(U) and let ∇f(a, b) = 0. Let D := fxy(a, b)
2−

fxx(a, b)fyy(a, b) be the discriminant. (1) If D < 0 and fxx(a, b) > 0, then f(a, b) is a local
min. (2) If D < 0 and fxx(a, b) < 0, then f(a, b) is a local max. (3) If D > 0 then (a, b) is a
saddle point.

Proof. Follows from second derivative test along with the previous lemma for a = fxx(a, b),
b = fxy(a, b), c = fyy(a, b) and ϕ(h, k) = D2f(a, b)(h, k).

8.4 Examples

Example: Classify all local extrema and/or saddle points of f(x, y) = x4 − y4 − 4xy + 2.

Notice ∇f(x, y) = (4x3 − 4y, 4y3 − 4x) which is zero iff x3 = y and y3 = x, implying
x = y = 0, x = y = 1, or x = y = −1 (these are our “critical points"). Now notice taking
derivatives of our gradient we have fxx(x, y) = 12x2, fyy(x, y) = 12y2, fxy = −4.

At (x, y) = (0, 0), we have D = 16 − 0 · 0 > 0 (discriminant), meaning (0, 0) is a saddle
point. At (x, y) = (1, 1), we have D = 16 − 12 · 12 < 0, moreover fxx(1, 1) = 12 > 0 hence
(1, 1) is a local minimum. At (x, y) = (−1,−1), we have D = 16 − 12 · 12 < 0, moreover
fxx(1, 1) = 12 > 0 hence (−1,−1) is a local minimum.

Example: Let K = B1(0, 0). Find the absolute max and min of f : K → R given by
f(x, y) = 2x3 + y4.

Notice ∇f(x, y) = (6x3, 4y3) which is zero iff 6x3 = 0 and 4y3 = 0. Hence (0, 0) is the only
critical point, where we achieve f(0, 0) = 0. We now consider the boundary ∂(K) = {(x, y) :
x2 + y2 = 1}.

Notice on the boundary, we have f(x, y) = 2x3 + (1 − x2)2 = x4 + 2x3 − 2x2 + 1︸ ︷︷ ︸
g(x)

, where

we denote g(x) to be the expanded single variable representation of f(x, y). Maximizing
g(x) : [−1, 1]→ R, we have g′(x) = 4x3 + 6x2 − 4x = 2x(2x2 + 3x− 2) = 2x(2x− 1)(x+ 2).
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This is zero where x = 0, 1
2
,−2 (note x = −2 is illegal). Notice g(0) = 1, g(1) = 13

16
,

g(1) = 2, g(−1) = −2 and f(0, 0) = 0, so the absolute minimum is at (x, y) = (−1, 0) with
f(x, y) = −2 and the absolute maximum is at (x, y) = (1, 0) with f(x, y) = 2.

Week 9 Local Theorems

9.1 Inverse Function Theorem

Remark: Recall the definition of the single variable inverse function theorem. For I = (a, b),
let f : I → R is continuous and injective and let y ∈ f(I). Suppose y is such that f
is differentiable at x = f−1(y) ∈ I and f ′(x) 6= 0. Then f−1 is differentiable at y and
(f−1)′(y) = 1

f ′(x)
. To generalize to multiple variables, we need something more like a matrix

inverse given the derivative is a matrix.

Definition. Jacobian: Let U ⊆ Rn and let f : U → Rn. We defined the Jacobian of f at
a ∈ U by Jf(a) := det(Df(a))

Lemma: Let U ⊆ Rn be open. Suppose a ∈ U is such that we may find r > 0 such that
Br(a) ⊆ U . Let f : U → Rn be continuous and injective when restricted to Br(a) and
assume its first order partials exist on Br(a). If Jf 6= 0 on Br(a) then there exists ε > 0
such that Bε(f(a)) ⊆ f(Br(a)).

Proof. Consider g : Br(a) → R given by g(x) = ‖f(x) − f(a)‖. Since f is continuous and
injective on Br(a), we have that g is continuous and g(x) > 0 for all x 6= a. By the EVT,

m = inf{g(x) : ‖x− a‖ = r‖ > 0

Take ε = m
2
. We claim that Bε(f(a)) ⊆ f(Br(a)). Let y ∈ Bε(f(a)). Again by the EVT,

there exists b ∈ Br(a) such that

‖f(b)− y‖ = inf{‖f(x)− y‖ : x ∈ Br(a)}

For the sake of contradiction suppose that ‖b− a‖ = r. Then,

ε > ‖f(a)−y‖ ≥ ‖f(b)−y‖ ≥ ‖f(b)−f(a)‖−‖f(a)−y‖ = g(b)−‖f(a)−y‖ ≥ m−ε = 2ε−ε = ε

which is a contradiction. Therefore we have that b ∈ Br(a).

If we can show that y = f(b), we are done. This is where the information about the partial
derivatives and the Jacobian come into play. Consider the continuous function h : Br(a)→ R
given by h(x) = ‖f(x)−y‖. By construction, h(b) is the minimum value of b. Moreover, h2(b)
is also the minimum value of h2. Since b ∈ Br(a), which is open, we have that ∇h2(b) = 0
(derivative of h2, note that in last week’s proof we really just needed partials to exist at a,
not necessarily be differentiable at a). However,

h2(x) =
n∑
i=1

(fi(x)− yi)2
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and so for ever 1 ≤ j ≤ n,

0 =
∂h2

∂xj
(b) =

n∑
i=1

2(fi(b)− yi)
∂fi
∂xj

(b)

Thus, Df(b)x = 0, where x = (2(f1(b) − y1), . . . , 2(fn(b) − yn))
T ∈ Rn. Since Df(b) is

invertible (Jf(b) 6= 0 means non-zero determinant) we have that x = 0. Hence f(b) = y, as
desired.

Lemma: Let U ⊆ Rn be open and nonempty. If f : U → Rn is continuous, injective, has
all first-order existing on U , and is such that Jf 6= 0 on U , then f−1 is continuous on f(U).

Proof. To prove that f−1 : f(U)→ Rn is continuous, it suffices to prove that f(W ) is open
whenever W is open in Rn and W ⊆ U . This is since in this case W is relatively open in U
and U is open, so W is open. So whenever W is open subset of U then (f−1)−1(W ) = f(W )
is open. By a result in 4.2 f−1 is continuous.

Now let W ⊆ U be open and let b ∈ f(W ) such that b = f(a) for some a ∈ W . Since W
is open, there is an r > 0 such that Br(a) ⊆ W . By the previous lemma, there is an ε > 0
such that

Bε(b) ⊆ f(Br(a))

Thus, Bε(b) ⊆ f(W ), and so since b was arbitrary f(W ) is open.

Lemma: Let U ⊆ Rn be open and let f ∈ C1(U,Rn). If a ∈ U is such that Jf(a) 6= 0, then
there is an r > 0 such that Br(a) ⊆ U , f is injective on Br(a), Jf 6= 0 on Br(a) and

det

([
∂fi
∂xj

(ci)

]
n×n

)
6= 0

for all c1, . . . , cn ∈ Br(a).

Proof. Let W = U × U × · · · × U n times. Consider h : W → R given by

h(x1, . . . , xn) = det

([
∂fi
∂xj

(xi)

]
n×n

)
Since f ∈ C1(U,Rn) and a determinant is a polynomial in its entries, we have that h is
continuous. Note that h(a, a, . . . , a) = Jf(a) 6= 0. Thus we may find an open interval
h(a, a, . . . , a) ∈ I ⊆ R such that 0 /∈ I. Then by the continuity of h, h−1(I) is open (note
that W is open, hence relatively open in W is open). And so, there is an R > 0 such that
BR(a, a, . . . , a) ⊆ h−1(I). But then we may find r > 0 such that

Br(a)× · · · ×Br(a) ⊆ Br(a, . . . , a) ⊆ h−1(I)

We see then that Jf 6= 0 on Br(a) and

det

([
∂fi
∂xj

(ci)

]
n×n

)
6= 0
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for all c1, . . . , cn ∈ Br(a).

