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09/07, lecture 1-1

Chapter 1 Groups

1.1 Notation

Notation. Number Notation: We use the following conventions:

• N = {1, 2, . . .}

• Z = {. . . ,−2,−1, 0, 1, 2, . . .}

• Q = {a
b
: a ∈ Z, b ∈ N}

• R = real numbers

• C = {a+ bi : a, b ∈ R, i2 = −1}.

• Zn = {[0], [1], . . . , [n − 1]} is the integers modulo n for n ∈ N and where [r] is the
congruence class given by {z ∈ Z : z ≡ r (mod n)} for 0 ≤ r ≤ n− 1.

Notation. Matrix Notation: For n ∈ N, an n× n matrix over a field is a n× n array

A = [aij] =

a11 · · · a1n
... . . . ...

an1 · · · ann


We denote Mn(F) the set of n× n matrices over F. Recall the usual matrix operations.

1.2 Groups

Definition. Group: Let G be a set and ⋆ be an operation on G × G. We say G = (G, ⋆)
is a group if it satisfies

1. Closure: If a, b ∈ G then a ⋆ b ∈ G.

2. Associativity: If a, b, c ∈ G then a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c.

3. Identity: There is an element e ∈ G such that a ⋆ e = a = e ⋆ a for all a ∈ G. We call
e the identity of G.

4. Inverse: For all a ∈ G, there is a b ∈ G such that a⋆b = e = b⋆a. We call b the inverse
of a.

Proposition 1: Let G be a group and a ∈ G. Then

1 Groups 3 1.2, Groups
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1. The identity of G is unique.

2. The inverse of a is unique.

Proof. 1. If e1 and e2 are identities, then e = e1 ⋆ e2 = e2.

2. If b1 and b2 are inverses of a, then

b1 = b1 ⋆ e = b1 ⋆ (a ⋆ b2) = (b1 ⋆ a) ⋆ b2 = e ⋆ b2 = b2

Definition. Abelian Group: A group G is said to be abelian if a⋆b = b⋆a for all a, b ∈ G.
I.e., if the group operation is commutative.

Example: The sets (Z,+), (Q,+), (R,+), (C,+) are abelian groups with identity 0 and
the inverse of a given by −a. However, (N,+) is not a group since there is no identity nor
inverses. Similarly, (Q, ·), (R, ·), and (C, ·) are not groups since 0 has no inverse.

Notation: For a set S, let S∗ denote the subset of S containing only elements with multi-
plicative inverses.

Example: With the above notation we have Q∗ = Q \ {0}. And so (Q∗, ·), (R∗, ·), and
(C∗, ·) are abelian groups with identity 1 and the inverse of r given by 1

r
.

09/09, lecture 1-2

Remark: To show e is an identity of G, it suffices to show that e ⋆ a = a for all a ∈ G.
Similarly to show b is an inverse of a it suffices to show a ⋆ b = e.

Example: The set (Mn(R),+) is an abelian group with identity O (the zero matrix) and
the inverse of A = [aij] is given by −A = [−aij].

Example: The set (Mn(R), ·) has identity In (the identity matrix), but not all matrices
have inverse so Mn(R) is not a group.

Definition. General Linear Group: The set GLn(F) = {M ∈ Mn(F) : det(M) ̸= 0} is
called the general linear group of degree n over F.

Remark: Note if A,B ∈ GLn(R), then det(A·B) = det(A)·det(B) ̸= 0, so GLn(R) is closed
under ·. Furthermore, we know matrix multiplication is associative (MATH 146). Note the
identity In has det(In) = 1 ̸= 0, so In ∈ GLn(R). Finally note since all M ∈ GLn(R) have
det(M) ̸= 0, we know M has an inverse M−1 and that det(M−1) ̸= 0. Therefore, we see
that GLn(R) is a group. However, since not all matrices commute GLn(R) is not abelian for
n ≥ 2.

Definition. Direct Product: Let (G, ⋆G) and (H, ⋆H) be groups. Their direct product is
the set G×H with the component-wise group operation ⋆ given by

(g1, h1) ⋆ (g2, h2) = (g1 ⋆G g2, h1 ⋆H h2).

Note: Note for any groups G and H, the direct product G×H is a group. In particular it
has identity (1G, 1H) where 1G is the identity of G and 1H is the identity of H. The inverse

1 Groups 4 1.2, Groups
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of (g, h) ∈ G×H is given by (g, h)−1 = (g−1, h−1). Furthermore, we can show by induction
that if G1, . . . , Gn are groups, then G1 × · ×Gn is a group.

Notation: Given a group G and g1, g2 ∈ G, we often denote the identity of G by 1 and
g1 ⋆ g2 by g1g2. Further, since the inverse is unique we often denote the inverse of g ∈ G by
g−1.

Notation: Let G be a group and g ∈ G. We write g0 = 1 and for n ∈ N we write

gn = g ⋆ · · · ⋆ g︸ ︷︷ ︸
n times

and g−n = g−1 ⋆ · · · ⋆ g−1︸ ︷︷ ︸
n times

Proposition 2: Let G be a group and g, h ∈ G. Then

1. (g−1)−1 = g.

2. (gh)−1 = h−1g−1.

3. gngm = gn+m.

4. (gn)m = gnm.

Proof. 1. Recall the inverse is unique and note g−1g = 1 by definition, so g is the inverse
of g−1, as desired.

2. Note
(gh)(h−1g−1) = g(hh−1)g−1 = g1g−1 = gg−1 = 1

3. Can be shown by induction on m.

4. Can be shown by induction on m.

Note: Warning: It is not generally true that if gh ∈ G then (gh)n = gnhn.

Example: Note (gh)2 = ghgh, but g2h2 = gghh. Thus (gh)2 = g2h2 if and only if gh = hg.

Proposition 3: Let G be a group and g, h, f ∈ G and a, b ∈ G. Then

1. They satisfy left and right cancellation. That is (1-a) if gh = gf , then h = f and (1-b)
if hg = fg then h = f .

2. The equation ax = b and ya = b have unique solutions for x, y ∈ G.

Proof. 1. Multiply both sides by g−1.

2. Let x = a−1b, then ax = a(a−1b) = (aa−1)b = 1b = b. If u is another solution, then
au = b = ax, and so by (1) u = x. Similarly y = ba−1 is the unique solution to
ya = b.

1 Groups 5 1.2, Groups
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1.3 Symmetric Groups

Definition. Permutation: Given a nonempty set L, a permutation of L is a bijection from
L to L. The set of all permutations of L is denoted by SL.

Example: Let L = {1, 2, 3}. Then SL has the following permutations:

(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)
Where each element maps to the element below it. E.g., for the last permutation listed
above, denoted σ, σ(1) = 3, σ(2) = 2, and σ(3) = 1.

Definition. Symmetric Group: For n ∈ N we define Sn = S{1,...,n} to be the set of all
permutations of {1, . . . , n} and we call it the symmetric group of order n.

Proposition 4: |Sn| = n!.

Proof. Let σ ∈ Sn. There are n choices for σ(1), n − 1 choices for σ(2), ..., 2 choices for
σ(n− 1), and 1 choice σ(n).

09/12, lecture 2-1

Note: Given σ, τ ∈ Sn, we can compose them to create another permutation στ given by
στ(x) = σ(τ(x)). Further, since σ and τ are bijections, so is στ .

Example: Compute στ and τσ given

σ =

(
1 2 3 4
3 4 1 2

)
and τ =

(
1 2 3 4
2 4 3 1

)
Note στ(1) = σ(2) = 4 and στ(2) = σ(4) = 2. Continuing in this manner we find

στ =

(
1 2 3 4
4 2 1 3

)
and τσ =

(
1 2 3 4
3 1 2 4

)
Note then that στ ̸= τσ.

Exploration: Note if σ, τ, µ ∈ Sn, then σ(τµ) = (στ)µ by the associativity of composition.
Note also the identity is ε ∈ Sn given by

ε =

(
1 2 · · · n
1 2 · · · n

)
.

So for all σ ∈ Sn, σε = σ = εσ. Finally, for σ ∈ Sn, since σ is a bijection, it has a unique
inverse bijection σ−1 ∈ Sn called the inverse permutation. This permutation is such that
σ(σ−1(x)) = x = σ−1(σ(x)) for all x ∈ {1, . . . , n}. That is, σσ−1 = ε = σ−1σ.

Example: Find σ−1 for

σ =

(
1 2 3 4 5
4 5 1 2 3

)
1 Groups 6 1.3, Symmetric Groups
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Since σ(1) = 4, we have σ−1(4) = 1. Continuing in this manner we have

σ−1 =

(
1 2 3 4 5
3 4 5 1 2

)

Proposition 5: Sn is a group.

Proof. See the above exploration.

Remark: Consider
σ =

(
1 2 3 4 5 6 7 8 9 10
3 1 7 6 9 4 2 5 8 10

)
.

Writing it in this form is inconvenient as we have to write the numbers 1 through 10 twice.
Note that σ(1) = 3, σ(3) = 7, σ(7) = 2, and σ(2) = 1, this forms a cycle.

Thus σ can be decomposed as a 4-cycle (1 3 7 2), a 3-cycle (5 9 8), a 2-cycle (4 6), and a
1-cycle (10), though we don’t usually write 1-cycles. Note these cycles are disjoint. Note
also we have

σ = (1 3 7 2)(4 6)(5 9 8)

= (4 6)(5 9 8)(1 3 7 2)

= (6 4)(9 8 5)(7 2 1 3)

Theorem 6. Cycle Decomposition Theorem: Let σ ∈ Sn with σ ̸= ε. Then σ is the
product of (one or more) disjoint cycles of length at least 2. The factorization is unique up
to the ordering of the factors.

Proof. See A1 bonus.

Remark: By convention, we consider every permutation in Sn as also being a permutation
in Sn+1 by fixing the mapping of n+ 1. Thus S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ Sn+1 ⊆ · · · .

1 Groups 7 1.3, Symmetric Groups
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1.4 Cayley Tables

Definition. Cayley Table: For a finite group G, we may define its operation by means of
a table. Given x, y ∈ G, the product xy is the entry of the table in the row corresponding
to x and the column corresponding to y. Such a table is a Cayley table.

Remark: By cancellation, the entries in each row and column of the Cayley table is unique.

Example: Consider the group (Z2,+). The Cayley table for this group is

Z2 [0] [1]
[0] [0] [1]
[1] [1] [0]

Example: Consider the group Z∗ = {−1, 1}. The Cayley table for this group is

Z∗ 1 −1
1 1 −1
−1 −1 1

Remark: In the above example, if we replace 1 by [0] and −1 by [1] then the Cayley tables
of Z∗ and Z2 are the same. In this case we say Z∗ and Z2 are isomorphic and write Z∗ ∼= Z2.

Definition. Cyclic Group: For n ∈ N, the cyclic group of order n is defined by Cn =
{1, a, a2, . . . , an−1} with an = 1 and where ai ̸= aj for all i, j ∈ {0, . . . , n− 1} with i ̸= j. We
may also write Cn = ⟨a : an = 1⟩; this is called the generator of Cn.

Remark: The Cayley Table of Cn is

Cn 1 a a2 · · · an−2 an−1

1 1 a a2 · · · an−2 an−1

a a a2 a3 · · · an−1 1
a2 a2 a3

...
...

...
an−2 an−2 an−1

an−1 an−1 1

⋆

09/14, lecture 2-2

Proposition 7: Let G be a group. Up to isomorphism we have

1. If |G| = 1, then G ∼= {1}.

2. If |G| = 2, then G ∼= C2.

3. If |G| = 3, then G ∼= C3.

4. If |G| = 4, then G ∼= C4 or G ∼= K4
∼= C2 × C2 where K4 is the Klein 4-group.

1 Groups 8 1.4, Cayley Tables
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Proof. 1. Obvious

2. If |G| = 2, then G = {1, g} with g ̸= 1. We know that 1 ⋆ 1 = 1 and 1 ⋆ g = g = g ⋆ 1.
Note that if g ⋆ g = g, then g must be the identity, i.e., g = 1, a contradiction. Hence
g ⋆ g = 1. Thus the Cayley Table is

G 1 g
1 1 g
g g 1

which is exactly the Cayley table of of C2. We see then that G = ⟨g : g2 = 1⟩ ∼= C2.

3. If |G| = 3, then G = {1, g, h} with g ̸= 1, h ̸= 1, g ̸= h. We can begin filling in the
Cayley table for rows and columns corresponding to 1. If gh = g or gh = h, then h = 1
or g = 1 by cancellation, respectively, which is a contradiction since g ̸= 1 and h ̸= 1.
So gh = 1 = hg. Finally, since all entries in a given row or column must be distinct,
we must have g2 = h and h2 = g. The Cayley table is thus

G 1 g h
1 1 g h
g g h 1
h h 1 g

The Cayley table for C3 is noted below

C3 1 a a2

1 1 a 22

a a a2 1
a2 a2 1 a

By identifying g 7→ a and h 7→ a2, we see the above two tables are the same. Thus if
|G| = 3, then G ∼= C3.

4. See A1.

Chapter 2 Subgroups

2.1 Subgroups

Definition. Subgroup: Let G be a group and H ⊆ G be a subset of G. If H itself is a
group, then we say that H is a subgroup of G.

Note. Subgroup Test: Since G is a group, for h1, h2, h3 ∈ H ⊆ G, we have h1(h2h3) =
(h1h2)h3. Thus H is a subgroup if it satisfies the following conditions.

1. If h1, h2 ∈ H, then h1h2 ∈ H.

2 Subgroups 9 2.1, Subgroups
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2. 1G ∈ H.

3. If h ∈ H, then h−1 ∈ H.

Example: Given a group G, then {1} and G are subgroups of G.

Example: We have a chain of groups (Z,+) ⊆ (Q,+) ⊆ (R,+) ⊆ (C,+).

Example. Special Linear Group: Recall the general linear group of order n over R is

GLn(R) = (GLn(R), ·) = {M ∈ Mn(R) : det(M) ̸= 0}.

Define
SLn(R) = (SLn(R), ·) = {M ∈ Mn(R) : det(M) = 1} ⊆ GLn(R).

Note that the identity I ∈ SLn(R). If A,B ∈ SLn(R), then

det(AB) = det(A) det(B) = 1 · 1 = 1.

Further, we have

det(A−1) =
1

det(A)
=

1

1
= 1.

Thus AB,A−1 ∈ SLn(R). By the subgroup test, SLn(R) is a subgroup of GLn(R). We call
SLn(R) the special linear group of order n over R.

Example. Center of Group: Given a group G, we define the center of G to be

Z(G) = {z ∈ G : gz = zg for all g ∈ G}

That is Z(G) is the set of elements that commute with all other elements. Note Z(G) = G
if G is abelian. We claim Z(G) is an abelian subgorup of G.