It remains to show that f is injective on Br(a). By way of contradiction, suppose there are
x 6= y in Br(a) with f(x) = f(y). Since f is differentiable on Br(a), every fi is differentiable
on Br(a). Fix 1 ≤ i ≤ n. By the MVT, there is a ci ∈ L(x, y) such that 0 = fi(x)− fi(y) =

Dfi(ci)(x− y). Letting A =

[
∂fi
∂xj

(ci)

]
we see that A(x− y) = 0. Since x− y 6= 0, A is not

invertible and so
det

(
∂fi
∂xj

(ci)

)
= 0

a contradiction.

Remark. Cramer’s Rule: Recall Cramer’s Rule: Let A be an n×n invertible matrix and
consider a system of equations Ax = b. This system has a unique solution (x1, . . . , xn)

T ∈ Rn

given by

xi =
det(A(i))

detA

where A(i) is the matrix obtained from A by replacing its ith column by b.

Theorem. Inverse Function Theorem: Let U ⊆ Rn be open and let f ∈ C1(U,Rn). If
a ∈ U is such that Jf(a) 6= 0, then there is an open a ∈ W ⊆ U such that

1. f is injective on W .

2. f−1 ∈ C1(f(W ),Rn).

3. And for all y ∈ f(W ) D(f−1)(y) = [Df(x)]−1 where x = f−1(y).

Proof. 1. By the third lemma, there is an r > 0 with W := Br(a) ⊆ U such that f is
injective on W , Jf 6= 0 on W , and

det

(
∂fi
∂xj

(ci)

)
6= 0

for all c1, . . . , cn ∈ W . Moreover, by the second lemma, f−1 is continuous on f(W ).

2. We wish to show f−1 ∈ C1(f(W ),Rn). Fix y0 ∈ f(W ) and 1 ≤ i, j ≤ n. Choose 0 6=
t ∈ R sufficiently small so that y0 + tej ∈ f(W ). We may find then x0, x1 = x1(t) ∈ W
such that f(x0) = y0 and f(x1) = y0 + tej. By the MVT, for every 1 ≤ i ≤ n there
exists ci = ci(t) ∈ L(x0, x1) such that

∇fi(ci)(x1 − x0) = fi(x1)− fi(x0) =

{
t if i = j

0 otherwise

Therefore,

∇fi(ci)
(
x1 − x0

t

)
=

1

t
(fi(x1)− fi(x0)) =

{
1 if i = j

0 otherwise
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Now let Aj be the n×n matrix whose ith row is ∇fi(ci). By assumption, det(Aj) 6= 0.
Moreover, Aj(x1−x0t

) = ej. For 1 ≤ k ≤ n, we see that

(f−1)k(y0 + tej)− (f−1)k(y0)

t
=
x1,k − x− 0, k

t

where by Cramer’s Rule, Qk(t) :=
x1,k−x0,k

t
is a quotient of determinants of matrices

whose entries are either 0, 1, or a first-order partial of f evaluated at a c`. As t → 0
we clearly have that y0 + tej → y0. But then, by the continuity off f−1, we have that
x1 → x0 and so ci → x0. Since f is C1, we therefore that that Qk(t)→ Qk, where Qk

is a quotient of determinants of matrices whose entries are either 0, 1, or a first-order
partial of f evaluated at x0 = f−1(y0). Since f ∈ C1 and f−1 is continuous at y0,it
follows that Qk is continuous at each y0 ∈ f(W ). Moreover

lim
t→0

(f−1)k(y0 + tej)− (f−1)k(y0)

t
= lim

t→0

x1,k − x0,k
t

= Qk

Hence all of the partial derivatives of f−1 exist and are continuous at y0 (i.e. f−1 ∈
C1(f(W ),Rn)).

3. Finally, we quickly run the chain rule and note that for y ∈ f(W ),

I = D Id(y) = D(f ◦ f−1)(y) = Df(f−1(y))D(f−1)(y)

The result follows.

Example: Let f : R2 → R2 be given by f(x, y) = (x+ y, sinx+cos y). Note that fx(x, y) =
(1, cosx) and fy(x, y) = (1,− sin y) hence f ∈ C1(R2,R2). Prove that f−1 exists and is
differentiable on some open set containing (0, 1) and compute D(f−1)(0, 1).

First we find the preimage:

f(x, y) = (0, 1)

⇐⇒ (x+ y, sinx+ cos y) = (0, 1)

⇐⇒ y = −x, sinx+ cos(−x) = 1

⇐⇒ y = −x, sinx+ cosx = 1

⇐⇒ (x, y) = (2kπ,−2kπ) OR (x, y) =
(π
2
+ 2kπ,−π

2
− 2kπ

)
where k ∈ Z

Case 1: a = (2kπ,−2kπ) for k ∈ Z. Then we have

Jf(a) =

∣∣∣∣1 1
1 0

∣∣∣∣ = −1 6= 0

So by Inverse Function Theorem, there is an open a ∈ W ⊆ R2 such that f is injective on
W and f−1 ∈ C1(f(W ),R2). Note (0, 1) ∈ f(W ). Moreover,

D(f−1)(0, 1) = [Df(a)]−1 =

[
1 1
1 0

]−1
=

[
0 1
1 −1

]
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Case 2: a = (π
2
+ 2kπ,−π

2
− 2kπ) for k ∈ Z. Then we have

Jf(a) =

∣∣∣∣1 1
0 1

∣∣∣∣ = 1 6= 0

Again, there is an open a ∈ W such that f−1 ∈ C1(f(W ),R2) with

D(f−1)(0, 1) = [Df(a)]−1 =

[
1 1
0 1

]−1
=

[
1 −1
0 1

]
Remark: The way we restrict f to make it injective depends on our choice for f−1(y). This
will affect the total derivative and the also the domain of the inverse. For instance, a true
inverse on R2 of f in the above example is impossible due to the trigonometric functions.

9.2 Implicit Function Theorem

Note: We want to determine when and where we can solve f(x, y, z) = 0 with z as a function
of x, y. I.e. when there is a g(x, y) : R2 → R with

{(x, y, z) ∈ R3 : f(x, y, z) = 0} = {(x, y, g(x, y)) : f(x, y, g(x, y)) = 0}

Example: Solve f(x, y, z) = (x2 + y2 + z2 − 1) = 0. Where U = {(x, y, z) ∈ R3 : z > 0}
then with

z = g(x, y) =
√
1− x2 − y2

we have on U f(x, y, g(x, y)) = 0.

Theorem. Implicit Function Theorem: Let U ⊆ Rn+p be an open set and let
f = (f1, . . . , fn) ∈ C1(U,Rn). Let x0 ∈ Rn and t0 ∈ Rp be such that f(x0, t0) = 0. If

det

[
∂fi
∂xj

(x0, t0)

]
n×n
6= 0

Then, there is an open set V with t0 ∈ V ⊆ Rp and a unique g ∈ C1(V,Rn) such that
g(t0) = x0 and f(g(t), t) = 0 for all t ∈ V .

Proof. For every (x, t) ∈ U , let

F (x, t) := (f(x, t), t) = (f1(x, t), . . . , fn(x, t), t1, . . . , tp)

Notice that F (x0, t0) = (0, t0). Then F is a function from U to Rn+p with

DF =


(
∂fi
∂xj

)
n×n

B

Op×n Ip×p


Taking the determinant of this matrix evaluated at (x0, t0), we have by our hypothesis

JF (x0, t0) = det

(
∂fi
∂xj

(x0, t0)

)
n×n
· det In×p 6= 0
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Therefore, by the inverse function theorem, there is an open set (x0, t0) ∈ W ⊆ U such that
F is injective on W and F−1 ∈ C1(F (W ),Rn+p).

To ease notation, let G = F−1 = (G1, . . . , Gn, Gn+1, . . . , Gn+p). Consider ϕ : F (W ) → Rn

given by ϕ = (G1, . . . , Gn)

By construction, we have that
ϕ(F (x, t)) = x

for all (x, t) ∈ W and
F (ϕ(x, t), t) = (x, t)

for all (x, t) ∈ W .