Proof. Note that 1G ∈ Z(G) since the identity commutes. Let y, z ∈ Z(G). Then for all
g ∈ G we have

(yz)g = y(zg) = y(gz) = (yg)z = (gy)z = g(yz)

since z, y ∈ Z(G), thus we see zy ∈ G since it commutes with any g ∈ G. Since z ∈ Z(G),
for all g ∈ G we have zg = gz. Then by multiplying by z−1 we have

zg = gz

z−1(zg)z−1 = z−1(gz)z−1

(z−1z)gz−1 = z−1g(zz−1)

gz−1 = z−1g

Thus we see that z−1 ∈ Z(G). So by the subgroup test we see that Z(G) is a subgroup of
G. We also see that clearly Z(G) is abelian by definition, as desired.

Proposition 8: Let H and K be subgroups of a group G. Then their intersection

H ∩K = {g ∈ G : g ∈ H and g ∈ K}

is also a subgroup of G.

2 Subgroups 10 2.1, Subgroups
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Proof. Note since H and K are subgroups of G, we have 1G ∈ H and 1G ∈ K, thus
1G ∈ H ∩ K. Let g, h ∈ H ∩ K. Then note gh ∈ H and gh ∈ K since each is a (closed)
subgroup, then gh ∈ H ∩ K. Finally note since g ∈ H and g ∈ K we have g−1 ∈ H and
g−1 ∈ K, thus g−1 ∈ H ∩K. So by the subgroup test H ∩K is a subgroup of G.

Proposition 9. Finite Subgroup Test: If H is a finite nonempty set of a group G, then
H is a subgroup of G if and only if H is closed under its operation.

Proof. ( =⇒ ) This is obvious.

( ⇐= ) For H ̸= ∅, let h ∈ H. Since H is closed under its operation, h, h2, h3, . . . are all
in H. Since H is finite, these elements cannot all be distinct. Thus hn = hn+m for some
n,m ∈ N. By cancellation, this implies hm = 1. Also, we have h−1 = hm−1. Thus by the
subgroup test H is a subgroup (since it contains the identity and its inverses).

09/16, lecture 2-3

2.2 Alternating Groups

Definition. Transposition: A transposition σ ∈ Sn is a cycle of length 2, i.e., σ = (a b)
with a, b ∈ {1, . . . , n} and a ̸= b.

Example: Consider the permutation (1 2 4 5). Also the composition (1 2)(2 4)(4 5) can be
computed as


1 2 3 4 5
1 2 3 5 4
1 4 3 5 2
2 4 3 5 1


where after the first row you apply (4 5), after the second row you apply (2 4), and after the
third you apply (1 2). Thus we have that (1 2 4 5) = (1 2)(2 4)(4 5). We can also show that
(1 2 4 5) = (2 3)(1 2)(2 5)(1 3)(2 4). Thus we see that the decomposition of a permutation
into transpositions is not unique.

Theorem 10. Parity Theorem: If a permutation σ has two factorization σ = γ1γ2 · · · γr =
µ1µ2 · · ·µs where each γi and µj is a transposition, then r ≡ s (mod 2) (i.e., r and s have
the same parity).

Proof. See bonus 2.

Definition. Even/odd permutation: A permutation σ is even (resp. odd) if it can be
written as a product of an even (resp. odd) number of transpositions. By the parity theorem,
a permutation is either even or odd, but not both.

Theorem 11. Alternating Group: For n ≥ 2, let An denote the set of all even permuta-
tions in Sn. Then

2 Subgroups 11 2.2, Alternating Groups
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1. ε ∈ An.

2. If σ, τ ∈ An, then στ ∈ An and σ−1 ∈ An.

3. |An| = 1
2
n!.

From (1) and (2), we see that An is a subgroup of Sn called the alternating group of degree
n.

Proof. 1. ε = (1 2)(2 1) ∈ An.

2. If σ, τ ∈ An, we can write σ = σ1 · · ·σr and τ = τ1 · · · τs where σi, τj are transpositions,
and r and s are even integers. Then

στ = σ1 · · ·σrτ1 · · · τs

is a product of (r + s) transpositions, and thus στ is even. Also we note that since σi

is a transposition, we have σ2
i = ε, and thus σ−1

i = σi. It follows that

σ−1 = (σ1σ2 · · ·σr)
−1 = σ−1

r σ−1
r−1 · · ·σ−1

1 = σrσr−1 · · ·σ1

3. Let On denote the set of all odd permutations in Sn. Then Sn = An∪On and the parity
implies An ∩ On = ∅. Since |Sn| = n! and |Sn| = |An| + |On|, to prove |An| = 1

2
n!, it

suffices to show that |An| = |On|. Define

f : An → On σ 7→ (1 2)σ.

Since σ is even, (1 2)σ ∈ On, thus the map is well-defined. Note if σ1, σ2 are such that

f(σ1) = (1 2)σ1 = (1 2)σ2 = f(σ2)

then by cancellation σ1 = σ2, so f is injective. Finally, if τ ∈ On, then σ = (1 2)τ ∈ An.
Also

f(σ) = (1 2)(1 2)τ = τ,

thus f is surjective. It follows then that f is a bijection, and so |An| = |On| and
|An| = 1

2
n!.

2.3 Order of Elements

Definition. Generated Cyclic Groups: Let G be a group and g ∈ G. We call ⟨g⟩ :=
{gk : k ∈ Z} the cyclic subgroup of G generated by g. If G = ⟨g⟩ for some g ∈ G, then we
say G is a cyclic group and g is a generator of G.

Proposition 12: If G is a group and g ∈ G, then ⟨g⟩ is a subgroup of G.

Proof. Note that 1 = g0 ∈ ⟨g⟩. Also, if we x = gm ∈ ⟨g⟩ and y = gn ∈ ⟨g⟩, then xy =
gmgn = gm+n ∈ ⟨g⟩, and x−1 = g−m ∈ ⟨g⟩. So by the subgroup test, ⟨g⟩ is a subgroup of
G.
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Example: Consider (Z,+). Note for all k ∈ Z, we can write k = k · 1 and k · 1 = 1k in
our group. Thus (Z,+) = ⟨1⟩. Similarly we can show (Z,+) = ⟨−1⟩. We observe that for
any n ∈ Z with n ̸= ±1, there exists no k ∈ Z such that kn = 1. Thus ±1 are the only
generators of (Z,+).

09/19, lecture 3-1

Remark: Let G be a group and g ∈ G. Suppose that there exists k ∈ Z with k ̸= 0 such
that gk = 1. Then g−k = (gk)−1 = 1−1 = 1. Thus we can assume k ≥ 1. Then by the
well-ordering principle, there exists the ‘smallest’ positive integer n such that gn = 1.

Definition. Order of Elements: Let G be a group and g ∈ G. If n is the smallest positive
integer such that gn = 1, then we say the order of g is n, denoted o(g) = n. If no such n
exists, we say g has infinite order and write o(g) = ∞.

Proposition 13: Let G be a group and g ∈ G be such that o(g) = n ∈ N. Let k ∈ Z. Then

1. gk = 1 if and only if n | k.

2. gk = gm if and only if k ≡ m (mod n).

3. ⟨g⟩ = {1, g, . . . , gn−1} where 1, g, g2, . . . , gn−1 are all distinct.

Proof. 1. ( =⇒ ) Note by the division algorithm we can write k = qn+ r for some q ∈ Z
and 0 ≤ r ≤ n− 1. Then we have

1 = gk = gqngr = (gn)qgr = gr

But n is the smallest positive integer such that gn = 1 and r < n, so r = 0. Then
k = qn and so n | k.

( ⇐= ) If n | k, then k = nq for some q ∈ Z. Thus

gk = gnq = (gn)q = 1q = 1

2. Note gk = gm if and only if gk−m = 1. This is true if and only if n | (k −m) by (1),
which is equivalent to k ≡ m (mod n).

3. By (2), the elements of {1, g, g2, . . . , gn−1} are all distinct, as 0 ≤ i, j ≤ n−1 have i ≡ j
(mod n) if and only if i = j. We see clearly that {1, g, . . . , gn−1} ⊆ ⟨g⟩ by definition.
To prove the other inclusion, let x = gk ∈ ⟨g⟩ for some k ∈ Z. Then by the division
algorithm we can write k = qn+ r for q ∈ Z and 0 ≤ r ≤ n− 1. Then

x = gk = gnq+r = (gn)qgr = 1 · gr = gr ∈ {1, g, g2, . . . , gn−1}

since 0 ≤ r ≤ n− 1.

Proposition 14: Let G be a group and g ∈ G be such that o(g) = ∞. Let k ∈ Z. Then
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1. gk = 1 if and only if k = 0.

2. gk = gm if and only if k = m.

3. ⟨g⟩ = {. . . , g−2, g−1, 1, g1, g2, . . .} where all gi are distinct.

Proof. 1. ( =⇒ ) Suppose gk = 1 and by way of contradiction suppose k ̸= 0. Then
g−k = (gk)−1 = 1, so we can assume k ≥ 1. But then o(g) ≤ k < ∞, a contradiction.
Thus we need that k = 0.

( ⇐= ) Obviously g0 = 1.

2. Note gk = gm if and only if gk−m = 1. By (1), this is true if and only if k −m = 0 or
k = m.

3. Let i, j ∈ Z. Then gi = gj if and only if i = j by (2), so all elements of ⟨g⟩ are
distinct.

Proposition 15: Let G be a group and g ∈ G be such that o(g) = n ∈ N. If d ∈ N with
d | n, then o(gd) = n

d
.

Proof. Write k = n
d
. Note that (gd)k = gdk = gn = 1. Thus it remains to show k is the

smallest such positive integer. Suppose (gd)r = 1 with r ∈ N. Then gdr=1. Since o(g) = n,
by a previous proposition, we have n | dr. Thus there is a q ∈ Z such that dr = nq = (dk)q.
Since d ̸= 0, we have r = kq. Note that r and k are positive integers, so if r = kq we must
have that q is a positive integer. Hence r = kq ≥ k · 1 = k, thus o(gd) = k = n

d
.

2.4 Cyclic Groups

Remark: Recall that if a group G = ⟨g⟩ for some g ∈ G, then G is a cyclic group.

Proposition 16: Every cyclic group is abelian.

Proof. Let G = ⟨g⟩ for some g ∈ G. Note that if a, b ∈ G, then we have a = gm and b = gn

for some m,n ∈ Z. Then note

ab = gmgn = gm+n = gn+m = gngm = ba.

It follows then that every cyclic group is abelian.

Remark: Note the converse of the above proposition is not true. For instance, the Klein
4-group K4

∼= C2 × C2 is abelian, but K4 is not cyclic.

Proposition 17: Every subgroup of a cyclic group is cyclic.
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Proof. Let G = ⟨g⟩ and H ⊆ G be a subgroup. If H = {1}, then H = ⟨1⟩ is cyclic. If
H ̸= {1}, then there is gk ∈ H with k ∈ Z and k ̸= 0. Since H is a group, we have g−k ∈ H,
thus we can assume k ≥ 1. Let m be the smallest positive integer such that gm ∈ H. Then
we claim H = ⟨gm⟩.

Notice since H is a group and gm ∈ H, we clearly have that ⟨gm⟩ ⊆ H, it remains to show
the other inclusion. By way of contradiction, suppose there is some gk ∈ H with gk /∈ ⟨gm⟩
for k ∈ Z. Then clearly m ∤ k as otherwise gk ∈ ⟨gm⟩. Then by the division algorithm, there
is a q ∈ Z and 0 < r < m (note r ̸= 0 since m ∤ k) with k = qm+ r. But since H is a group
gkg−qm = gr ∈ H. This is a contradiction since 0 < r < m but m was assumed to be the
smallest positive integer with gm ∈ H. Thus H ⊆ ⟨gm⟩.

09/21, lecture 3-2

Proposition 18: Let G = ⟨g⟩ be a cyclic group with o(g) = n ∈ N. Then G = ⟨gk⟩ if and
only if gcd(k, n) = 1.

Proof. ( ⇐= ) If gcd(k, n) = 1, by Euclid’s Lemma there exists x, y ∈ Z such that 1 =
kx+ ny. Thus

g = g1 = gkx+ny = (gk)x(gn)y = (gk)x ∈ gk

Then we see that G = ⟨g⟩ = ⟨gk⟩ since g ∈ ⟨gk⟩.

( =⇒ ) If G = ⟨gk⟩, then g ∈ ⟨gk⟩. Thus there exists x ∈ Z such that g = gkx, i.e., 1 = gkx−1.
Since o(g) = n, by proposition 13, we have n | (kx − 1). Thus there exists y ∈ Z such that
kx − 1 = ny, or equivalently 1 = kx − ny. Since 1 | k and 1 | n and 1 = kx − ny, by the
GCD characterization theorem (see MATH 135), we have gcd(k, n) = 1.

Remark: If G = ⟨g⟩ with o(g) = n ∈ N, then o(gk) = n
gcd(n,k)

. We can prove this with a
similar argument to proposition 15.

Theorem 19. Fundamental Theorem of Finite Cyclic Groups: Let G = ⟨g⟩ be a
cyclic group of order n. Then

1. If H is a subgroup of G, then H = ⟨gd⟩ for some d | n. It follows that |H| | n.

2. Conversely, if k | n, then ⟨gn/k⟩ is the unique subgroup of G of order k.

Proof. 1. By proposition 17, H is cyclic, so H = ⟨gm⟩ for some m ∈ N. Let d = gcd(m,n).
Then we claim H = ⟨gd⟩.
Since d | m, we have m = dk for some k ∈ Z. Then

gm = gdk = (gd)k ∈ ⟨gd⟩

Thus we have H = ⟨gm⟩ ⊆ ⟨gd⟩. To prove the other inclusion, since d = gcd(m,n), by
Euclid’s Lemma there exists x, y ∈ Z such that d = mx+ ny. Then

gd = gmx+ny = (gm)x(gn)y = (gm)x ∈ ⟨gm⟩

2 Subgroups 15 2.4, Cyclic Groups



PMATH 347 Fall 2022: Notes Jacob Schnell

Thus ⟨gd⟩ ⊆ ⟨gm⟩. It follows that H = ⟨gd⟩. By proposition 13 and 15, we have
|H| = o(gd) = n

d
, thus |H| | n.

2. Note that ⟨gn/k⟩ is a subgroup of G with order k. Let K be a subgroup of G which is
of order k with k | n. By (1), let K = ⟨gd⟩ with d | n. Then by proposition 13 and 15,
we have k = |K| = o(gd) = n

d
. It follows that d = n

k
. And thus K = ⟨gn/k⟩.

2.5 Non-cyclic Groups

Definition. Generating Sets: Let X be a nonempty subset of a group G. Let

⟨X⟩ = {xk1
1 xk2

2 · · ·xkm
m : xi ∈ X, k ∈ Z,m ≥ 1}

denote the set of all products of powers of (not necessarily distinct) elements of X. Then
⟨X⟩ is a subgroup of G containing X, called the subgroup of G generated by X.