Consider V = {t ∈ Rp : (0, t) ∈ F (W )} and the function g : V → Rn given by g(t) = ϕ(0, t).
Since G is C1, it follows that ϕ is also C1. Hence g ∈ C1(V,Rn). Also note that V is open
since F (W ) is open. Finally, we compute that

g(t0) = ϕ(0, t0) = ϕ(F (x0, t0)) = x0

and note that for all (x, t) ∈ F (W ),

f(ϕ(x, t), t) = x

In particular,
0 = f(ϕ(0, t), t) = f(g(t), t) = 0

for all t ∈ V . Uniqueness follows from the injectivity of F .

Remark: A summary of the above theorem: we keep the last p variables, using t ∈ V ⊆ Rp

as these variables. Conversely g(t) ∈ Rn, are the first n variables which we replace by an
implicit function of t.

Example: Consider the equation xyz + sin(x, y + z) = 0 and in particular the function
f(x, y, z) = xyz+sin(x+ y+ z) so that f ∈ C1(R3). We want to replace the z variable with
an implicit function. Note that

f( 0, 0︸︷︷︸
t0

, 0︸︷︷︸
x0

) = 0

hence we have n = 1 in this case. Now

fz(x, y, z) = xy + cos(x+ y + z)

thus
det[fz(0, 0, 0)] = det[1] = 1 6= 0

hence by the implicit function theorem, there is an open V ⊆ R2 with (0, 0) ∈ V and
g(x, y) ∈ C1(V ) such that g(0, 0) = 0 and f(x, y, g(x, y)) = 0 for all x, y ∈ V . I.e. z = g(x, y)
on V .

Example: Prove there are functions u, v : R4 → R and there is an open set U with
(2, 1,−1,−2) ∈ U ⊆ R4 such that
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1. u, v ∈ C1(U).

2. u(2, 1,−1,−2) = 4 and v(2, 1,−1,−2) = 3.

3. For all x, y, z, w ∈ U , u2 + v2 + w2 = 29 and u2

x2
+ v2

y2
+ w2

z2
= 17.

where u and v are abuses of notation meaning u(x, y, z, w) and v(x, y, z, w) respectively in
clause 3.

Consider the function f : R6 → R2 given by

f(u, v, x, y, z, w) =

(
u2 + v2 + w2 − 29,

u2

x2
+
v2

y2
+
w2

z2
− 17

)
The aim is to use the implicit function theorem to keep x, y, z, w and rewrite u, v as functions
of x, y, z, w. We have that x0 = (4, 3) and t0 = (2, 1,−1,−2). Notice that f(4, 3, 2, 1,−1,−2) =
0 and

det

∂f1∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

 =

∣∣∣∣2u 2v
2u
x2

2v
y2

∣∣∣∣ = 4uv

(
1

y2
− 1

x2

)
Notice in particular this is non-zero at (4, 3, 2, 1,−1,−2). By the implicit function theorem,
there is an open set U with (2, 1,−1,−2) ∈ U ⊆ R4 and there is a g ∈ C1(U,R2) such
g(2, 1,−1,−2︸ ︷︷ ︸

t0

) = ( 4, 3︸︷︷︸
x0

) and for all (x, y, z, w) ∈ U ,

f(g(x, y, z, w), x, y, z, w) = 0

We’re done. Why? Write g as a scalar function g = (u, v) where u, v ∈ C1(U) (com-
ponents inherit continuous differentiability). Notice we have g(2, 1,−1,−2) = (4, 3), thus
u(2, 1,−1,−2) = 4 and v(2, 1,−1,−2) = 3. Also notice we have f(g(x, y, z, w), x, y, z, w) = 0
for (x, y, z, w) ∈ U . But this means we have (using our abuse of notation again)

u2 + v2 + w2 − 29 = 0 =
u2

x2
+
v2

y2
+
w2

z2
− 17

or u2 + v2 + w2 = 29 and u2

x2
+ v2

y2
+ w2

z2
= 17 for (x, y, z, w) ∈ U , as desired.

9.3 Lagrange Multipliers

Definition. Constrained Local Max (resp. Min): Let U ⊆ Rn be open and f : U → R.
Let a ∈ U . We say f(a) is a local max (resp. local min) of f subject to the constraints
gi : U → R for 1 ≤ i ≤ m if gi(a) = 0 for all 1 ≤ i ≤ m and there is an r > 0 such that
whenever x ∈ Br(a) and gi(x) = 0 for all i, then f(x) ≤ f(a) (resp. f(x) ≥ f(a)).

Theorem. Lagrange Multipliers: Let U ⊆ Rn be open and letm < n. Let f, g1, g2, . . . , gm ∈
C1(U). Suppose a ∈ U is such that

det

[
∂gi
∂xj

(a)

]
m×m

6= 0
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If f(a) is a local extremum of f subject to the constraints gi (for 1 ≤ i ≤ m), then there is
λ1, . . . , λm ∈ R such that

∇f(a) +
m∑
i=1

λi∇gi(a) = 0

Proof. This not a proof but rather the idea of how to prove such a theorem for m = 2, n = 3.
Let

A =

∂g1∂x1
(a)

∂g1
∂x2

(a)

∂g2
∂x1

(a)
∂g2
∂x2

(a)


with det(A) 6= 0. We wish to show that there is λ1, λ2 ∈ R such that

λ1
∂g1
∂xj

(a) + λ2
∂g2
∂xj

(a) = − ∂f
∂xj

(a) (1)

for j = 1, 2, 3. Notice by invertible matrix theorem there is a unique solution (in λ1, λ2) to
the equation [

λ1, λ2
]
A =

[
− ∂f

∂x1
(a) − ∂f

∂x2
(a)

]
This covers cases j = 1, 2 for (1). It remains to prove for j = 3

λ1
∂g1
∂x3

(a) + λ2
∂g2
∂x3

(a) = − ∂f

∂x3
(a) (2)

Here the proof becomes less rigorous. The idea is to use the implicit function theorem to
find replace x3 with a function such that x3 = h(x1, x2). We then prove (2) using what we
know about x1, x2 and the chain rule.

Example: Maximize and minimize f(x, y, z) = x+2y subject to the constraints (1) x+ y+
z = 1 and (2) y2 + z2 = 4. Geometrically this is the intersection of a plane and a cylinder.

Let f(x, y, z) = x+ 2y, g1(x, y, z) = x+ y + z − 1 and g2(x, y, z) = y2 + z2 − 4. Note that

det

∂g1∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

 =

∣∣∣∣1 1
0 2y

∣∣∣∣ = 2y 6= 0 for y 6= 0

Now if g1(x, 0, z) = g2(x, 0, z) = 0 then z = ±2 and x = 1 ∓ 2. In this case we have
f(1∓ 2, 0,±2) = 1∓ 2. Otherwise, a max/min must be of the form

∇f = λ1∇g1 + λ2∇g2
[1, 2, 0] = λ1[1, 1, 1] + λ2[0, 2y, 2z]

Thus we get the systems

1 = λ1 2 = λ1 + 2λ2y 0 = λ1 + 2λ2z
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Solving gives y = 1
2λ2

and z = − 1
2λ2

. But, y2 + z2 = 4 means 2
4λ22

= 4 which yields

λ2 = ±
1

2
√
2

y = ±
√
2 z = ∓

√
2 x = 1

plugging these in, we get a maximum and minimum respectively of

f(1,
√
2,−
√
2) = 1 + 2

√
2 and f(1,−

√
2,
√
2) = 1− 2

√
2

Unit 3 Integration

Week 10 Multi-variable Integrals

10.1 Riemann Integration

Remark: Recall for f : [a, b]→ R which is bounded:

1. A partition of [a, b] is a set P = {x0, x1, . . . , xn} with a = x0 < x1 < · · · < xn = b.

2. For a partition P = {x0, . . . , xn}:

U(f, P ) =
n∑
i=1

Mi(xi − xi−1)

L(f, P ) =
n∑
i=1

mi(xi − xi−1)

Mi = sup{f(x) : x ∈ [xi−1, xi]}
mi = inf{f(x) : x ∈ [xi−1, xi]}

3. We say f is integrable if and only if the upper and lower and lower Riemann integrals
are equal:

inf
P
{U(f, P )} :=

∫ b

a

f(x)dx =

∫ b

a

f(x)dx =: sup
P
{L(f, P )}

When f is integrable, we simply write its integral as∫ b

a

f(x)dx

Definition. Rectangle: A rectangle in Rn is a set of the form

R = [a1, b1]× [a2, b2]× · · · × [an, bn]

where for all 1 ≤ i ≤ n we have ai ≤ bi.
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Definition. Partition: Let R = [a1, b1]× · · · × [an, bn] ⊆ Rn be a rectangle. A partition of
R is a grid of rectangles on R obtained by partition each [ai, bi].