Example: The Klein 4-group K4 = {1, a, b, c} with a2 = b2 = c2 = 1 and ab = c (or ac = b
or bc = a). Thus K4 = ⟨a, b : a2 = 1 = b2, ab = ba⟩. We can also replace a, b by a, c or b, c.

Example: The symmetric group of degree 3, S3 = {ε, σ, σ2, τ, τσ, τσ2} where σ3 = ε = τ 2

and στ = τσ2. One can take cycles σ = (1, 2, 3) and τ = (1, 2). Thus

S3 = ⟨σ, τ : σ3 = ε = τ 2, στ = τσ2⟩

We can also replace σ, τ by σ, τσ, or σ, τσ2, etc.

Definition. Dihedral Group: For n ≥ 2, the dihedral group of order 2n is defined by

D2n = {1, a, . . . , an−1, b, ba, . . . , ban−1}

where an = 1 = b2 and aba = b. Thus

D2n = ⟨a, b : an = 1 = b2, aba = b⟩

Note that when n = 2 or n = 3, we have D4
∼= K4 and D6

∼= S3. In general, for n ≥ 3, D2n

is the group of symmetries of a regular n-gon (a = rotation of 2π
n

radians and b = reflection
through x-axis).

09/23, lecture 3-3

Chapter 3 Normal Subgroups

3.1 Homomorphisms and Isomorphisms

Definition. Group Homomorphism: Let G and H be groups. A mapping α : G → H
is a group homomorphism if α(a ⋆G b) = α(a) ⋆H α(b) for all a, b ∈ G. We often write
α(ab) = α(a)α(b) for all a, b ∈ G.
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Example: Consider the determinant map det : GLn(R) → R∗ given by A 7→ det(A). Given
that det(AB) = det(A) det(B), we have that the mapping is a homomorphism.

Proposition 20: Let α : G → H be a group homomorphism. Then

1. α(1G) = 1H .

2. α(g−1) = α(g)−1 for all g ∈ G.

3. α(gk) = α(g)k for all g ∈ G and k ∈ Z.

Proof. 1. Note that 1Hα(1G) = 1Hα(1
2
G) = 1Hα(1G)

2 thus by cancelling 1Hα(1G) we see
that α(1G) = 1H .

2. Note that α(g)α(g−1) = α(gg−1) = α(1G) = 1H by (1), thus α(g)−1 = α(g−1).

3. The case that k = 0 follows by (1), it follows for k ≥ 1 by induction. The case that
k < 0 follows by (2).

Definition. Group Isomorphism: Let G and H be groups. Consider a mapping α : G →
H. If α is a homomorphism and α is bijective, then we say α is a group isomorphism. In
this case we say G and H are isomorphic and denote it by G ∼= H.

Proposition 21:

1. The identity map G → G is an isomorphism.

2. If σ : G → H is an isomorphism, then the inverse map σ−1 : H → G is an isomorphism.

3. If σ : G → H and τ : H → K are both isomorphisms, then the composite map
τσ : G → K is also an isomorphism.

Proof. See A3.

Remark: Note that ∼= defines an equivalence relation. In particular, from the above we
have from (1) G ∼= G, from (2) if G ∼= H then H ∼= G, and from (3) if G ∼= H and H ∼= K,
then G ∼= K.

Example: Let R+ = {r ∈ R : r > 0}. We claim that (R,+) ∼= (R+, ·).

Proof. Define σ : (R,+) → (R+, ·) by σ(r) = er. Note σ = exp is invertible, and thus is a
bijection. Also for r, s ∈ R we have

σ(r + s) = er+s = er · es = σ(r) · σ(s)

Thus σ is also a homomorphism, and so σ is an isomorphism.

Example: We claim (Q,+) is not isomorphic to (Q∗, ·).
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Proof. By way of contradiction, suppose that τ : (Q,+) → (Q∗, ·) is an isomorphism. Then
τ is onto, and so there exists q ∈ Q such that τ(q) = 2. Then we have

2 = τ(q) = τ
(q
2
+

q

2

)
= τ

(q
2

)
· τ

(q
2

)
= τ

(q
2

)2

.

So τ
(
q
2

)
=

√
2 /∈ Q∗. Then τ is not well-defined, a contradiction. We see then that

(Q,+) ̸∼= (Q∗, ·).

3.2 Cosets and Lagrange’s Theorem

Definition. Coset: Let H be a subgroup of a group G. If a ∈ G, we define

Ha = {ha : h ∈ H}

to be the right coset of H generated by a. Similarly, we define

aH = {ah : h ∈ H}

to be the left coset of H generated by a.

Remark: Note that H1 = H = 1H. Note also that a ∈ Ha and a ∈ aH. Moveover, notice
that if h1a ∈ Ha and h2a ∈ Ha, it is not necessarily true that (h1a)(h2a) = h3a for some
h3 ∈ H, and so cosets are not necessarily a group. However, note that if if H is abelian,
then we have Ha = aH for all a ∈ G.

Example: let K4 = {1, a, b, ab} with a2 = 1 = b2 and ab = ba. Let H = {1, a}. Note since
K4 is abelian we have gH = Hg for all g ∈ K4. Thus the (right or left) cosets of H are
H1 = {1, a} = Ha and Hb = {b, ab} = Hab. Thus there are exactly two cosets of H in K4.

Example: Let S3 = {ε, σ, σ2, τ, τ, τσ2} with σ3 = ε = τ 2 and στσ = τ . Let H = {ε, τ}.
Since στ = τσ2, the right cosets of H are

Hε = {ε, τ} = Hτ

Hσ = {σ, τ, σ} = Hτσ

Hσ2 = {σ2, τσ2} = Hτσ2

Also, the left cosets of H are

εH = {ε, τ} = τH

σH = {σ, τσ2} = τσ2

σ2H = {σ2, τσ} = τσH

Note that Hσ ̸= σH and Hσ2 ̸= σ2H.

09/26, lecture 4-1

Proposition 22: Let H be a subgroup of a group G, and let a, b ∈ G. Then
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1. Ha = Hb if and only if ab−1 ∈ H. In particular, we have Ha = H if and only if a ∈ H.

2. If a ∈ Hb, then Ha = Hb.

3. Either Ha = Hb or Ha∩Hb = ∅. Thus the distinct right cosets of H form a partition
of G.

Proof. 1. ( =⇒ ) If Ha = Hb, then a = 1a ∈ Ha = Hb. Thus a = hb for some h ∈ H,
and we have then ab−1 = h ∈ H.

( ⇐= ) Suppose ab−1 ∈ H. Then for all h ∈ H, we have ha = h(ab−1)b ∈ Hb since
h(ab−1) ∈ H. Thus Ha ⊆ Hb. Since H is a group and ab−1 ∈ H, we have (ab−1) =
ba−1 ∈ H. Thus for all h ∈ H, we have hb = h(ba−1)a ∈ Ha since h(ba−1) ∈ H. Thus
Hb ⊆ Ha, and so Ha = Hb, as desired.

2. If a ∈ Hb, then ab−1 ∈ H. Thus by (1), Ha = Hb.

3. If Ha ∩ Hb ̸= ∅, then there exists x ∈ Ha ∩ Hb. Since x ∈ Ha, by (2) we have
Ha = Hx. Similarly Hb = Hx. Thus we have Ha = Hx = Hb.

Remark: The analogue of proposition 22 also holds for left cosets. For (1), aH = bH if and
only if b−1a ∈ H.

Definition. Index of a Group: By proposition 22, we see that G can be written as a
disjoint union of right cosets of H ⊆ G. We define the index [G : H] to be the number of
distinct right cosets of H in G.

Theorem 23. Lagrange’s Theorem: Let H be a subgroup of a finite group G. We have
|H| | |G| and [G : H] = |G|

|H| .

Proof. Write k = [G : H]. Let Ha1, Ha2, . . . , Hak be the set of distinct right cosets of H in
G. By proposition 22, G = Ha1 ∪ Ha2 ∪ · · ·Hak is a disjoint union (since Hai ∩ Haj = ∅
for all i ̸= j, and so the union of all distinct right cosets is exactly G). Note that

|Hai| = |{hai : h ∈ H}| = |H|.

So we have
|G| = |Ha1|+ |Ha2|+ · · ·+ |Hak| = k|H|

It follows that |H| | |G| and [G : H] = k = |G|
|H| .

Corollary 24: Let G be a finite group and let g ∈ G. Then

1. o(g) | |G|.

2. If |G| = n, then gn = 1.

Proof. 1. Take H = ⟨g⟩ in theorem 23. Note that we have then |H| = o(g). So by
theorem 23 we have o(g) = |H| | |G|.
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2. Let o(g) = m. Then by (1) we have m | n. Thus

gn = (gm)n/m = 1n/m = 1.

Remark. Fermat’s Little Theorem: Let Z∗
n be the set of invertible elements in Zn. Thus

Z∗
n =

{
k ∈ {0, 1, 2, . . . , n− 1} : gcd(k, n) = 1

}
.

Define the Euler φ-function, φ(n), to be the order of Z∗
n. I.e.,

φ(n) = |Z∗
n| =

∣∣{k ∈ {0, 1, 2, . . . , n− 1} : gcd(k, n) = 1
}∣∣ .

As a direct consequence of corollary 24 (2), we see that a ∈ Z with gcd(a, n) = 1, then we
have aφ(n) ≡ 1 (mod n) since |Z∗

n| is a group with |Z∗
n| = φ(n). Note that if n = p for some

prime p, then φ(p) = p − 1. Thus we have if gcd(a, p) = 1, then ap−1 ≡ 1 (mod p). This
provides a very short and simple proof of Fermat’s Little Theorem.

Corollary 25: If G is a group with |G| = p, for some prime p. Then G ∼= Cp where Cp is
the cyclic group of order p.

Proof. Let g ∈ G with g ̸= 1. By corollary 24, we have o(g) | p. Since g ̸= 1 and p is a prime,
we have o(g) > 1 and so o(g) = p as 1 and p are the only divisors of p. By proposition 13,
|⟨g⟩| = o(g) = p. It follows that G = ⟨g⟩ ∼= Cp.

Corollary 26: Let H and K be finite subgroup of G. If gcd(|H|, |K|) = 1, then H∩K = {1}.

Proof. We have proved in proposition 8 that H ∩ K is a subgroup of both H and K. By
Lagrange’s Theorem, |H∩K| | |H| and |H∩K| | |K|. It follows that |H∩K| | | gcd(|H|, |K|).
I.e., |H ∩K| | 1, and so H ∩K is a group (note then that 1 ∈ H ∩K) with |H ∩K| = 1,
and thus necessarily H ∩K = {1}.

09/28, lecture 4-2

3.3 Normal Subgroups

Definition. Normal Subgroups: Let H be a subgroup of a group G. If gH = Hg for all
g ∈ G, then we say H is normal in G, denoted by H ◁G.

Example: We have {1}◁G and G◁G for all groups G.

Example: The center Z(g) of G,

Z(G) := {z ∈ G : zg = gz, ∀g ∈ G}

is an abelian subgroup of G. By definition we have Z(G)◁G. Thus every subgroup of Z(G)
is normal in G.
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Example: If G is an abelian group, then every subgroup of G is normal in G. However, the
converse of this statement is false. See, for instance, the quaternion group in question 8 of
A3.

Proposition 27. Normality Test: Let H be a subgroup of a group G. The following
statements are equivalent:

1. H ◁G.

2. gHg−1 ⊆ H for all g ∈ G.

3. gHg−1 = H for all g ∈ G.

Proof. (1 =⇒ 2) Let x ∈ gHg−1, say x = ghg−1 for some h ∈ H. Then by (1) gh ∈ gH =
Hg (since H ◁G). Say gh = h1g for some h1 ∈ H. Then

x = ghg−1 = h1gg
−1 = h1 ∈ H

So we see gHg−1 ⊆ H.

(2 =⇒ 3) If g ∈ G, then by (2) gHg−1 ⊆ H. Taking g−1 in place of g in (2), we get
g−1Hg ⊆ H. This implies that H ⊆ gHg−1 by multiplying both sides by g−1 and g. Thus
from (2) since gHg−1 ⊆ H, we have gHg−1 = H.

(3 =⇒ 1) If gHg−1 = H for all g ∈ G, then gH = Hg for all g ∈ G by multiplying both
sides by g on the right. Thus H ◁G.

Example: Let G = GLn(R) and H = SLn(R). For A ∈ G and B ∈ H, we have

det(ABA−1) = det(A) det(B)︸ ︷︷ ︸
=1

det(A−1) = det(A)
1

det(A)
= 1.

Thus ABA−1 ∈ H and it follows that AHA−1 ⊆ H for all A ∈ G. By the normality test, we
have H ◁G., i.e., SLn(R)◁GLn(R).

Proposition 28: If H is a subgroup of a group G and [G : H] = 2, then H ◁G.

Proof. Let a ∈ G. If a ∈ H, then Ha = H = aH. If a /∈ H, since [G : H] = 2, then
G = H ∪ Ha and this union is disjoint. Thus Ha = G \ H. Similarly, aH = G \ H as
necessarily aH ̸= H. Thus Ha = aH for all a ∈ G, i.e., H ◁G.

Example: Let An be the alternating group contained in Sn. Since [Sn : An] = 2 (multiplying
by an even permutation is the same, multiplying by an odd permutation creates exactly one
distinct coset of permutations of odd length), by proposition 28 An ◁ Sn where An is the
alternating group of order n.

Example: Let

D2n = ⟨a, b|an = 1 = b2, and aba = b⟩ = {1, a, a2, . . . , an−1, b, ba, . . . , ban−1}
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be the dihedral group of order 2n. Since [D2n : ⟨a⟩] = 2 (a⟨a⟩ = ⟨a⟩ = ⟨a⟩a and b⟨a⟩ = ⟨a⟩b),
by proposition 28, we have ⟨a⟩◁D2n.

Remark. Group Product: Let H and K be subgroups of a group G. Their intersection
H ∩K is the “largest” subgroup of G contained in both H and K. One may wonder if there
is a “smallest” subgroup of G containing both H and K. Note that H ∪K is the “smallest”
subset containing H and K. However, one can show that H∪K is a subgroup only if H ⊆ K
or K ⊆ H (see Piazza). A more useful construction turns out to be the product HK of H
and K defined as

HK = {hk : h ∈ H, k ∈ K}

Note that H ⊆ HK and K ⊆ HK since we can take one of h or k to be 1. Note, however,
HK is not always a group, and in particular HK is not necessarily closed.

Lemma 29: Let H and K be subgroups of a group G. The following are equivalent.

1. HK is a subgroup of G.

2. HK = KH.

3. KH is a subgroup of G.

Proof. We will prove (1 ⇐⇒ 2) and then (2 ⇐⇒ 3) follows by interchanging H and K.

(1 =⇒ 2) Let kh ∈ KH with k ∈ K and h ∈ H. Since H and K are subgroups of G we
have k−1 ∈ K and h−1 ∈ H. Since HK is also a subgroup of G, we have h−1k−1 ∈ HK and
thus kh = (h−1k−1)−1 ∈ HK. Thus we have KH ⊆ HK.

Similarly, let hk ∈ HK with h ∈ H and k ∈ K. Since H and K are subgroups of G we have
h−1 ∈ H and k−1 ∈ K. Since HK is also a subgroup of G we have k−1h−1 = (hk)−1 ∈ HK
and thus (hk)−1 ∈ KH, however, this implies hk = ((hk)−1)−1 ∈ KH. Thus we have
HK ⊆ KH, and so HK = KH.

(2 =⇒ 1) We have 1 = 1 · 1 ∈ HK. Also if hk ∈ HK, then (hk)−1 = k−1h−1 ∈ KH = HK.
Also for h1k1, h2k2 ∈ HK, we have k1h2 ∈ KH = HK, say k1h2 = h3k3. It follows that

(h1k1)(h2k2) = h1(k1h2)k2 = h1(h3k3)k2 = (h1h3)(k3k2) ∈ HK.

By the subgroup test, HK is a subgroup of G.

09/30, lecture 4-3

Proposition 30: Let H and K be subgroups of a group G. Then

1. If H ◁G or K ◁G, then KH = HK is a subgroup of G.

2. If H ◁G and K ◁G, then HK ◁G.
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Proof. 1. Suppose H ◁G. Then since gH = Hg for all g ∈ G (since H ◁G), we have

HK =
⋃
k∈K

Hk =
⋃
k∈K

kH = KH.

Then by lemma 29, HK = KH is a subgroup of G.

2. Let g ∈ G and hk ∈ HK. Since H ◁G and K ◁G, we have

g−1(hk)g = (g−1hg)(g−1kg) ∈ HK

since g−1Hg = H and g−1Kg = K. Thus HG◁G.

Definition. Normalizer: Let H be a subgroup of G. The normalizer of H denoted by
NG(H) is defined to be

NG(H) = {g ∈ G : gH = Hg}
Note H ◁G if and only if NG(H) = G.

Note: Note that in the proof of proposition 30 (1), we do not need the full assumption that
H ◁G. We only need that kH = Hk for all k ∈ K, or equivalently that K ⊆ NG(H).

Corollary 31: Let H and K be subgroups of a group G. If K ⊆ NG(H), then KH = HK
is a subgroup of G.

Proof. See the above note and the proof of proposition 30 (1).

Theorem 32: Let H and K be subgroups of a group G. If H ◁ G and K ◁ G satisfy
H ∩K = {1}, then HK ∼= H ×K.

Proof. Claim 1: If H ◁ G and K ◁ G satisfy H ∩ K = {1}, then hk = kh for all h ∈ H
and k ∈ K. To see this, consider x = hkh−1k−1. We will show that x = 1, and then since
h and k are arbitrary, we will see that hk = kh. Note that hkh−1 ∈ K since K ◁ G, and
necessarily k−1 ∈ K. So x = (hkh−1)k ∈ K. Similarly, note that kh−1k−1 ∈ H since H ◁G,
and necessarily h ∈ H. So x = h(kh−1k−1) ∈ H. Then since x ∈ H ∩K, we see x = 1, and
thus hk = kh.

Since H ◁G, by proposition 30, HK is a subgroup of G. Define

σ : H ×K → HK, (h, k) 7→ hk

Claim 2: σ is an isomorphism. To see this, note first that σ is well-defined, though we omit
a proof. Let (h1, k1), (h2, k2) ∈ H ×K. By claim 1, we have h2k1 = k1h2. Thus,

σ((h1, k1)(h2, k2)) = σ((h1h2, k1k2)) = (h1h2)(k1k2) = (h1k1)(h2k2) = σ((h1, k1))σ((h2, k2)),

so we see that σ is a homomorphism. Note that by the definition of HK, σ is also surjective
(since all x ∈ HK is the product of h ∈ H and k ∈ K, thus σ((h, k)) = x). Also, if
σ((h1, k1)) = σ((h2, k2)), we have h1k1 = h2k2. Thus h−1

2 h1 = k2k
−1
1 ∈ H ∩K = {1}. Thus

h1 = h2 and k1 = k2, i.e., σ is injective. Thus σ is an isomorphism, and so claim 2 holds,
i.e., HK ∼= H ×K.
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Corollary 33: Let H and K be subgroups of a finite group G. If H ◁G and K ◁G satisfy
H ∩K = {1} and |H| · |K| = |G|, then G ∼= H ×K.

Proof. By theorem 32, |HK| = |H| · |K| = |G| and since HK is a subgroup of G, we see
that necessarily G ∼= HK ∼= H ×K.

Example: Let m,n ∈ N with gcd(m,n) = 1. Let G be a cyclic group of order mn. Write
G = ⟨a⟩ with o(a) = mn. Let H = ⟨an⟩ and K = ⟨am⟩ so that |H| = o(an) = m and
|K| = o(am) = n. It follows that |H| · |K| = |G|. Since gcd(m,n) = 1, by corollary 26
H ∩K = {1}. Thus by corollary 33, we have

G ∼= H ×K ∼= Cm × Cn

Chapter 4 Isomorphism Theorems

4.1 Quotient Groups

Remark: Let K be a subgroup of a group G. Consider the set of right cosets of K, i.e.,
{Ka : a ∈ G}. Can we make {Ka : a ∈ G} to become a group? A natural way to define the
group operation (or multiplication) on this set is

(Ka)(Kb) = K(ab) ∀a, b ∈ G (*)

Note that we could have Ka1 = Ka2 and Kb1 = Kb2 with a1 ̸= a2 and b1 ̸= b2. Thus in
order for (*) to make sense, a necessary condition is

Ka1 = Ka2 and Kb1 = Kb2 =⇒ Ka1b1 = Ka2b2

In this sense, we mean that the group operation KaKb = Kab is well-defined.

Lemma 34: Let K be a subgroup of a group G. The following are equivalent:

1. K ◁G.

2. For a, b ∈ G, the multiplication KaKb = Kab is well-defined.

10/03, lecture 5-1

Proof. (2 =⇒ 1) Let a ∈ G and k ∈ K be arbitrary. To show K ◁ G, it is sufficient to
show aka−1 ∈ K. Since Ka = Ka and Kk = K1, then by (2) we have Kak = Ka1, i.e.,
that Kak = Ka. In particular, we see then that Kaka−1 = K, however, this is the case if
and only if aka−1 ∈ K, as desired.

(1 =⇒ 2) Let Ka1 = Ka2 and Kb1 = Kb2. Then we see that Ka1a
−1
2 = K and Kb1b

−1
2 ,

but again, this is the case if and only if a1a−1
2 ∈ K and b1b

−1
2 ∈ K. Moreover, since K is a
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group, (a1a−1
2 )−1 = a2a

−1
1 ∈ K and (b1b

−1
2 )−1 = b2b

−1
1 ∈ K. To show Ka1b1 = Ka2b2, it then

suffices to show that (a1b1)(a2b2)
−1 ∈ K.

Notice that since b1b
−1
2 ∈ K, necessarily a1b1b

−1
2 ∈ a1K = Ka1 where a1K = Ka1 since

K ◁G. This means there is a k ∈ K such that

a1b1b
−1
2 = ka1 =⇒ a1b1b

−1
2 a−1

2 = ka1a
−1
2 ∈ K

where ka1a
−1
2 ∈ K since Ka1a

−1
2 = K. Thus (a1b1)(a2b2)

−1 = a1b1b
−1
2 a−1

2 ∈ K, and so the
multiplication is well-define, as desired.

Proposition 35: Let G be a group and K be a subgroup with K ◁ G. Let G/K = {Ka :
a ∈ G} denote the set of right cosets of K. Then

1. G/K is a group under the operation Ka ·Kb = Kab.

2. The mapping φ : G → G/K given by φ(a) = Ka is a surjective homomorphism.

3. If [G : K] is finite, then |G/K| = [G : K]. In particular, if G is finite, then |G/K| = |G|
|K| .

Proof. 1. Notice that by lemma 34 the operation is well-defined, and clearly G/K is closed
under the operation. We see that the identity of G/K is K = K1. Moreover, since
KaKa−1 = Kaa−1 = K, the inverse of Ka is Ka−1. Finally, we see that G/K is
associative since G itself is associative, i.e., Ka(bc) = K(ab)c since a(bc) = (ab)c for
all a, b, c ∈ G. So G/K is a group, as desired.

2. We see clearly that φ is surjective, since if Ka ∈ G/K, then φ(a) = Ka. Let a, b ∈ G.
Then φ(ab) = Kab = KaKb = φ(a)φ(b), so φ is a homomorphism, as desired.

3. If [G : K] is finite, then by definition [G : K] denotes the set of all distinct right cosets
of K, and so |G/K| = [G : K]. Also, if G is finite, then by Lagrange’s Theorem,
|G/K| = [G : K] = |G|

|K| , as desired.

Definition. Quotient Group: Let G be a group and K be a subgroup with K ◁G. The
group G/K of all cosets of K in G is called the quotient group of G by K. Moreover, the
mapping φ : G → G/K given by φ(a) = Ka is called the coset map. Recall that the coset
map is a surjective homomorphism.

4.2 Isomorphism Theorems

Definition. Group Kernel: Let α : G → H be a group homomorphism. The kernel of α
is defined to be

ker(α) = {k ∈ G : α(k) = 1H} ⊆ G.

Definition. Group Image: Let α : G → H be a group homomorphism. The image of α
is defined to be

im(α) = α(G) = {α(g) : g ∈ G} ⊆ H.
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Lemma 36: Let α : G → H be a group homomorphism. Then

1. im(α) is a subgroup of H.

2. ker(α) is a normal subgroup of G.

Proof. 1. Note that 1H = α(1G) ∈ im(α) by proposition 20. Let h1, h2 ∈ im(α) with
h1 = α(g1) and h2 = α(g2), then h1h2 = α(g1)α(g2) = α(g1g2) ∈ im(α). Finally, if for
h ∈ im(α) with h = α(g), we have h−1 = α(g)−1 = α(g−1) ∈ im(α) by proposition 20.
Thus by the subgroup test, we see that im(α) is a subgroup of H.

2. Note that α(1G) = 1H , so 1H ∈ ker(α). Also, note that for k1, k2 ∈ ker(α) we have

α(k1k2) = α(k1)α(k2) = 1H · 1H = 1H

and
α(k−1

1 ) = α(k1)
−1 = 1−1

H = 1H

by proposition 20. Thus k−1
1 ∈ ker(α) and k1k2 ∈ ker(α), and so ker(α) is a subgroup

of G by the subgroup test.

Let k ∈ ker(α) be arbitrary. Then note for any g ∈ G we have

α(gkg−1) = α(g)α(k)α(g−1) = α(g) · 1H · α(g)−1 = 1H .

Thus we see that g(ker(α))g−1 ⊆ ker(α), and so ker(α)◁G, as desired.

Example: Consider the determinant map

det : GLn(R) → R∗ A 7→ det(A).

Then clearly ker(det) = SLn(R). This provides an alternate proof that SLn(R)◁GLn(R).

Example: Define the sign of a permutation σ ∈ Sn by

sgn(σ) =

{
1 σ is even
−1 σ is odd

Then sgn : Sn → {−1, 1} is a homomorphism, and ker(sgn) = An is the alternating group
of degree n (i.e., the set of all even permutations of Sn). This provides another proof that
An ◁ Sn.

Theorem 37. First Group Isomorphism Theorem: Let α : G → H be a group
homomorphism. Then we have G/ ker(α) ∼= im(α).

10/05, lecture 5-2
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Proof. Let K = kerα. Since K ◁G, G/K is a group. Define the group map

ᾱ : G/K → imα Kg 7→ α(g)

Note that

Kg1 = Kg2 ⇐⇒ g1g
−1
2 ∈ K ⇐⇒ α(g1g

−1
2 ) = 1 ⇐⇒ α(g1) = α(g2)

Thus ᾱ is well-defined, and an injection. Also ᾱ is clearly surjective. It remains to show that
ᾱ is a group homomorphism. For g, h ∈ G, we have

ᾱ(KgKh) = ᾱ(Kgh) = α(gh) = α(g)α(h) = ᾱ(Kg)ᾱ(Kh)

It follows that ᾱ is a group homomorphism, and thus a group isomorphism so that G/K ∼=
imα, as desired.

Exploration: Let α : G → H be a group homomorphism, and K = kerα. Let φ : G → G/K
be the coset map, and let ᾱ be defined as in the proof of theorem 37. We have then the
following diagram

G H

G/K

φ
ᾱ

α

Note that for g ∈ G, ᾱφ(g) = ᾱ(Kg) = α(g), thus α = ᾱφ. On the other hand, if we have
α = ᾱφ, then the action of ᾱ is determined uniquely by α and φ, as

ᾱ(Kg) = ᾱ(φ(g)) = ᾱφ(g) = α(g).

Thus ᾱ is the only homomorphism from G/K to H satisfying ᾱφ = α.

Proposition 38: Let α : G → H be a group homomorphism and K = kerα. Then α factors
uniquely as α = ᾱφ where φ : G → G/K is the coset map and ᾱ : G/K → H is defined by
ᾱ(Kg) = α(g). Note that φ is surjective, and ᾱ is injective.

Proof. See the above exploration.

Example: Let G = ⟨g⟩ be a cyclic group. Consider the map α : (Z,+) → G defined
by α(k) = gk for k ∈ Z. Clearly α is a surjective (since ⟨g⟩ = {1, g, g2, . . . , gn−1}) group
homomorphism. Note that kerα = {k ∈ Z : gk = 1}. So we consider two cases:

1. If o(g) = ∞, then by proposition 14 kerα = {0}. By the first isomorphism theorem,
we have G ∼= Z/{0} ∼= Z.

2. If o(g) = n < ∞, then by proposition 13 kerα = nZ = {nk : k ∈ Z}. By the first
isomorphism theorem, we have G ∼= Z/nZ ∼= Zn.
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By (1) and (2), we conclude that if G is a cyclic group, then G ∼= Z or G ∼= Zn for some
n ∈ N.

Theorem 39. Second Group Isomorphism Theorem: Let H and K be subgroups of
a group G, with K ◁G. Then HK is a subgroup of G, K ◁HK, H ∩K ◁H, and

HK/K ∼= H/(H ∩K).

Proof. Since K ◁G, by proposition 30, HK is a subgroup and HK = KH with K ◁HK.
Consider the map α : H → HK/K defined by α(h) = Kh. Note that Kh = K(h1) with
h1 ∈ HK with h ∈ H and 1 ∈ K, thus Kh ∈ KH/K. Then we can check that α is a
homomorphism (exercise).