Definition. Volume of Rectangle: Let R = [a1, b1] × · · · × [an, bn] ⊆ Rn be a rectangle.
The volume of R is

v(R) := (b1 − a1)(b2 − a2) · · · (bn − an)

Definition. Upper Sum & Lower Sum: Let R ⊆ Rn be a rectangle and let f : R → R
be bounded. Let P = {R1, . . . , Rm} be a partition of R.

• The upper Riemann sum of f relative to P is

U(f, P ) =
n∑
i=1

Miv(Ri)

Mi = sup{f(x) : x ∈ Ri}

• The lower Riemann sum of f relative to P is

L(f, P ) =
n∑
i=1

miv(Ri)

mi = inf{f(x) : x ∈ Ri}

Definition. Refinement: Let P,Q be partitions of R ⊆ Rn. We say P is a refinement of
Q, written P ≤ Q, if P is obtained from Q by partitioning the sides of R even furthers.

Example: Consider the following partitions of R2 with P ≤ Q:

Q P

Proposition: Let P,Q be partitions of a rectangle R and let f : R → R be bounded. If
P ≤ Q then U(f, P ) ≤ U(f,Q) and L(f, P ) ≥ L(f,Q).

Proof. The proof would follow by generalizing the single variable case. See Snew’s notes,
lemma 1.10. General idea is that by adding a rectangle, we are taking the infimum on two
parts as opposed to a single. This gives makes the infimum larger in general. See Blake’s
lecture module 10.1 for a geometric proof.

Definition. Riemann Integral: Let R ⊆ Rn be a rectangle and let f : R→ R be bounded.
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• The lower integral of f is ∫
R

f := sup{L(f, P ) : P}

• The upper integral of f is ∫
R

f := inf{U(f, P ) : P}

• We say f is (Riemann) integrable over R if the upper and lower integrals of f are equal
and in this case ∫

R

f :=

∫
R

f =

∫
R

f

Example: Let f : [0, 1]× [0, 1]→ R be given by

f(x, y) =

{
1 if x ∈ Q
0 if x /∈ Q

then for all partitions P we have U(f, P ) = 1 and L(f, P ) = 0 by the density of the rationals
and irrationals. So ∫

R

f = 0 6= 1 =

∫
R

f

10.2 Characterization Theorem

Lemma: Let R ⊆ Rn be a rectangle and f : R → R be bounded. If P,Q are partitions of
R then L(f, P ) ≤ U(f,Q).

Proof. Find a common refinement S ≤ P , S ≤ Q (e.g. S overlaps P and Q) then

L(f, P ) ≤ L(f, S) ≤ U(f, S) ≤ U(f,Q)

Remark: Let R ⊆ Rn be a rectangle and f : R → R be bounded. For all partitions P,Q,
L(f, P ) ≤ U(f,Q). Thus

L(f, P ) ≤
∫
R

f ≤
∫
R

f ≤ U(f,Q)

Theorem: Let R ⊆ Rn be a rectangle and f : R → R be bounded. Then f is integrable if
and only if for all ε > 0, there is a partition P such that U(f, P )− L(f, P ) < ε.

Proof. ( =⇒ ) Suppose f is integrable. So we have∫
R

f =

∫
R

f
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Let ε > 0 be given. We may find partitions P,Q such that∫
R

f − ε

2
< L(f, P )

and ∫
R

f +
ε

2
> U(f,Q)

So, we have

U(f,Q) <

∫
R

f +
ε

2
=

∫
R

f − ε

2
+ ε < L(f, P ) + ε

Let S be a common refinement of P,Q (S ≤ P,Q). Therefore,

U(f, S) < U(f,Q) < L(f, P ) + ε < L(f, S) + ε

and so
U(f, S)− L(f, S) < ε

( =⇒ ) Assume for all ε > 0 there is a partition P such that U(f, P ) − L(f, P ) < ε. Let
ε > 0 be given. We may a partition P of R such that

U(f, P )− L(f, P ) < ε

Now

0 ≤
∫
R

f −
∫
R

f ≤ U(f, P )− L(f, P ) < ε

therefore, ∫
R

f =

∫
R

f

and so f is integrable

10.3 Content and Measure

Definition. Lebesgue Measure Zero: A set A ⊆ Rn has (Lebesgue) measure zero if for
all ε > 0 there exists rectangles Ri (for i ∈ N) such that

A ⊆
∞⋃
i=1

Ri

and
∞∑
i=1

v(Ri) < ε

Definition. Jordan Content Zero: A set A ⊆ Rn has (Jordan) content zero if for all
ε > 0 there exists rectangles R1, . . . , Rm such that

A ⊆
m⋃
i=1

Ri

3 Integration 51 10, Multi-variable Integrals



MATH 247 Spring 2021: Notes Jacob Schnell

and
m∑
i=1

v(Ri) < ε

Remark: The idea of having Lebesgue measure zero is that A is in a sense small and already
close to having volume of zero. We can cover A as finely as we want as to not add too much
volume in the covering.

Proposition: If A ⊆ Rn has content zero, then it has measure zero.

Proof. Let ε > 0 be given and suppose A has content zero. We know then there are rectangles

R1, . . . , Rm such that A ⊆ R1 ∪ · · · ∪ Rm and
m∑
i=1

v(Ri) < ε. For i > m, let Ri ⊆ Rn be any

rectangle with volume zero. (Note we never mentioned rectangle had to be non-degenerate.)

Therefore, A ⊆
∞⋃
i=1

Ri and
∞∑
i=1

v(Ri) =
m∑
i=1

V v(Ri) < ε

Example: Consider A = Q ⊆ R1. We claim Q has measure zero. Note that Q is countable.
We can therefore write Q = {q1, q2, q3, . . .}. Let ε > 0. Let Ri = [qi− ε

2i+2 , qi+
ε

2i+2 ]. Clearly

Q ⊆
∞⋃
i=1

Ri. Further
∞∑
i=1

v(Ri) =
∞∑
i=1

ε

2i+1
= ε

∑
i=1

1

2i+1
=
ε

2

By the properties of geometric series. Therefore, Q has measure zero. Since Q is unbounded,
it cannot be covered by finitely many rectangles, therefore it does not have content zero.
Thus, the converse of the above proposition is not true. Note the above proof also shows
that any countable set has measure zero.

Proposition: If A1, A2, A3, . . . ⊆ Rn have measure zero, then A =
∞⋃
i=1

Ai has measure zero.

Proof. Let ε > 0. We may find for each i ∈ N, we may find rectangles such that Ai ⊆
∞⋃
j=1

Ri,j

and such that
∞∑
j=1

v(Ri,j) <
ε
2i
. So we have

A =
∞⋃
i=1

Ai ⊆
∞⋃
i=1

∞⋃
j=1

Ri,j =
⋃

(i,j)∈N×N

Ri,j

and ∑
(i,j)∈N×N

v(Ri,j) =
∞∑
i=1

∞∑
j=1

v(Ri,j) <
∞∑
i=1

ε

2i
= ε
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Proposition: If A ⊆ Rn is compact and has measure 0 then A has content 0.