Also, if x ∈ HK = KH, say x = kh, then Kx = K(kh) = Kh = α(h). So we see that α is
surjective. Finally, by proposition 22,

kerα = {h ∈ H : Kh = K} = {h ∈ H : h ∈ K} = H ∩K

since Kh = K if and only if h ∈ K. By the first isomorphism theorem, HK/K ∼= H/(H∩K),
as desired.

Theorem 40. Third Group Isomorphism Theorem: Let K ⊆ H ⊆ G be groups with
K ◁G and H ◁G. Then H/K ◁G/K, and

(G/K)/
(H/K)

∼= G/H

Note that since K ⊆ H, if H ◁G, then K ◁G.

Proof. Define α : G/K → G/H by α(Kg) = Hg for all g ∈ G. Then since K ⊆ H, the map
is well-defined and is surjective. Note that

kerα = {Kg : Hg = H} = {Kg : g ∈ H} = H/K

By the first isomorphism theorem, we have

(G/K)/
(H/K)

∼= G/H

Chapter 5 Group Actions

5.1 Cayley’s Theorem

Theorem 41. Cayley’s Theorem: If G is a finite group of order n, then G is isomorphic
to a subgroup of Sn.

10/07, lecture 5-3

5 Group Actions 28 5.1, Cayley’s Theorem



PMATH 347 Fall 2022: Notes Jacob Schnell

Proof. Let G = {g1, g2, . . . , gn} and let SG be the permutation group of G. By identifying
gi with (1 ≤ i ≤ n), we see that SG

∼= Sn. Thus to prove this theorem, it suffices to find an
injective homomorphism σ : G → SG, as σ is surjective when restricting the co-domain to
its image.

For a ∈ G, define µa : G → G by µa(g) = ag for all g ∈ G. Thus µa is a bijection and
µa ∈ SG. Define σ : G → SG by σ(a) = µa. For a, b ∈ G, we have µaµb = µab since

µaµb(g) = µa(µb(g)) = µa(bg) = abg = µab(g).

Also, if µa = µb, then a = µa(1) = µb(1) = b. Thus σ is an injective homomorphism. By
the first isomorphism theorem, we have G ∼= imσ, which is a subgroup of SG

∼= Sn, as
desired.

Remark: Sometimes, we can find a smaller integer m such that G is contained in Sm.

Example: Let H be a subgroup of a group G with [G : H] = m < ∞. Let X =
{g1H, g2H, . . . , gmH} be the set of all distinct left cosets of H in G. For a ∈ G, define
λa : X → X by λa(gH) = agH for all gH ∈ X. Then λa is a bijection (exercise) and thus
λa ∈ Sx, the permutation group of X. Consider the map τ : G → SX defined by τ(a) = λa.
For a, b ∈ G we have λab = λaλb (as in the above proof), and thus τ is a homomorphism.
Note that if a ∈ ker τ , then aH = H, i.e., a ∈ H. Thus ker τ ⊆ H.

Theorem 42. Extended Cayley’s Theorem: Let H be a subgroup of a group G with
[G : H] = m < ∞. If G has no normal subgroups contained in H, except for {1}, then G is
isomorphic to a subgroup of Sm.

Proof. Let X be the set of all distinct left cosets of H in G. Then we have |X| = [G :
H] = m and SX

∼= Sm. We have seen from the above example that there exists a group
homomorphism τ : G → SX with K = ker τ ⊆ H. By the first isomorphism theorem, we
have G/K ∼= im τ . Since K ⊆ H and K ◁G, by the assumption we have that K = {1}, and
so that τ is injective. It follows that G ∼= im τ , a subgroup of SX

∼= Sm.

Corollary 43: Let G be a finite group and p be the smallest prime dividing |G|. If H is a
subgroup of G with [G : H] = p, then H ◁G.

Proof. Let X be the set of all distinct left cosets of H in G. Then we have |X| = [G : H] = p
and SX

∼= Sp. Let τ : G → SX
∼= Sp be the group homomorphism defined in the above

example with K = ker τ ⊆ H. By the first isomorphism theorem, we have G/K ∼= im τ ⊆ Sp.
Thus G/K is isomorphic to a subgroup of Sp. Note that |Sp| = p!, thus by Lagrange’s
theorem, we have |G/K| | p!. Also, since K ⊆ H, if [H : K] = k, then

|G/K| = |G|
|K|

=
|G|
|H|︸︷︷︸

=[G:H]

· |H|
|K|︸︷︷︸

=[H:K]

= pk

Thus, since |G/K| | p!, we have pk | p!, and so k | (p− 1)!. Since k | |H| and |H| | |G|, and p
is the smallest prime dividing |G|, we see that every prime divisor of k must be ≥ p, unless
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k = 1. However, k | (p − 1)!, thus k has no prime divisors ≥ p, and so k = 1. This implies
K = H (because K only has one coset in H, namely K itself, and so h ∈ K for all h ∈ H,
and K ⊆ H from before), and thus H ◁G since K ◁G.

5.2 Group Actions

Definition. Group Action: Let G be a group and X a nonempty set. A (left) group action
of G on X is a mapping from G×X → X, denoted by (a, x) 7→ a · x such that

1. 1 · x = x for all x ∈ X.

2. a · (b · x) = (ab) · x for all a, b ∈ G and x ∈ X.

In this case, we say that G acts on X.

10/17, lecture 6-1

Remark: Let G be a group acting on a set X. For a, b ∈ G and x ∈ X, by (1) and (2) of
the above definition, we have

a · x = b · y ⇐⇒ (b−1a) · x = y.

In particular, we have a · x = a · y if and only if x = y.

Example: If G is a group, let G act on itself by conjugation, i.e., a · x = axa−1 for all
a, x ∈ G. Note that 1 · x = 1x1−1 = x. Moreover,

a · (b · x) = a · (bxb−1) = abxb−1a−1 = (ab)x(ab)−1 = (ab) · x.

Remark: For a ∈ G, define σa : X → X by σa(x) = a · x for all x ∈ X. Then one can show
(see A5) that

1. σa ∈ SX , i.e., σa is a permutation on X.

2. The function θ : G → SX given by θ(a) = σa is a group homomorphism with

ker θ = {a ∈ G : a · x = x for all x ∈ X}

Thus the group homomorphism θ : G → SX gives an equivalent definition of a group action
of G on X. If X = G with |G| = n and ker θ = {1} (called a faithful group action), the
map θ : G → Sn shows that G is isomorphic to a subgroup of Sn. Thus group actions can
be viewed as a generalization of the proof of Cayley’s Theorem.

Definition. Orbit: Let G be a group acting on a set X, and let x ∈ X. We denote
G · x = {g · x : g ∈ G} ⊆ X to be the orbit of x.
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Definition. Stabilizer: Let G be a group acting on a set X, and let x ∈ X. We denote
S(x) = {g ∈ G : g · x = x} ⊆ G to be the stabilizer of x.

Proposition 44: Let G be a group acting on a set X, and let x ∈ X. Let G · x and S(x)
be the orbit and stabilizer of x, respectively. Then

1. S(x) is a subgroup of G.

2. There exists a bijection from G · x to {gS(x) : g ∈ G}, and thus |G · x| = [G : S(x)].

Proof. 1. Since 1 · x = x, we have 1 ∈ S(x). Also, for g, h ∈ S(x), note that

(gh) · x = g · (h · x) = g · x = x

since g · x = x = h · x, so gh ∈ S(x). Finally, note that

g−1 · x = g−1 · (g · x) = (g−1g) · x = 1 · x = x,

and so g−1 ∈ S(x). Thus by the subgroup test, S(x) is a subgroup of G.

2. Write S(x) = S. Consider the map φ : G · x → {gS : g ∈ G} define by φ(g · x) = gS.
Note that

g · x = h · x ⇐⇒ (h−1g) · x = x ⇐⇒ h−1g ∈ S ⇐⇒ gS = hS.

Thus φ is well-defined and injective. Moreover, φ is clearly surjective, as for any coset
gS, we have φ(g · x) = gS. It follows that φ : G · x → {gS : g ∈ G} is bijective, and so

|G · x| = |{gS : g ∈ G}| = [G : S]

Theorem 45. Orbit Decomposition Theorem: Let G be a group acting on a finite set
X ̸= ∅. Let Xf = {x ∈ X : a · x = x for all a ∈ G}. Let G · x1, G·x2, . . . , G · xn denote the
distinct non-singleton orbits (i.e., |G · xi| > 1). Then

|X| = |Xf |+
n∑

i=1

[G : S(xi)]

Proof. Note that a, b ∈ G and x, y ∈ X, then

a · x = b · y ⇐⇒ (b−1a) · x = y ⇐⇒ y ∈ G · x ⇐⇒ G · x = G · y

It follows that the orbits form a disjoint union of X. Since x ∈ Xf if and only if G ·x = {x},
i.e., |G ·x| = 1, the set X \Xf contains all non-singleton orbits, which are are disjoint. Thus,
by proposition 44

|X| = |Xf |+
n∑

i=1

|G · xi| = |Xf |+
n∑

i=1

[G : S(xi)]

10/19, lecture 6-2
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Example: Let G be a group acting on itself by conjugation, i.e., a · x = axa−1. Then
Gf = {x ∈ G : gxg−1 = x ∀g ∈ G}. We see then that Gf = Z(G) as all elements in Gf

commute with all g ∈ G. Also, for x ∈ G we have

S(x) = {g ∈ G : gxg−1 = x} = {g ∈ G : gx = xg}

This set is called the stabilizer and is denoted by S(x) = CG(x). That is, Z(G) is the set of
elements that commute with all other elements and CG(x) is the set of elements with which
x commutes (then CG(x) = G if x ∈ Z(G)). Finally, the orbit G · x = {gxg−1 : g ∈ G} is
called the conjugacy class of x.

Corollary 46. Class Equation: Let G be a finite group and let

{gx1g
−1 : g ∈ G}, . . . , {gxng

−1 : g ∈ G}

denote the distinct non-singleton conjugacy classes in G. Then

|G| = |Z(G)|+
n∑

i=1

[G : CG(xi)]

Proof. This follows immediately from the orbit decomposition theorem since the non-singleton
conjugacy classes in G are the non-singleton orbits when G acts on itself. Moreover, under
this group action Xf = Z(G), as seen in the above example.

Lemma 47: Let p be a prime and m ∈ N. Let G be a group of order pm acting on a finite
set X ̸= ∅. Let Xf = {x ∈ X : a · x = x for all a ∈ G}. Then we have

|X| ≡ |Xf | (mod p)

Proof. By the orbit decomposition theorem, we have

|X| = |Xf |+
n∑

i=1

[G : S(xi)]

with [G : S(xi)] > 1 (since G · xi is non-singleton) for all 1 ≤ i ≤ n. Since [G : S(xi)] divides
|G| = pm by Lagrange’s Theorem and [G : S(xi)] > 1, we have that p | [G : S(xi)] for all

1 ≤ i ≤ n. It follows that |X| ≡ |Xf | (mod p) since the sum
n∑

i=1

[G : S(xi)] is a sum of

multiples of p.

Remark: Note that by the above lemma, we see that if |X| | |G|, then |X| ≡ 0 (mod p).
Thus |Xf | ≥ p since 1 ∈ Xf and so |Xf | > 0, but we also have |Xf | ≡ |X| ≡ 0 (mod p).

Remark: We recall that by Lagrange’s Theorem (in particular corollary 24), if a group G
is finite and g ∈ G, then o(g) | |G|. Consider the converse, if m | |G|, can we find an element
g ∈ G with o(g) = m?

Theorem 48. Cauchy’s Theorem: Let p be a prime and G be a finite group. If p | |G|
then G contains an element of order p.
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Proof. (J. McKay’s Proof) Define

X = {(a1, a2, . . . , ap) : ai ∈ G and a1a2 · · · ap = 1}.

Note that ap is uniquely determined by a1, a2, . . . , ap−1 since we must have ap = (a1a2 · · · ap−1)
−1.

Then if |G| = n, we have that |X| = np−1 as we can pick any sequence of length p − 1 of
elements in G. Now since p | n, we have |X| ≡ 0 (mod p). Let the group Zp = (Zp,+) act
on X by “left cycling”, i.e., for k ∈ Zp,

k · (a1, a2, . . . , ap) = (ak+1, ak+2, . . . , ap, a1, a2, . . . , ak).

We can check that this is in fact a well-define group action. Let Xf be defined as in theorem
45. Then (a1, a2, . . . , ap) ∈ Xf if and only if a1 = a2 = · · · = ap. That is, the only tuples
which are fixed under the group action or those where all elements of the tuple are the same.

Clearly (1, 1, . . . , 1) ∈ Xf , and thus |Xf | ≥ 1. By lemma 47 we have |Xf | ≡ |X| ≡ 0 (mod p),
thus since |Xf | ≥ 1, it follows |Xf | ≥ p ≥ 2. Then there is some element a = (a, a, . . . , a) ∈ Xf

with a ̸= 1. This implies that ap = 1 by definition of X. Since p is a prime, the order of a
is p (in particular, by Lagrange’s Theorem o(a) | |G| but o(a) | p, thus o(a) ≥ p).

Note: This is the end of material covered in test 1.

Chapter 6 Finite Abelian Groups

6.1 Primary Decomposition

Notation: Let G be a group and m ∈ Z. We define G(m) = {g ∈ G : gm = 1}.

Proposition 49: Let G be an abelian group. Then G(m) is a subgroup of G.

Proof. We have 1 = 1m ∈ G(m). Since G is abelian we have (gh)m = gmhm = 1 for all
g, h ∈ G(m). Also, (g−1)m = g−m = (gm)−1 = 1−1 = 1. Then by the subgroup test, we see
that G(m) is a subgroup of G.

Proposition 50: Let G be a finite abelian group with |G| = mk with gcd(m, k) = 1. Then

1. G ∼= G(m) ×G(k).

2. |G(m)| = m and |G(k)| = k.

10/21, lecture 6-3

Proof. 1. Since G is abelian, we have that G(m) ◁ G and G(k) ◁ G (all subgroups are
normal in an abelian group). Since gcd(m, k) = 1, there exists x, y ∈ Z such that
mx+ ky = 1. We claim G(m) ∩G(k) = {1}. To see this, suppose g ∈ G(m) ∩G(k), then

g = g1 = gmx+ky = (gm)x(gk)y = 1x1y = 1
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so g = 1. Thus we see that G(m) ∩ G(k) = {1}. Further, we claim that G = G(m)G(k).
To see this, suppose g ∈ G, then 1 = gmk = (gk)m = (gm)k since mk = |G|. It follows
then that gk ∈ G(m) and gm ∈ G(k). Thus

g = gmx+ky = (gk)y(gm)x ∈ G(m)G(k).

Combining our above two claims, we see that by theorem 32 we have that G =
G(m)G(k) ∼= G(m) ×G(k).

2. Let |G(m)| = m′ and |G(k)| = k′. We claim that gcd(m, k′) = 1. To see this, suppose
gcd(m, k′) ̸= 1, then there exists a prime p such that p | m and p | k′. Then by Cauchy’s
Theorem, there exists a g ∈ G(k) with o(g) = p (since p | k′ = |G(k)|). Since p | m, we
also have gm = (gp)m/p = 1, thus g ∈ G(m). By (1) we have g ∈ G(m) ∩ G(k) = {1}.
This is a contradiction since o(g) = p and so g ̸= 1.

Note that mk = m′k′ since mk = |G| = |G(m) × G(k)| = m′k′. Since m | m′k′ and
gcd(m, k′) = 1, we have m | m′. Similarly we get k | k′. Since mk = m′k′, it follows
that m = m′ and k = k′.

Theorem 51. Primary Decomposition Theorem: Let G be a finite abelian group with
|G| = pn1

1 pn2
2 · · · pnk

k where p1, . . . , pk are distinct primes and ni ∈ N for all 1 ≤ i ≤ k. Then
we have

1. G ∼= G(p
n1
1 ) × · · · ×G(p

nk
k )

2. |G(p
ni
i )| = pni

i for all 1 ≤ i ≤ k

Proof. This follows immediately from proposition 50.

Example: Let G = Z∗
13. Then |G| = 12 = 22 · 3 (since all nonzero elements are invertible).

Note that G(4) = {a ∈ Z∗
13 : a

4 = 1} = {1, 5, 8, 12} and G(3) = {a ∈ Z∗
13 : a

3 = 1} = {1, 3, 9}.
Then by theorem 51 we have that Z∗

13 = {1, 5, 8, 12} × {1, 3, 9}.

6.2 p-Groups

Definition. p-Group: Let p be a prime. A p-group is a group in which every element has
order equal to a non-negative power of p (including p0).

Proposition 52: A finite group G is a p-group if and only if |G| is a power of p.

Proof. ( =⇒ ) Consider a proof by contrapositive. Write |G| = pnpn2
2 · · · pnk

k where p1, p2, . . . , pk
are distinct primes and n, n2, . . . , nk ∈ N∪{0}. If k ≥ 2, since p2 | |G|, by Cauchy’s Theorem
there exists an element of order p2, and thus G is not a p-group. By contrapositive it follows
that if G is a p-group, then |G| = pn for some n ∈ N ∪ {0}.

( ⇐= ) If |G| = pα and g ∈ G, then by corollary 24 o(g) | pα. Thus o(g) must be a power of
p and so G is a p-group.
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Proposition 53: If G is a finite abelian p-group that contains only one subgroup of order
p, then G is cyclic. In other words, if a finite abelian group p-group G is not cyclic, then G
has at least two subgroups of order p.

Proof. Let y ∈ G be an element of maximal order, i.e., o(y) ≥ o(x) for all x ∈ G. We
claim that G = ⟨y⟩. To see this, suppose that G ̸= ⟨y⟩. Then the quotient group G/⟨y⟩ is a
non-trivial p-group (since it’ll have order of a power of p). Then by Cauchy’s Theorem, there
exists a z ∈ G/⟨y⟩ of order p. In particular, z ̸= 1. Consider the coset map π : G → G/⟨y⟩.
Let x ∈ G with π(x) = z. Since π(xp) = π(x)p = zp = 1G/⟨y⟩ (since the coset map is a
homomorphism) or equivalently xp⟨y⟩ = ⟨y⟩, we see that xp ∈ ⟨y⟩. Thus xp = ym for some
m ∈ Z. We consider two cases:

Case 1. If p ∤ m, since o(y) = pr for some r ∈ N (G is a p-group), then by proposition 18,
o(ym) = o(y). Since y is of maximal order, we have

o(xp) < o(x) ≤ o(y) = o(ym) = o(xp),

which is a contradiction. Note we get o(xp) < o(x) since p | o(x) (since x ̸= 1 and
G is a p-group) and so by proposition 15 o(xp) = o(x)

p
< o(x). Note that x ̸= 1 since

π(x) = z and z ̸= 1, however, π(1) = 1 by proposition 20.

Case 2. If p | m, then m = pk for some k ∈ Z. Thus xp = ym =pk. Since G is abelian we have
(xy−k)p = xpy−pk = ymy−m = 1. Thus xy−k belongs to the only one subgroup of order
p, say H. Since ⟨y⟩ contains a subgroup of order p, we have H ⊆ ⟨y⟩. Thus xy−k ∈ ⟨y⟩,
which implies x ∈ ⟨y⟩. If follows that z = π(x) = 1 since x ∈ ⟨y⟩, a contradiction since
o(z) = p.

By combining the above two cases, we see that G = ⟨y⟩.

10/24, lecture 7-1

Proposition 54: Let G ̸= {1} be a finite abelian p-group. Let C be a cyclic subgroup of
maximal order. Then G contains a subgroup B such that G = CB and C ∩B = {1}. Then
by Theorem 32, we have that G ∼= C ×B.

Proof. Suppose G ̸= C, then G has two cyclic groups of order p by proposition 53. Then
there exists a cyclic group D ̸⊆ C with |D| = p. Then we will show by induction that
π : G → G/D

We prove this result by induction. If |G| = p, we take C = G and B = {1}. Suppose the
result holds for all groups of order pn−1 with n ∈ N and n ≥ 2. We will prove that the result
holds for |G| = pn. We consider two cases

Case 1. If C = G, then by taking B = {1} the result holds.
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Case 2. If C ̸= G, then we know that G is not cyclic (since C is maximal). By proposition
53, there exists at least two subgroups of order p. Since C is cyclic, by theorem 19, it
contains exactly one subgroup of order p. Thus there exists a subgroup D of G with
|D| = p and D ̸⊆ C. Since |D| = p and D ̸⊆ C, we have C ∩D = {1} since C ∩D is
a subgroup of D and by Lagrange’s theorem D only has subgroups of order p or 1 (if
|C ∩D| = p then C ∩D = D and so D ⊆ C, a contradiction).

Consider the coset map π : G → G/D. If we consider π|C , the restriction of π on C,
then ker(π|C) = C ∩ D = {1}. Thus by the first isomorphism theorem, π(C) ∼= C.
Let y be a generator of the cyclic group C, i.e., C = ⟨y⟩. Since π(C) ∼= C we have
π(C) = ⟨π(y)⟩. By the assumption on C, π(C) is a cyclic subgroup of G/D of maximal
order. Since |G/D| = pn−1, by the induction hypothesis, G/D has a subgroup E such
that G/D = π(C)E and π(C) ∩ E = {1}.
Let B = π−1(E), i.e., B is the preimage, or equivalently the subgroup of maximal
order such that π(B) = E since π is surjective but not necessarily invertible. We claim
that G = CB. To see this, note that since E is a subgroup containing {1}, we have
π−1({1}) = D ⊆ B. If x ∈ G, since π(C)π(B) = π(C)E = G/D, there exists a u ∈ C
and v ∈ B such that π(x) = π(u)π(v). Then since π is a homomorphism and G is
abelian, π(xu−1v−1) = π(1) = 1 ∈ E, and thus xu−1v−1 ∈ B. Note we then also have
xu−1v−1v = xu−1 ∈ B since v ∈ B. Since G is abelian, we have x = uxu−1 ∈ CB.
Thus the claim holds.

We also claim that C ∩ B = {1}. Let x ∈ C ∩ B. Then π(x) ∈ π(C) ∩ π(B) = {1}.
Since π(x) = 1C/D, we have x ∈ D. Since x ∈ C ∩ D = {1} as a result, we see that
x = 1. Combining our above two claims, the result follows.

Theorem 55: Let G ̸= {1} be a finite abelian p-group. Then G is isomorphic to a direct
product of cyclic groups.

Proof. By proposition 54, there exists a cyclic group C1 and a subgroup B1 of G such that
G ∼= C1 × B1. Since |B1| | |G|, the group B1 is also a p-group. Thus if B1 ̸= {1}, by
proposition 54, there exists a cyclic group C2 and a subgroup B2 such that B1

∼= C2 × B2.
We repeat this process until we get cyclic groups C1, . . . , Ck and Bk = {1}. Then G ∼=
C1 × · · · ∼= Ck.

10/26, lecture 7-2

Remark: One can show that if G is a finite abelian p-group and

G ∼= C1 × C2 × · · ·Ck
∼= D1 × · · · ×Dℓ

are two decompositions of G as a product of cyclic groups Ci and Dj of order pni and pmj

respectively. Then k = ℓ and after some reordering n1 = m1, . . . , nk = mk

Theorem 56. Fundamental/Structure Theorem of Finite Abelian Groups: If G is
a finite abelian group, then

G ∼= Zp
n1
1

× Zp
n2
2

× · · · × Zp
nk
k
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where Zp
ni
i

= (Zp
ni
i
,+) ∼= Cp

ni
i

are cyclic groups of order pni
i (for 1 ≤ i ≤ k). The numbers

pni
i are uniquely determined up to their order. Note that if p1 and p2 are distinct primes,

then Cp
n1
1

× Cp
n2
2

∼= Cp
n1
1 p

n2
2

.

Theorem 57. Invariant Factor Decomposition of Finite Abelian Groups: Let G
be a finite abelian group. Then

G ∼= Zn1 × Zn2 × · · ·Znr

where ni ∈ N, n1 ≥ 1, and n1 | n2 | n3 | · · · | nr.

Example: Let G be an abelian group of order 48. Since 48 = 24 · 3, by theorem 51,
G ∼= H × Z3 where H is abelian group of order 24. The options for H are

Z24 , Z23 × Z2, Z22 × Z22 , Z22 × Z2 × Z2, Z2 × Z2 × Z2 × Z2

Thus the options for G are

G ∼= Z24 × Z3
∼= Z48

G ∼= Z23 × Z2 × Z3
∼= Z2 × Z24

G ∼= Z22 × Z22 × Z3
∼= Z4 × Z12

G ∼= Z22 × Z2 × Z2 × Z3
∼= Z2 × Z2 × Z12

G ∼= Z2 × Z2 × Z2 × Z2 × Z3
∼= Z2 × Z2 × Z2 × Z6

Chapter 7 Rings

7.1 Rings

Definition. Ring: A set R is a ring if it has two operations, addition + and multiplication
· such that (R,+) is an abelian group and (R, ·) satisfies closure, associativity, and identity
properties of a group, in addition to a distributive law. Note that (R, ·) does not necessarily
have an inverse for all elements. Then more precisely R is a ring if and only if for all
a, b, c ∈ R we have

1. a+ b ∈ R

2. a+ b = b+ a

3. a+ (b+ c) = (a+ b) + c

4. There exists 0 ∈ R such that 0 + a = a = a+ 0 (0 is called the zero of R)

5. For a ∈ R, there exists −a ∈ R such that a+ (−a) = 0 = (−a) + a.

6. ab = a · b ∈ R

7. a(bc) = (ab)c
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8. There exists 1 ∈ R such that a · 1 = a = 1 · a (1 is called the unity of R)

9. a(b+ c) = ab+ ac and (b+ c)a = ba+ ca (distributive laws)

The ring R is said to be a commutative ring if it also satisfies

10. ab = ba

Example: Z,Q,R,C are commutative rings with the zero being 0 and the unity being 1.

Example: For n ∈ N with n ≥ 2, Zn is a commutative ring with there zero being [0] and
the unity being [1].

Example: For n ∈ N with n ≥ 2, the set Mn(R) is a ring using matrix addition and matrix
multiplication. The zero is the zero matrix O and the unity being the identity matrix I. Note
that since matrix multiplication is not necessarily commutative, Mn(R) is not a commutative
ring.

Note: Warning: since (R, ·) is not a group, there is no left or right cancellation. For
example, in Z we have 0 · x = 0 · y, but this does not imply x = y.

Notation: Given a ring R, to distinguish the difference between multiples in addition and
multiplication, for n ∈ N and a ∈ R, we write

na = a+ a+ a+ · · ·+ a︸ ︷︷ ︸
n times

and
an = a · a · a · · · a︸ ︷︷ ︸

n times

.

One can show that 0 · a = 0 (see proposition 57) and we define a0 = 1. Also, we define

(−n) · a = (−a) + (−a) + · · ·+ (−a)︸ ︷︷ ︸
n times

= n(−a).

If the multiplicative inverse of a exists, say a−1, then we define

a−n = a−1 · a−1 · · · a−1︸ ︷︷ ︸
n times

= (a−1)n

note that the above is thus not necessarily defined. We recall that for a group G and g ∈ G,
we have g0 = 1, g1 = g, and (g−1)−1 = g. Thus for addition we have

0 · a = 0R, 1 · a = a, −(−a) = a

where the first 0 is from Z but the second 0R is the zero of our ring. Also by proposition 2,
for n,m ∈ Z

(na) + (ma) = (n+m)a, n(ma) = (nm)a, n(a+ b) = na+ nb.

We can also prove the following proposition (see Piazza).

Proposition 58: Let R be a ring and r, s ∈ R. Then
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1. If 0 is the zero of R, then 0 · r = 0 = r · 0 (all 0’s here are from R, not Z).

2. (−r)s = −(rs) = r(−s)

3. (−r)(−s) = rs

4. For any m,n ∈ Z, (mr)(ns) = (mn)(rs).

Proof. 1. Notice r2 + 0 = r2 = r(r + 0) = r2 + r0, thus since (R,+) is a group, by
cancellation we have 0 = r0. Similarly we can find 0r = 0.

2. Notice rs + (−r)s = (r − r)s = 0s = 0 by (1), thus (−r)s = −(rs). Similarly we can
find r(−s) = −(rs).

3. Notice (−r)(−s) = −(r(−s)) = −(−(rs)). Since rs+(−rs) = 0, we see −(−(rs)) = rs.

4. Can prove by induction on m.

Definition. Trivial Ring: A trivial ring is a ring of only one element. In this case, we
have 1 = 0.

Remark: If R is a ring with R ̸= {0} (i.e., R is not a trivial ring), since r = r · 1 for all
r ∈ R and 0 = r · 0, we have 1 ̸= 0.

Example. Ring Direct Product: Let R1, R2, . . . , Rn be rings. We define componentwise
operations on the product R1 ×R2 × · · · ×Rn as follows:

(r1, r2, . . . , rn) + (s1, s2, . . . , sn) = (r1 + s1, r2 + s2, . . . , rn + sn)

and
(r1, r2, . . . , rn) · (s1, s2, . . . , sn) = (r1s1, r2s2, . . . , rnsn)

One can check that R1 × · · · ×Rn is a ring with the zero being the n-tuple (0, 0, . . . , 0) and
the unity being the n-tuple (1, 1, . . . , 1). This set R1 × · · · ×Rn is called the direct product
of R1, R2, . . . , Rn.