Proof. Let ε > 0 be given. By A9 Q3 there are open rectangles Ri such that A ⊆
∞⋃
i=1

Ri

and
∞∑
i=1

v(Ri) < ε. Since A is compact and
∞⋃
i=1

Ri forms an open cover of A, there is a finite

subcover, say Ri1 , . . . , Rim .

Hence A ⊆
m⋃
j=1

Rij and clearly
m∑
j=1

v(Rij) ≤
∞∑
i=1

v(Ri) < ε. Therefore A has content zero.

10.4 Integrability and Measure

Definition. Oscillation: Let A ⊆ Rn and let f : A→ R be bounded. For a ∈ A and δ > 0
let

M(a, f, δ) = sup{f(x) : x ∈ A, ‖x− a‖ < δ}
m(a, f, δ) = inf{f(x) : x ∈ A, ‖x− a‖ < δ}

o(f, a) = lim
δ→0

M(a, f, δ)−m(a, f, δ)

We call o(f, a) the oscillation of f at a.

Remark: The oscillation of f at a always exists (use MCT to show), f is continuous at a
if and only if o(f, a) = 0.

Proposition: Let A ⊆ Rn be closed and f : A→ R be bounded. Then for all ε > 0, the set
{x ∈ A : o(f, x) ≥ ε} is closed.

Proof. Let B = {x ∈ A : o(f, x) ≥ ε}. We will show that A \ B is relatively open, thereby
proving B is relatively closed in A, or simply closed. Let x ∈ A \ B. We know then that
o(f, x) < ε, and so there is a δ > 0 with

M(x, f, δ)−m(x, f, δ) < ε

Consider y ∈ Bδ/2(x) ∩ A. Then for any z ∈ A with |y − z| < δ
2
we have

|z − x| ≤ |z − y|+ |y − x| < δ

and so m(x, f, δ) ≤ f(z) ≤ M(x, f, δ). Therefore, since z was any point in with δ
2
of y, we

have
M

(
y, f,

δ

2

)
−m

(
y, f,

δ

2

)
≤M(x, f, δ)−m(f, x, δ) < ε

So o(f, y) < ε. Now since y ∈ Bδ/2(x)∩A was arbitrary, we have Bδ/2(x)∩A ⊆ A \B. Thus
since for an arbitrary x ∈ A \ B we can find an r > 0 such that Br(x) ∩ A ⊆ A \ B and so
A \B is relatively open. Thus as as mentioned above, B is closed as desired.

Proposition: Let R ⊆ Rn be a rectangle and f : R → R be bounded. Let ε > 0. If
o(f, x) < ε for all x ∈ R, then there is a partition P of R with U(f, P )− L(f, P ) < εv(R).
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Proof. Let ε > 0. For all x ∈ R we may find a δx > 0 such that

M(x, f, δx)−m(x, f, δx) < ε

For all x ∈ R, let Rx be an open rectangle such that

x ∈ Rx ⊆ B δx
2
(x)

Let Ux = Rx ∩R. We see that
R =

⋃
x∈R

Ux

is relatively open cover of R. Since R is compact, there exists x1, . . . , xm ∈ R such that

R = Ux1 ∪ · · · ∪ Uxm

Let P be a partition of R so fine that each subrectangle in P is contained in some Uxi
(possible since the R = Ux1 ∪ · · · ∪ Uxm). Note that

Uxi = Rxi ∩R ⊆ B δxi
2

∩R ⊆ Bδxi
∩R

Therefore, for ever Ri ∈ P , Mi −mi < ε. This is since each x ∈ Ri has ‖x − xj‖ < δxj for
some xj. Thus

m(xj, f, δxj) ≤ f(x) ≤M(xj, f, δxj)

(Alternatively think of it as the rectangle is a subset of Bδxj
(xj), thus the supremum is

smaller and infimum larger.) Therefore,

U(f, P )− L(f, P ) =
∑
Ri∈P

(Mi −mi)v(Ri) <
∑
Ri∈P

εv(Ri) = εv(R)

as desired

Theorem: Let R ⊆ Rn be a rectangle and f : R→ R be bounded. Let

A = {x ∈ R : f is not continuous at x}

Then f is integrable if and only if A has measure zero.

Proof. ( =⇒ ) Suppose f is integrable. Let ε > 0 be given. For every n ∈ N, let

Bn =

{
x ∈ R : o(f, x) ≥ 1

n

}
Since A = B1 ∪B2 ∪ · · · (recall a point is continuous iff o(f, x) = 0), it suffices to show that
each Bn has measure zero. Fix n ∈ N.

Since f is integrable, we may find a partition P of R such that U(f, P )−L(f, P ) < ε
n
. Let X

denote the collection of rectangles in P which intersect with Bn. In particular, the elements
of X cover Bn and are rectangles. Now if Ri ∈ X, then Mi−mi ≥ 1

n
by the definition of the
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oscillation function. This is since it contains both M(f, x, δ) and m(f, x, δ) for some x and
δ, therefore the difference it at least 1

n
. Then∑

Ri∈X

1

n
· v(Ri) ≤

∑
Ri∈X

(Mi −mi)v(Ri)

≤
∑
Ri∈P

(Mi −mi)v(Ri)

= U(f, P )− L(f, P ) < ε

n

In particular,
∑
Ri∈X

v(Ri) < ε and X covers Bn, so Bn has measure (in fact content) zero.

( ⇐= ) Suppose A has measure zero. Let ε > 0 be given. Let B = {x ∈ R : o(f, x) ≥ ε}
so that B is compact (follows since R is bounded and we proved it is closed). Since B ⊆ A
(again point is continuous iff o(f, x) = 0), we have that B also has measure zero. Since B
is compact, B also has content zero. In particular, we may find finitely many rectangles

U1, . . . , Um whose interiors cover B (A9 Q3) such that
m∑
i=1

v(Ui) < ε.

Let X denote the set of subrectangles of R which are contained in at least one Ui. Let Y
denote the set of subrectangles of R which are contained in R \B. Now since the Ui’s cover
B, we may find a partition P = {R1, . . . , Rk} fine enough so that the elements are from
either X or Y .

Since f is bounded, there exists M such that |f(x)| ≤ M for all x ∈ R. In particular for
every Ri ∈ P , Mi −mi ≤ 2M . By the definition of X,∑

Ri∈X

(Mi −mi)v(Ri) ≤ 2M
∑
Ri∈X

v(Ri) ≤ 2M
m∑
i=1

v(Ui) < 2Mε

Now, if Ri ∈ Y and x ∈ Ri, we have that o(f, x) < ε (since Ri ∈ R \ B). By a proposition
above, we may find a partition Pi = {Si1 , . . . , Siα(i)} of Ri such that

α(i)∑
j=1

(Mj −mj)v(Sij) < εv(Ri)

(Same trick as usual to show Mj −mj < ε.) By replacing each Ri ∈ Y with Si1 , . . . , Siα(i)
(and leaving the Ri ∈ X alone), this creates a refinement Q ≤ P . Finally,

U(f,Q)− L(f,Q) =
∑
Ri∈X

(Mi −mi)v(Ri) +
∑
Ri∈Y

α(i)∑
j=1

(Mj −mj)v(Sij)

< 2Mε+
∑
Ri∈Y

εv(Ri)

≤ 2Mε+ εv(R)

≤ ε(2M + v(R))

Since M and R are fixed, the result holds by the alternative characterization of integrability
(we can make the final term arbitrarily small).
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Remark: If A from the previous theorem has countably many points of discontinuity, then
A has measure zero and thus is integrable.

Week 11 Theorems of Integration

Notation: The following are notational equivalences with the latter being preferred:

1. Grid on R – Partition of R.

2. |R| – v(R) (e.g. volume of rectangle).

3. L
∫
R
f –

∫
R
f .

4. U
∫
R
f –

∫
R
f .