10/31, lecture 8-1

Definition. Characteristic of Rings: If R is a ring, we define the characteristic of R,
denote ch(R), in terms of the order of 1R in the additive group (R,+). In particular,

ch(R) =

{
n if o(1R) = n ∈ N in (R,+)

0 if o(1R) = ∞ in (R,+)

For k ∈ Z, we write kR = 0 to mean kr = 0 for all r ∈ R. By Prop 58, we have kr =
k(1R · r) = (k · 1R)r. Thus kR = 0 if and only if k1R = 0 by proposition 13 and 14.

Proposition 59: Let R be a ring and k ∈ Z. Then

1. If ch(R) = n ∈ N, then kR = 0 if and only if n | k.
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2. If ch(R) = 0, then kR = 0 if and only if k = 0.

Proof. 1. Recall kR = 0 if and only if k1R = 0, by proposition 13, this is true if and only
if n | k.

2. Recall kR = 0 if and only if k1R = 0, by proposition 14, this is true if and only if
k = 0.

Example: Each of Z,Q,R,C has characteristic 0. For n ∈ N with n ≥ 2, the ring Zn has
characteristic n.

7.2 Subrings

Definition. Subring: A subset S of a ring R is a subring if S is a ring itself with 1S = 1R.
Generally we assume S has the same addition and multiplications operations as R.

Note. Subring Test: Note that properties (2), (3), (7), (9) of a ring are automatically
satisfied. Thus to show S is a subring, it sufficient to check the following:

1. 1R ∈ S.

2. If s, t ∈ S, then s− t ∈ S and st ∈ S.

Note that if (2) holds, then 0 = s− s ∈ S and −t = 0− t ∈ S and S is closed under addition

Example: Note that it is not necessarily the case that 1S = 1R if S ⊆ R is a ring R. For
instance, take R = Z30 and S = {[0], [6], [12], [18], [24]}. Then 1R = [1] and 1S = [6], for
instance. Another example is to take R = M2(R) and

S =

{[
a a
a a

]
: a ∈ R

}
Thus

1R =

[
1 0
0 1

]
and 1S =

[
1
2

1
2

1
2

1
2

]
Remark: Sometimes, it is convenient to allow 1S ̸= 1R. For example, if R = Z30 and
S = {[0], [6], [12], [18], [24]}, then 1R = [1] and 1S = [6]. However, in this class, we’ll only
take 1S = 1R.

Example: We have a chain of commutative rings Z ⊆ Q ⊆ R ⊆ C.

Example. Center of Ring: If R is a ring, the center Z(R) of R is defined to be

Z(R) = {z ∈ R : zr = rz for all r ∈ R}

Note that 1 ∈ Z(R). Also, for any s, t ∈ Z(R), then for all r ∈ R,

(s−t)r = sr−tr = rs−rt = r(s−t) and (st)r = s(tr) = s(rt) = (sr)t = (rs)t = r(st).
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So by the subring test, we see that Z(R) is a subring of R.

Example. Gaussian Integers: Let Z[i] = {a+ bi : a, b ∈ Z and i2 = −1} ⊆ C. Then one
can show that Z[i] is a subring of C, called the ring of Gaussian Integers.

7.3 Ideals

Note: Let R be a ring and let A an additive subgroup of R. Since (R,+) is abelian, we
have that A ◁ R. Thus, we have the additive quotient group R/A = {r + A : r ∈ R} with
r+A = {r+ a : a ∈ A}. Using the known properties of cosets and quotient groups, we have
the following proposition.

Proposition 60: Let R be a ring and let A be an additive subgroup of R. For r, s ∈ R, we
have

1. r + A = s+ A if and only if (r − s) ∈ A.

2. (r + A) + (s+ A) = (r + s) + A.

3. 0 + A = A is the (additive) identity of R/A.

4. −(r + A) = (−r) + A is the (additive) inverse of r + A.

5. k(r+A) = (kr)+A for all k ∈ Z. (Recall this isn’t the ring’s multiplication but rather
the k time sum of (r + A).)

Remark: Since R is a ring, it is natural to ask if we could make R/A to be a ring. A natural
way to define multiplication in R/A is that

(r + A)(s+ A) = rs+ A (*)

Note that we could have r1 + A = r2 + A and s1 + A = s2 + A with r1 ̸= r2 and s1 ̸= s2.
Thus in order for (*) to make sense, a necessary condition is

r1 + A = r2 + A and s1 + A = s2 + A =⇒ r1s1 + A = r2s2 + A

In this case, we say the multiplication (r + A)(s+ A) is well-defined.

Proposition 61: Let A be an additive subgroup of a ring R. For a ∈ A, define Ra = {ra :
r ∈ R} and aR = {ar : r ∈ R}. Then the following are equivalent

1. Ra ⊆ A and aR ⊆ A for every a ∈ A.

2. For r, s ∈ R, the multiplication (r + A)(s+ A) = rs+ A is well-defined in R/A.

Proof. (1 =⇒ 2) If r1+A = r2+A and s1+A = s2+A, we need to show r1s1+A = r2s2 = A,
i.e., r1s1 − r2s2 ∈ A. Since (r1 − r2) ∈ A and (s1 − s2) ∈ A, we have

r1s1 − r2s2 = r1s1 − r2s1 + r2s1 − r2s2

= (r1 − r2)s1 + r2(s1 − s2)

∈ (r1 − r2)R +R(s1 − s2) ⊆ A by (1)
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Thus we see r1s1 − r2s2 ∈ A so that r1s1 + A = r2s2 + A.

(2 =⇒ 1) Let r ∈ R and a ∈ A. By proposition 58, we have

ra+ A = (r + A)(a+ A) = (r + A)(0 + A) = r · 0 + A = 0 + A = A

Thus ra ∈ A and we have Ra ⊆ A. By a similar argument, aR ⊆ A.

Definition. Ideal: An additive subgroup A of a ring R is an ideal of R if Ra ⊆ A (left
ideal) and aR ⊆ A (right ideal) for all a ∈ A. Thus a subset A of R is an ideal if 0 ∈ A, and
for a, b ∈ A and r ∈ R, we have a− b ∈ A and ra ∈ A.

11/02, lecture 8-2

Example: If R is a ring, then {0} and R are the trivial ideals of R.

Proposition 62: Let A be an ideal of a ring R. If 1R ∈ A then A = R.

Proof. For every r ∈ R, since A is an ideal and 1R ∈ A, we have r = r1R ∈ A

Proposition 63: Let A be an ideal of a ring R. Then the additive quotient group R/A is
a ring with multiplication (r + A)(s+ A) = rs+ A. The unity of R/A is 1 + A.

Proof. Follows by proposition 61.

Definition. Quotient Ring: Let A be an ideal of a ring R. The ring R/A is called the
quotient ring of R by A.

Definition. Generated Principal Ideals: Let R be a commutative ring and A an ideal of
R. If A = aR = {ar : r ∈ R} = Ra for some a ∈ R, we say A is the principal ideal generated
by a and is denoted by A = ⟨a⟩.

Example: If n ∈ Z, then ⟨n⟩ = nZ is an ideal of Z.

Proposition 64: All ideals of Z are of the form ⟨n⟩ for some n ∈ Z. If ⟨n⟩ ≠ {0} and
n ∈ N, then the generator is uniquely determined.

Proof. Let A be an ideal of Z. If A = {0}, then A is generated by 0. Otherwise, choose
a ∈ A with a ̸= 0 such that |a| is minimal. Clearly, ⟨a⟩ ⊆ A. To prove the other inclusion,
let b ∈ A. By the division algorithm, we have b = qa+r for some q, r ∈ Z and 0 ≤ r < |a|. If
r ̸= 0, since A is an ideal and a, b ∈ A, we have r = b− qa ∈ A with |r| < |a|, a contradiction
by the minimality of a. Thus r = 0 and b = qa, i.e., b ∈ ⟨a⟩. We see then that A = ⟨a⟩.
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7.4 Isomorphism Theorems

Definition. Ring Homomorphism: Let R and S be rings. A mapping θ : R → S is a
ring homomorphism if for all a, b ∈ R,

1. θ(a+ b) = θ(a) + θ(b)

2. θ(ab) = θ(a)θ(b)

3. θ(1R) = 1S

Example: The mapping k 7→ [k] from Z to Zn is a surjective ring homomorphism.

Example: If R1 and R2 are rings, the projections π1 : R1×R2 → R1, defined by π1(r1, r2) =
r1 is a surjective ring homomorphism. So is π2 : R1 ×R2 → R2 with π2(r1, r2) = r2.

Proposition 65: Let θ : R → S be a ring homomorphism and let r ∈ R. Then

1. θ(0R) = 0S

2. θ(−r) = −θ(r)

3. θ(kr) = kθ(r) for all k ∈ Z

4. θ(rn) = θ(r)n for all n ∈ N ∪ {0}

5. If u ∈ R∗ (the set of elements of R with multiplicative inverses, such a u is called a
unit of R), then θ(uk) = θ(u)k for k ∈ Z.

Proof. 1. Notice θ(0R) = θ(0R +0R) = θ(0R)+ θ(0R), thus by cancellation (under (S,+))
we have θ(0R) = 0S.

2. Notice for any r ∈ R we have θ(r) + θ(−r) = θ(r − r) = θ(0R) = 0S by (1), thus
θ(−r) = −θ(r).

3. Provable by induction on k.

4. Provable by induction on n.

5. By (4), it suffices to show θ(u−1) = θ(u)−1. To see this note θ(u)θ(u−1) = θ(uu−1) =
θ(1R) = 1S, thus θ(u−1) = θ(u)−1.

Definition. Ring Isomorphism: Let R and S be rings. A mapping θ : R → S is a
ring isomorphism if θ is a homomorphism and θ is bijective. In this case, we say R and S
are isomorphic and denoted as R ∼= S.

Definition. Ring Kernel: Let R and S be rings. If θ : R → S is a ring homomorphism,
the kernel of θ is defined by

ker θ = {r ∈ R : θ(r) = 0} ⊆ R.
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Definition. Ring Image: Let R and S be rings. If θ : R → S is a ring homomorphism,
the image of θ is defined by

im θ = {θ(r) : r ∈ R} ⊆ S.

Proposition 66: Let θ : R → S be a ring homomorphism. Then

1. im θ is a subring of S

2. ker θ is an ideal of R

Proof. 1. Let y1, y2 ∈ im θ and x1, x2 ∈ R such that θ(x1) = y1 and θ(x2) = y2. Then
notice y1−y2 = θ(r1)−θ(r2) = θ(r1−r2) ∈ im θ and y1y2 = θ(r1)θ(r2) = θ(r1r2) ∈ im θ.
Thus by the subring test im θ is a subring of S.

2. Let x, y ∈ ker θ. Then notice θ(x − y) = θ(x) − θ(y) = 0S − 0S = 0S and θ(xy) =
θ(x)θ(y) = 0S0S = 0S. Thus by the subring test ker θ is a subring of R. Let r ∈ R.
Then notice that θ(xr) = θ(x)θ(r) = 0Sθ(r) = 0S so xr ∈ ker θ. Similarly we can show
rx ∈ ker θ so that ker θ is an ideal of R.

Proposition 67. First Ring Isomorphism Theorem: Let θ : R → S be a ring homo-
morphism. We have R/ ker θ ∼= im θ.

Proof. Let A = ker θ. Since A is an ideal, R/A is a ring. Define the ring map θ̄ : R/A → im θ
by θ̄(r + A) = θ(r) for all r + A ∈ R/A.

Note that if

r + A = s+ A ⇐⇒ r − s ∈ A ⇐⇒ θ(r − s) = 0 ⇐⇒ θ(r) = θ(s)

Thus θ̄ is injective and well-defined. Also clearly θ̄ is clearly surjective. One can also check
that θ̄ is a ring homomorphism. Thus θ̄ is a ring isomorphism, and thus R/ ker θ ∼= im θ.

Theorem 68. Second Ring Isomorphism Theorem: Let A be a subring and B be an
ideal of a ring R. Then A + B is a subring of R, B is an ideal of A + B, A ∩ B is an ideal
of A, and

(A+B)/B ∼= A/(A ∩B).

Proof. See A7.

Theorem 69. Third Ring Isomorphism Theorem: Let A and B be ideals of a ring R
with A ⊆ B. Then B/A is an ideal in R/A and

(R/A)/
(B/A)

∼= R/B

Proof. See A7.
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11/04, lecture 8-3

Theorem 70. Chinese Remainder Theorem: Let R be a ring and A,B be ideals of R.
Then

1. If A+B = R, then R/(A ∩B) ∼= R/A×R/B

2. If A+B = R and A ∩B = {0}, then R ∼= R/A×R/B

Proof. Note that (2) is a direct consequence of (1). Thus it suffices to prove (1). Define

θ : R → R/A×R/B θ(r) = (r + A, r +B)

for all r ∈ R. Then θ is a ring homomorphism (exercise). To show θ is surjective, let
(s + A, t + B) ∈ R/A × R/B with s, t ∈ R. Since A + B = R, then there exists a ∈ A and
b ∈ B such that a+ b = 1. Let r = sb+ ta. Then

s− r = s− sb− ta = s(1− b)− ta = sa− ta = (s− t)a ∈ A.

Note (s− t)a ∈ A since A is an ideal. Thus s+ A = r + A. Similarly t+ B = r + B. Thus
θ(r) = (r + A, r + B) = (s + A, t + B). Thus im θ = R/A × R/B. Since ker θ = A ∩ B, by
the first isomorphism theorem, we have

R/(A ∩B) ∼= R/A×R/B

Example: Let m,n ∈ N with gcd(m,n) = 1. We have mZ+ nZ = Z and mZ∩ nZ = mnZ.
By the Chinese Remainder Theorem, we have the following corollary.

Corollary 71:

1. If m,n ∈ N with gcd(m,n) = 1, then Zmn
∼= Zm × Zn

2. If m,n ∈ N with gcd(m,n) = 1, then φ(mn) = φ(m)φ(n) where φ(m) = |Z∗
m| is the

Euler Totient (Phi) Function.

Remark: By corollary 71, if x ≡ a (mod m) and x ∼= b (mod n), there exists a unique
solution of these simultaneous congruence of the form x ∼= c (mod mn). Notice is this is the
standard statement of the Chinese Remainder Theorem in MATH 135.

Proposition 72: If R is a ring with |R| = p, for a prime p. Then R ∼= Zp.

Proof. Define θ : Zp → R by θ([k]) = k1R. Note that since R is also an additive group and
|R| = p, by Lagrange’s Theorem, o(1R) = 1 or o(1R) = p. Since 1R ̸= 0 (since p ≥ 2), we
have o(1R) = p. Thus

[k] = [m] ⇐⇒ p | (k −m) ⇐⇒ (k −m)1R = 0 ⇐⇒ k1R = m1R

Thus θ is well-defined and injective. Also θ is a ring homomorphism (exercise). Since
|Zp| = p = |R| and θ is injective, we have that θ is surjective. It follows that θ is a ring
isomorphism and thus R ∼= Zp.
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Chapter 8 Commutative Rings

8.1 Integral Domains and Fields

Definition. Unit: Let R be a ring. We say u ∈ R is a unit if u has a multiplicative inverse
in R, denoted by u−1 ∈ R. We have that uu−1 = 1 = u−1u. Note that if u is a unit in R
and r, s ∈ R, then

ur = us =⇒ r = s and ru = su =⇒ r = s

Let R∗ denote the set of all units in R. One can show that (R∗, ·) is a group, called the
group of unity of R.