11.1 General Integrability

Definition. Characteristic Function: Let A ⊆ Rn be bounded. Let R be a rectangle
such that A ⊆ R. The characteristic function of A on R is χA : R→ R (symbol is the Greek
letter chi) given by

χA(x) =

{
1 if x ∈ A
0 if x /∈ A

Definition. General Integrability: Let A ⊆ Rn be bounded. Let f : A→ R be bounded
and let R be a rectangle with A ⊆ R. We extend f to f : R → R by setting f(x) = 0 for
all x ∈ R \ A. We say f : A→ R is integrable if and only if f · χA : R→ R is integrable, in
which case we defined ∫

A

f =

∫
R

f · χA

Note: The above definition is independent of the choice of R.

Remark: Let A ⊆ R and f : A → R be bounded. If f : R → R and χA : R → R are
integrable, then f · χA is integrable. Hence f would be integrable over A. We ask ourselves
then, when is χA : R→ R integrable?

Theorem: Let A ⊆ Rn be bounded and let A ⊆ R be a rectangle. The function χA : R→ R
is integrable if and only if ∂(A) has measure zero.

Proof. Let a ∈ R. We consider the following cases

1. a ∈ Int(A). Then there is an open ball Bδ(a) ⊆ A. Since χA = 1 on Bδ(a), χA is
clearly continuous at a.

2. a /∈ A. Then a ∈ Int(Rn \ A) and so there is an open ball Bδ(a) ⊆ Rn \ A. Since
χA = 0 on Bδ(a) ∩R, χA is clearly continuous at a.
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3. a ∈ A \ Int(A) = ∂(A). Then a ∈ A and a ∈ Rn \ Int(A) = Rn \ A. In particular,
for all δ > 0 there exists x ∈ A and y ∈ R \ A such that ‖x − a‖, ‖y − a‖ < δ. Thus,
O(χA, a) ≥ 1 and so χA is not continuous at a.

So χA is discontinuous at a if and only if a ∈ ∂(A). Therefore, the set of discontinuities of
A is ∂(A) and so χA is integrable if and only if ∂(A) has measure zero.

Definition. Jordan Region: Let A ⊆ Rn be bounded. We call A a Jordan region if and
only if ∂(A) has measure zero (if and only if χA is integrable on A ⊆ R).

Definition. Volume of Jordan Region: If A is a Jordan region with A ⊆ R for some
rectangle, we defined the volume of A by

V ol(A) =

∫
R

χA =

∫
A

1

Proposition: Let A,B ⊆ Rn be Jordan regions. Then (1) A ∪ B is a Jordan Region and
(2) if A ∩B = ∅ and f : A ∪B → R is integrable, then∫

A∪R
=

∫
A

f +

∫
B

f

Proof. 1. Notice that

∂(A ∪B) = (A ∪B) \ Int(A ∪B)

⊆ (A ∪B) \ IntA ∪ IntB

⊆ (A \ IntA) ∪ (B \ IntB)

= ∂(A) ∪ ∂(B)

Hence since union of measure zero sets have measure zero, ∂(A∪B) has measure zero.
Since ∂(A ∪B) heas measure zero, A ∪B is a Jordan Region.

2. Let A ∪B ⊆ R for some rectangle R. Then∫
A∪B

f =

∫
R

f · χA∪B

=

∫
R

f(χA + χB) (*)

=

∫
R

fχA +

∫
R

fχB

=

∫
A

f +

∫
B

f

where * holds since if x ∈ A ∪ B then given A ∩ B = ∅, x is distinctly in A or in B,
so one of χA or χB is 1, while the other is zero. Similarly, if (χA + χB)(x) = 1, then
either x in A or x ∈ B, either way x ∈ A ∪B.

And so, the result holds as desired.
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11.2 Fubini’s Theorem

Notation: Let B ⊆ R2 be a Jordan region and f : B → R be integrable. We denote∫
B

f(v)dv ≡
∫∫

B

f(x, y)dA

Here the v is a pair (x, y) in B and the A is to denote the area of B. Similarly, where
B ⊆ R3, we may write ∫

B

f(v)dv ≡
∫∫∫

B

f(x, y, z)dV

where the V denotes the volume of B, and again v is a tuple (x, y, z).

Lemma: Let R = [a, b]× [c, d] ⊆ R2 and f : R→ R be bounded. If f(x, ·) : [c, d]→ R given
by f(x, ·)(y) = f(x, y) is integrable for all x ∈ [a, b], then∫∫

R

f(x, y)dA ≤
∫ b

a

(∫ d

c

f(x, y)dy

)
dx ≤

∫ b

a

(∫ d

c

f(x, y)dy

)
dx ≤

∫∫
R

f(x, y)dA

Proof. The middle inequality is obvious by a result from week 10. We prove the third
inequality as the first inequality follows similarly.

Let ε > 0 be given. Let P be a partition on R such that

U(f, P )− ε ≤
∫∫

R

f(x, y)dA

Without loss of generality suppose P = {Rij : 1 ≤ i ≤ k, 1 ≤ j ≤ `} and suppose Rij =
[xi−1, xi] × [yj−1, yj] where x0 = a, xk = b, y0 = c, y` = d. Let Mij = sup{f(v) : v ∈ Rij}.
Then we have ∫ b

a

(∫ d

c

f(x, y)dy

)
dx =

k∑
i=1

∫ xi

xi−1

(∑̀
j=1

∫ yi

yi−1

f(x, y)dy

)
dx

≤
k∑
i=1

∑̀
j=1

∫ xi

xi−1

(∫ yi

yi−1

f(x, y)dy

)
dx (*)

≤
k∑
i=1

∑̀
j=1

∫ xi

xi−1

(∫ yi

yi−1

Mijdy

)
dx

=
k∑
i=1

∑̀
j=1

Mij(xi − xi−1)(yj − yj−1)

=
∑
Rij∈P

Mijv(Rij)

= U(f, P )

≤
∫∫

R

f(x, y)dA+ ε
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Note * holds because for all functions f, g : [a, b]→ R, we have∫ b

a

(f + g)(x)dx ≤
∫ b

a

f(x)dx+

∫ b

a

g(x)dx

The proof would follow mostly from writing Riemann sums and using the triangle inequality.

Theorem. Fubini’s Theorem: Let R = [a, b] × [c, d] ⊆ R2 and let f : R → R be
integrable. If f(x, ·) and f(·, y) (given as f(x, · : [c, d]toR with f(x, ·)(y) = f(x, y) and
similarly for f(·, y)) are integrable over [c, d] and [a, b] respectively, for all x ∈ [a, b] and
y ∈ [c, d], then ∫∫

R

f(x, y)dA =

∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy

Proof. Since f is integrable, ∫∫
R

f(x, y)dA =

∫∫
R

f(x, y)dA

By our Lemma, this means we have∫∫
R

f(x, y)dA =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx =

∫∫
R

f(x, y)dA

and so ∫∫
R

f(x, y)dA =

∫ b

a

∫ d

c

f(x, y)dydx

Reversing the roles of x and y in the lemma, we get the other equality and so the theorem
is complete.

Remark: When we integrate a function f : A→ R with A ⊆ Rn as∫ bn

an

∫ bn−1

an−1

· · ·
∫ b1

a1

f(x1, x2, . . . , xn)dx1dx2 · · · dxn

we call this an iterated integral.

Remark: Let the setup be like that of the above theorem. If f is continuous, then all the
premises are met.

Example: Let R = [1, 2]× [0, π] and calculate∫∫
R

y sin(xy)dA
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Note that f(x, ·) and f(·, y) are both continuous on any closed Jordan region and therefore
integrable. We have by Fubini’s theorem that∫∫

R

y sin(x, y)dA =

∫ π

0

∫ 2

1

y sin(xy)dxdy

=

∫ π

0

[
− cos(xy)

]2
x=1

dy

=

∫ π

0

cos(y)− cos(2y)dy

=
[
sin(y)− 1

2
sin(2y)

]π
y=0

= 0

Note if we had done integration on y then on x, we would have had to do a difficult integration
by parts. Thus always try and pick the easier integral to evaluate.

11.3 Iterated Integrals

Theorem. Generalized Fubini’s Theorem: Let R = [a1, b1] × · · · × [an, bn] ⊆ Rn and
f : R → R be integrable. Denote Rn = [a1, b1]× [an−1, bn−1] ⊆ Rn−1. If f(x, ·) is integrable
for all x ∈ Rn, then

∫ bn
an
f(x, t)dt is integrable on Rn and∫

R

f(v)dv =

∫
Rn

∫ bn

an

f(x, t)dtdx

Remark: If f : R→ R is continuous (for R = [a1, b1]× · · · × [an, bn]), then∫
R

f(v)dv =

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, x2, . . . , xn)dxndxn−2 · · · dx1

Proof. The proof follows very similarly from the n = 2 case above.

Definition. Type 1, 2 Regions in R2: We say A ⊆ R2 is type 1 if

A = {(x, y) : x ∈ [a, b], ϕ(x) ≤ y ≤ ψ(x)

for some continuous functions ϕ, ψ : [a, b]→ R. Conversely, we say A ⊆ R2 is type if

A = {(x, y) : y ∈ [a, b], ϕ(y) ≤ x ≤ ψ(y)

for some continuous functions ϕ, ψ : [a, b]→ R.

Example: The following are type 1 and type 2 regions respectively
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Notice in both cases there is a sort of “line" cutting off the region vertically for a type 1
region and horizontally for a type 2 region.

Definition. Type 1, 2, 3 Regions in R3: We say A ⊆ R3 is of

Type 1 If A = {(x, y, z) : (x, y) ∈ H,ϕ(x, y) ≤ z ≤ ψ(x, y)}

Type 2 If A = {(x, y, z) : (x, z) ∈ H,ϕ(x, y) ≤ y ≤ ψ(x, y)}

Type 3 If A = {(x, y, z) : (y, z) ∈ H,ϕ(x, y) ≤ x ≤ ψ(x, y)}

where H ⊆ R2 is a closed Jordan region and ϕ, ψ : H → R are continuous.

Proposition: Regions of type 1, 2, and 3 are all Jordan regions.

Proof. Intuitively this is because they will have boundaries which are simply lines. These
lines can be covered by infinitely small rectangles, giving them measure zero.

Theorem: Let A ⊆ R2 and f : A→ R be continuous. (1) If A is of type 1 such that

A = {(x, y) : x ∈ [a, b], ϕ(x) ≤ y ≤ ψ(x)}

for some continuous functions ϕ, ψ : [a, b]→ R, then∫
A

f(v)dv =

∫ b

a

∫ ψ(x)

ϕ(x)

f(x, y)dydx

(2) If A is of type 2 such that

A = {(x, y) : y ∈ [a, b], ϕ(y) ≤ y ≤ ψ(y)}

for some continuous function ϕ, ψ : [a, b]→ R, then∫
A

f(v)dv =

∫ b

a

∫ ψ(y)

ϕ(y)

f(x, y)dxdy
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Proof. We will prove (1), the proof of (2) follows similarly.

Let R = [a, b]× [c, d] (same a, b as in hypothesis; note we can find c, d by the EVT since ϕ, ψ
are continuous) be a rectangle containing A. We extend f from A to R by setting f(v) = 0
for v ∈ R \ A. By Fubini’s theorem,∫

A

f(v)dv =

∫
R

f(v)dv =

∫ b

a

∫ d

c

f(x, y)dydx

However, if it is not the case that

ϕ(x) ≤ y ≤ ψ(x)

then f(x, y) = 0 and so integrating over this part is integrating over zero. We may thus
write ∫

A

f(v)dv =

∫ b

a

∫ ψ(x)

ϕ(x)

f(x, y)dydx

Theorem: Let A ⊆ R3 and f : A→ R be continuous. (1) If A is of type 1 such that

A = {(x, y, z) : (x, y) ∈ H,ϕ(x, y) ≤ z ≤ ψ(x, y)}

for some continuous function ϕ, ψ : H → R where H is a closed Jordan region, then∫
A

f(v)dv =

∫
H

∫ ψ(x,y)

ϕ(x,y)

f(u, z)dzdu

A similar result holds for A being of type 1 and type 2, replacing the appropriate variables.

Proof. Follows similarly to the R2 case.

Remark: Note in the above theorem, if H were to be not only a closed Jordan region, but
also to be of type 1 or 2 (in R2), then we may split the integral again as in the theorem for
the R2 case.

11.4 Examples

Example: Let D ⊆ R2 be the region bounded between 0 ≤ x ≤ 1 and 0 ≤ y ≤ x2. Compute
the integral of x cos y on this region. The region is shaded in blue in the figure below
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−1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

y = x2

Notice clearly this is a type 1 region, since 0 and x2 are continuous, thus∫∫
D

x cos ydA =

∫ 1

0

∫ x2

0

x cos ydydx

=

∫ 1

0

[
x sin y

]y=x2
y=0

dx

=

∫ 1

0

x sinx2dx

=
[
− 1

2
cosx2]1x=0

= −1

2
cos 1 +

1

2

Example: Compute ∫ 1

0

∫ 3

3y

ex
2

dxdy

Notice ex2 cannot be easily calculated, so we’re in a tricky situation. We remark that this
is equivalent to integrating over the region 0 ≤ y ≤ 1 and 3y ≤ x ≤ 3. Since the region is
delimited by x = 3y for y ∈ [0, 1], we can also write y = 1

3
x as x ∈ [0, 3] giving the equivalent
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region D given by 0 ≤ x ≤ 3, 0 ≤ y ≤ 1
3
x. Therefore,∫ 1

0

∫ 3

3y

ex
2

=

∫∫
D

ex
2

dA

=

∫ 3

0

∫ 1
3
x

0

ex
2

dydx

=

∫ 3

0

[
ex

2

y
]y= 1

3
x

y=0
dx

=

∫ 3

0

1

3
xex

2

=

[
1

6
ex

2

]3
x=0

=
1

6
(e9 − 1)

Example: Find the volume of the tetrahedron T enclosed by x = 0, y = 0, z = 0 and
2x+ y + z = 4 shown below

Notice the bottom face is a triangle with edges x = 0, y = 0, and hypotenuse y = 2x − 4
(keeping z constant). We may then write the tetrahedron as

T = {(x, y, z) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 4− 2x, 0 ≤ z ≤ 4− 2x− y}

We will write
H = {(x, y) : 0 ≤ x ≤ z, 0 ≤ y ≤ 4− 2x}

denoting the bottom face as a type 1 region, so that we may write

T = {(x, y, z) : (x, y) ∈ H, 0 ≤ z ≤ 4− 2x− y}
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also being a type 1 region. So we have∫∫∫
T

1dv =

∫∫
H

∫ 4−2x−y

0

1dz︸ ︷︷ ︸
continuous

dA

=

∫ 2

0

∫ 4−2x

0

∫ 4−2x−y

0

1dzdydx

=

∫ 2

0

∫ 4−2x

0

4− 2x− y

=

∫ 2

0

[
(4− 2x)y − 1

2
y2
]y=4−2x

y=0

dx

=

∫ 2

0

1

2
(4− 2x)2dx

=
16

3

Week 12 Change of Variables

12.1 Polar Co-ordinates

Remark: Recall for f : A→ Rm with a ∈ A ⊆ Rn, the Jacobian of f at a is

Jf(a) = det(Df(a))

Theorem. Change of Variables: Let U ⊆ Rn be open, and A ⊆ U be a closed Jordan
region. Let f : A→ R be continuous and let ϕ ∈ C1(U,Rn).

Suppose there is a set B ⊆ A with (1) vol(B) = 0, (2) ϕ is injective on A \ B, and (3)
Jϕ(a) 6= 0 for all a ∈ A \ B. Suppose f : ϕ(A)→ Rn is continuous. Then ϕ(A) is a Jordan
region, f is integrable on ϕ(A) and∫

ϕ(A)

f(x)dx =

∫
A

f(ϕ(x))|Jϕ(x)|dx

Proof. The proof is long and technical, what follows is only some cases which give reason
to the claim. In the case where n = 1, Jϕ(x) = ϕ′(x) and so this looks more like the
u-substitution formula of first year calculus. We take the absolute since the injectivity of ϕ
tells us ϕ′ is either always positive or always negative (otherwise would eventually have ϕ
achieve same value twice).

Remark. Polar Co-ordinates: Recall polar co-ordinates are an alternative representation
of points in R2 represented as (r, θ) for r ≥ 0 and 0 ≤ θ < 2π.

Note: Note that the function ϕ ∈ C1(R2,R2) given by ϕ(r, θ) = (r cos θ, r sin θ) converts
from polar to cartesian co-ordinates. Further, ϕ is injective on

R2 \ {(0, θ) : 0 ≤ θ < 2π}
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and in particular
{(0, θ) : 0 ≤ θ < 2π}

is a line and thus has volume zero. Finally notice

|Jϕ(r, θ)| =
∣∣∣∣det(cos θ −r sin θsin θ r cos θ

)∣∣∣∣
= |r cos2 θ + r sin2 θ|
= |r| = r

This makes ϕ incredibly useful for integrals in polar co-ordinates because∫∫
ϕ(D)

f(x, y)dA =

∫∫
D

f(r cos θ, r sin θ)rdA

Example: Let D be the region bounded above by x2 + y2 = 9 and below by the x-axis
shown below

−4 −2 2 4

−4

−2

2

4

Compute
∫∫

D

cos(x2 + y2)dA.

Notice D can equally be given by

D = {(r, θ) : 0 ≤ r ≤ 3, 0 ≤ θ ≤ π}

So we have ∫∫
D

cos(x2 + y2)dA =

∫∫
D

cos(r2 cos2 θ + r2 sin2 θ)r dA

=

∫∫
D

cos(r2)r dA

=

∫ π

0

∫ 3

0

cos(r2)r drdθ

=

∫ π

0

[
1

2
sin(r2)

]3
r=0

dθ

=

∫ π

0

1

2
sin 9dθ

=
π

2
sin 9
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12.2 Cylindrical Co-ordinates

Remark. Cylindrical Co-ordinates: We can equally use polar co-ordinates in R3 by using
polar co-ordinates to denote the location in the xy plane and keeping the z value constant.
These are called cylindrical co-ordinates based on how one finds these co-ordinates. Below
is an image representing a cylindrical co-ordinate system

Note: We may convert these cartesian co-ordinate by

ϕ(r, θ, z) = (r cos θ, r sin θ, z)

We remark that

|Jϕ(r, θ, z)| =

∣∣∣∣∣∣det
cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1

∣∣∣∣∣∣ = r

and that ϕ is injective everywhere except

{(0, θ, z) : 0 ≤ θ < 2π, z ∈ R}

which is a region of volume zero. Hence∫∫∫
ϕ(A)

f(x, y, z)dV =

∫∫∫
A

f(r cos θ, r sin θ, z)r dV

Example: Let A be the region enclosed by (1) the paraboloid z = 1 + x2 + y2, (2) the
cylinder x2 + y2 = 5, and (3) the xy plane as shown below
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Compute
∫∫∫

A

ezdV .

Notice we have

A = {(r, θ, z) : 0 ≤ r ≤
√
5, 0 ≤ θ < 2π, 0 ≤ z ≤ x2 + y2}

= {(r, θ, z) : 0 ≤ r ≤
√
5, 0 ≤ θ < 2π, 0 ≤ z ≤ r2}

Therefore, ∫∫∫
A

ezdV =

∫ √5
0

∫ 2π

0

∫ r2

0

ezr dzdθdr

=

∫ √5
0

∫ 2π

0

[
ezr
]z=1+r2

z=0
dθdr

=

∫ √5
0

∫ 2π

0

re1+r
2 − r dθdr

= 2π

∫ √5
0

re1+r
2 − r dr

= 2π

[
1

2
e1+r

2 − 1

2
r2
]√5
r=0

= 2π

(
1

2
e6 − 5

2
− 1

2
e

)
= π(e6 − e− 5)

12.3 Spherical Co-ordinates

Remark. Spherical Co-ordinates: We may also write co-ordinates in R3 using spherical
co-ordinates, where we specify the angle relative to the xy axis, θ, and the angle relative
to the zx axis, φ, of the point on a sphere of radius ρ. This gives us a tuple (ρ, θ, φ). A
repreentation of a spherical co-ordinate system follows
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Note: We may convert these to cartesian co-ordinate by the following equations

x = r cos θ r = ρ sinφ
y = r sin θ z = ρ cosφ

Notice that x2 + y2 + z2 = ρ2. We may also use the formula

ϕ(ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)

We remark that

|Jϕ(ρ, θ, φ)| =

∣∣∣∣∣∣det
sinφ cos θ −ρ sinφ sin θ ρ cosφ cos θ
sinφ sin θ ρ sinφ cos θ ρ cosφ sin θ
cosφ 0 −ρ sinφ

∣∣∣∣∣∣ = ρ2 sinφ

and that ϕ is injective everywhere except

{(0, θ, φ) : 0 ≤ θ < 2π, 0 ≤ φ < π}

which is a region of volume zero. Hence∫∫∫
ϕ(A)

f(x, y, z)dV =

∫∫∫
A

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφ dV

Example: Find the volume of a sphere delimited by

x2 + y2 + z2 = a2

Notice this area can equally be given by

S = {(ρ, θ, φ) : 0 ≤ ρ ≤ a, 0 ≤ θ < 2π, 0 ≤ φ < π}

and so

V ol(S) =

∫
S

1dv

=

∫∫∫
S

1dxdydz

=

∫ a

0

∫ 2π

0

∫ π

0

ρ2 sinφ dφdθdρ

=

∫ a

0

∫ 2π

0

[
− ρ2 cosφ

]π
φ=0

dθdρ

=

∫ a

0

∫ 2π

0

2ρ2 dθdρ

= 2π

∫ a

0

2ρ2 dρ

= 2π

[
2

3
ρ3
]a
ρ=0

=
4π

3
a3

Example: Find the volume of the solid which is bounded below by the cone z =
√
x2 + y2

and above by the sphere x2 + y2 + z2 = z shown below
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Notice that

x2 + y2 + z2 = z ⇐⇒ x2 + y2 +

(
z − 1

2

)2

=
1

2

We can also write the cone as

ρ cosφ =

√
ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ = ρ sinφ

and so
C =

{
(ρ, θ, φ) : ρ = 0 ∨ φ =

π

4

}
The sphere can be written as as

ρ2 = ρ cosφ

and so
S = {(ρ, θ, φ) : ρ = 0 ∨ ρ = cosφ}

Letting D be the above solid, then its volume is∫∫∫
D

1dV =

∫ 2π

0

∫ π
4

0

∫ cosφ

0

ρ2 sinφ dρdφdθ

=

∫ 2π

0

∫ π
4

0

[
1

3
ρ3 sinφ

]ρ=cosφ

ρ=0

dφdθ

=

∫ 2π

0

∫ π
4

0

1

3
cos3 φ sinφ dφdθ

=

∫ 2π

0

[
− 1

12
cos4 φ

]π
4

φ=0

=

∫ 2π

0

1

16

=
π

8

Remark: All the above co-ordinate If z can have its upper and lower curves defined as
a function of x and y, then it is often preferable to use cylindrical co-ordinates, otherwise
spherical may be be better.
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Saddle Point, 37
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Total Derivative, 25
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Uniform Convergence, 20
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Fubini’s Theorem, 59
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Heine-Borel, 13
Implicit Function Theorem, 44
Inverse Function Theorem, 42
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Lebesgue Number Lemma, 14
Limit Laws, 6
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Standalone Definition of Openness, 8
Sum and Scalar Multiplication Rules, 29
Taylor’s Theorem, 36
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