Example: Note that 2 is a unit in Q, but not a unit in Z. We have Q∗ = Q \ {0} and
Z∗ = {±1}.

Example: Consider Z[i]. Then Z[i]∗ = {±1,±i}.

Definition. Division Ring: A ring R ̸= {0} is a division ring if R∗ = R \ {0}. A
commutative division ring is a field.

Example: Q,R,C are fields, but Z is not a field.

Example: We recall that [a][x] = [1] in Zn has a solution if and only if gcd(a, n) = 1. Thus
if n = p is prime, then gcd(a, p) = 1 for all a ∈ {[1], [2], . . . , [p − 1]}. Thus Z∗

p = Zp \ {0}
and so Zp is a field. However, if n is not a prime, say n = ab with a, b < n, then [a] has no
inverse. Hence Z∗

n ̸= Zn \ {0} if n is not prime. Thus Zn is a field if and only if n is a prime.

Remark: If R is a division ring (or a field), then R’s only ideals are {0} and R, since if
A ̸= {0} is an ideal, then 0 ̸= a ∈ A implies that 1 = a · a−1 ∈ A. By proposition 62, A = R.

Note: There is a theorem, Wedderburn’s Little Theorem, which shows that every finite
division ring is a field.

Example: Let n ∈ N with n = ab with 1 < a, b < n. Then [a][b] = [n] = [0], but [a] ̸= [0]
and [b] ̸= [0].

Definition. Zero Divisor: Let R ̸= {0} be a ring. For 0 ̸= a ∈ R, we say that a is a
zero divisor if there exists a 0 ̸= b ∈ R such that ab = 0.

Example: Note that [2], [3], [4] are zero divisor of Z6.

Example: The matrix [
1 0
0 0

]
is a zero divisor of M2(R) since [

1 0
0 0

]
·
[
0 0
0 1

]
=

[
0 0
0 0

]
11/07, lecture 9-1
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Proposition 73: Given a ring R, the following are equivalent:

1. If ab = 0 in R, then a = 0 or b = 0.

2. If ab = ac in R and a ̸= 0, then b = c.

3. If ba = ca in R and a ̸= 0, then b = c.

Proof. Note the above is saying that these implications are equivalent, e.g., if a is not a
zero-divisor then it satisfies cancellation laws. We prove (1 ⇐⇒ 2), the proof of (1 ⇐⇒ 3)
is similar.

(1 =⇒ 2) Let ab = ac with a ̸= 0. Then a(b− c) = 0, by (1), since a ̸= 0, we have b− c = 0,
i.e., b = c.

(2 =⇒ 1) Let ab = 0 in R. We consider two cases. If a = 0 then we are done. Otherwise,
suppose a ̸= 0, then we have ab = 0 = a0, then by (2) we have b = 0.

Definition. Integral Domain: A commutative ring R ̸= {0} is an integral domain if it
has no zero divisors. I.e., if ab = 0 in R, then a = 0 or b = 0, and so by the above proposition
we have cancellation.

Example: Z is an integral domain since ab = 0 implies a = 0 or b = 0.

Example: Zn is an integral domain if and only if n is prime.

Proposition 74: Every field is an integral domain.

Proof. Let ab = 0 in a field R. We consider two cases. If a = 0 we are done. Otherwise,
suppose a ̸= 0. Then since a ̸= 0 and R is a field, a ∈ R∗ and so a−1 ∈ R exists. Then

b = 1 · b = (a−1a)b = a−1(ab) = a−1 · 0 = 0

Thus R is an integral domain by proposition 73.

Remark: Using the above proof, we an also show that every subring of a field is an integral
domain.

Note: The converse of proposition 74 is not necessarily true. For instance, Z is an integral
domain, but not a field.

Proposition 75: Every finite integral domain is a field.

Proof. Let R be a finite integral domain, say |R| = n. Write R = {r1, r2, . . . , rn}. Given
a ̸= 0 in R, by proposition 73, we have that the set aR = {ar1, ar2, . . . , arn} has distinct
elements since if ari = arj, then by proposition 73 ri = rj. Since |aR| = n and aR ⊆ R. In
particular, 1 ∈ aR, say 1 = ab for some b ∈ R. Since R is commutative, we have ab = 1 = ba,
i.e., a is a unit. Thus R is a field.
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Remark: We recall the characteristic of a ring R, denoted ch(R), is the order of 1R in
(R,+). In particular

ch(R) =

{
n if o(1R) = n ∈ N in (R,+)

0 if o(1R) = ∞ in (R,+)

Proposition 76: The characteristic of an integral domain is either 0 or a prime p.

Proof. Let R be an integral domain. We consider two cases. If ch(R) = 0, then we are
done. Otherwise suppose ch(R) = n ∈ N. Suppose that n is not a prime, say n = ab with
1 < a, b < n. If 1 is the unity of R, then by proposition 58 we have (a ·1)(b ·1) = (ab)(1 ·1) =
n · 1 = 0. Then since R is an integral domain, either a · 1 = 0 or b · 1 = 0 and thus o(1) = a
or o(1) = b respectively. This is a contradiction since o(1) = n and n ̸= a and n ̸= b. Thus
n must be prime.

Remark: Let R be an integral domain with ch(R) = p for a prime p. For a, b ∈ R, we have
by the binomial theorem that

(a+ b)p = ap +

(
p

1

)
ap−1b+

(
p

2

)
ap−2b2 + · · ·+

(
p

p− 1

)
abp−1 + bp

Note that for any 0 < r < p we have(
p

r

)
=

p!

(p− r)!r!
,

however, since r > 0 we have p − r < p and so the above is a multiple of p. Thus since
p · r = (p · 1)r = 0 · r = 0 for all r ∈ R, we then have (a+ b)p = ap + bp.

8.2 Prime Ideals and Maximal Ideals

Definition. Prime Ideal: Let R be a commutative ring. An ideal P ̸= R of R is a
prime ideal if whenever r, s ∈ R satisfy rs ∈ P , then r ∈ P or s ∈ P .

Example: {0} ⊆ Z is a prime ideal.

Example: For n ∈ N with n ≥ 2, we have that nZ is a prime ideal of Z if and only if n is
prime.

Proposition 77: If R is a commutative ring, then an ideal P of R is a prime ideal if and
only if R/P is an integral domain.

Proof. Since R is a commutative ring, so is R/P . Note that

R/P ̸= {0} ⇐⇒ 0 + P ̸= 1 + P ⇐⇒ 1 /∈ P ⇐⇒ P ̸= R

Also for r, s ∈ R, we have that P is a prime ideal if and only if rs ∈ P implies that r ∈ P or
s ∈ P . However, this is true if and only if (r+P )(s+P ) = 0+P implies that r+P = 0+P
or s+ P = 0 + P , which is equivalent to saying that R/P is an integral domain.
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Definition. Maximal Ideal: Let R be a (commutative) ring. Then an ideal of M ̸= R of
R is a maximal ideal if whenever A is an ideal of R such that M ⊆ A ⊆ R, then A = M or
A = R.

Proposition 78: If R be a commutative ring, then an ideal M of R is maximal if and only
if R/M is a field.

Proof. Since R is a commutative ring, so is R/M . Also

R/M ̸= {0} ⇐⇒ 0 +M ̸= 1 +M ⇐⇒ 1 /∈ M ⇐⇒ M ̸= R

Also, for r ∈ R, note that r /∈ M if and only if r+M ̸= 0+M . Thus we have that that M is
a maximal ideal if and only if ⟨r⟩+M = R for any r /∈ M (since M ⊆ ⟨r⟩+M is ideal and
M is maximal), if and only if 1 ∈ ⟨r⟩+M , if and only if for any r+M ̸= 0+M , there exists
an s+M ∈ R/M such that (r +M)(s+M) = 1 +M , if and only if R/M is a field.

11/09, lecture 9-2

Corollary 79: Every maximal ideal of a commutative ring is a prime ideal.

Proof. By combining propositions 74, 77, and 78.

Remark: The converse of corollary 79 is not necessarily true. For instance, in Z, {0} is a
prime ideal but not a maximal ideal.

8.3 Fields of Fractions

Remark: We recall that every subring of a field is an integral domain. We might ask if an
integral domain is a subring of a field?

Exploration: Let R be an integral domain and let D = R \ {0}. Consider the set

X = R×D = {(r, s) : r ∈ R and s ∈ D}

We say (r1, s1) ≡ (r2, s2) on X if and only if r1s2 = s1r2. We can show that ≡ defines
an equivalence relation on X (exercise). More precisely, we have the following for any
(r1, s1), (r2, s2), (r3, s3) ∈ X:

1. (r1, s1) ≡ (r1, s1)

2. (r1, s1) ≡ (r2, s2) ⇐⇒ (r2, s2) ≡ (r1, s1)

3. If (r1, s1) ≡ (r2, s2) and (r2, s2) ≡ (r3, s3), then (r1, s1) ≡ (r3, s3).

8 Commutative Rings 49 8.3, Fields of Fractions



PMATH 347 Fall 2022: Notes Jacob Schnell

Motivated by the case R = Z, we now define fraction r
s

to be the equivalence class [(r, s)] on
X. Note the equivalence class is

r

s
= [(r, s)] = {(r′, s′) ∈ X : (r, s) ≡ (r′, s′)} = {(r′, s′) ∈ X : rs′ = r′s}.

Let F denote the set of all these fractions. I.e.,

F = { r
s
: r ∈ R and s ∈ D} = { r

s
: r ∈ R and s ∈ R \ {0}}

The addition and multiplication operations on F are defined by
r1
s1

+
r2
s2

=
r1s2 + s1r2

s1s2
and

r1
s1

· r2
s2

=
r1r2
s1s2

.

Note that s1s2 ̸= 0 since R is an integral domain. Hence these operations are well-defined.
We can show that F is a field with the zero being 0

1
, the unity being 1

1
, and the negative of

r
s

being −r
s

. Moreover, if r
s
̸= 0 in F , then r ̸= 0 and s

r
∈ R with r

s
· s
r
= 1

1
. Also, we have

R ∼= R′ where R′ = { r
1
: r ∈ R} ⊆ F . We thus get the following theorem.

Theorem 80: Let R be an integral domain. Then there exists a field F consisting of
fractions r

s
with r, s ∈ R and s ̸= 0. By identifying r = r

1
for all r ∈ R, we can view R as a

subring of F (R is isomorphic to a subring of F ). The field F is called the field of fractions
of R.

Proof. See the above exploration.

Remark: Given an integral domain R, we can generalize the above set D = R \ {0} to any
subset D ⊆ R satisfying

1. 1 ∈ D

2. 0 /∈ D

3. If a, b ∈ D then ab ∈ D.

Then we can show that the corresponding set of fractions F is an integral domain, which
contains R. Such and F is called the ring of fractions of R over D and it is donated by
D−1R. Note that F is an integral domain, though not necessarily a field.

Remark: If R is an integral domain and P is a prime ideal of R, then D = R\P satisfies the
conditions we specified above. The resulting ring D−1R is called a localization of R at the
prime ideal P .

Chapter 9 Polynomial Rings

9.1 Polynomial Rings

Exploration: Let R be a ring. Let x be a variable (i.e., an indeterminate) Let

R[x] = {f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n : n ∈ N ∪ {0}, ai ∈ R}.
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Such an f(x) ∈ R[x] is called a polynomial in x over R. If am ̸= 0, we say that f(x) has
degree m, denoted deg f = m, and we say am is the leading coefficient of f(x). If deg f = 0,
then f(x) = a0 ∈ R, in this case we say f(x) is a constant polynomial. Note that if

f(x) = 0 ⇐⇒ a0 = a1 = a2 = · · · = am = 0,

we define deg 0 = −∞ (we’ll see why later). Let

f(x) = a0 + a1x+ · · ·+ amx
m ∈ R[x] and g(x) = b0 + b1x+ · · ·+ bnx

n ∈ R[x]

with m ≤ n. Then we write ai = 0 for m+1 ≤ i ≤ n. We define addition and multiplication
on R[x] as follows.

f(x) + g(x) = (a0 + b0) + (a1 + b1)x+ · · · (an + bn)x
n

f(x)g(x) = (a0 + a1x+ · · ·+ amx
m)(b0 + b1x+ · · ·+ bnx

n)

= a0b0 + (a0b1 + a1b0)x+ · · ·
= c0 + c1x+ c2x

2 + · · ·+ cm+nx
m+n

where ci = a0bi + a1bi−1 + · · ·+ ai−1b1 + aib0.

Proposition 81: Let R be a ring and let x be a variable. Then

1. R[x] is a ring.

2. R is a subring of R[x].

3. If Z = Z(R) denotes the center of R, then the center of R[x] is Z[x].

Proof. (1) and (2) are left as exercises. Let

f(x) = a0 + a1x+ · · ·+ amx
m ∈ Z[x] and g(x) = b0 + b1 + · · ·+ bnx

n ∈ R[x].

Then

f(x)g(x) = c0 + c1x+ · · ·+ cm+nx
m+n where ci = a0bi + a1bi−1 + · · ·+ ai−1b1 + aib0.

Since ai ∈ Z(R), we have aibj = bjai for all i, j. Thus f(x)g(x) = g(x)f(x), and so
Z[x] ⊆ Z(R[x]).

To show the other inclusion, note that if f(x) = a0 + a1x + · · · + amx
m ∈ Z(R[x]), then

f(x)b = bf(x) for all b ∈ R. It follows that aib = bai for all 0 ≤ i ≤ m. It implies that
ai ∈ Z and hence we have Z(R[x]) ⊆ Z[x]. Thus Z(R[x]) = Z[x].

11/11, lecture 9-3

Note: Warning: Although f(x) ∈ R[x] can be used to defined a function from R to R, the
polynomial is not the same as the function it defines. For example, if R = Z2 then Z2[x] is
an infinite set, but there are only four distinct functions from Z2 to Z2.

Proposition 82: Let R be an integral domain. Then
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1. R[x] is an integral domain.

2. If f(x) ̸= 0 and g(x) ̸= 0 in R[x], then deg(fg) = deg(f) + deg(g).

3. The units in R[x] are R∗, the units in R.

Proof. ((1) and (2)) Suppose f(x) ̸= 0 and g(x) ̸= 0. Say

f(x) = a0 + a1x+ · · ·+ amx
m and g(x) = b0 + b1 + · · ·+ bnx

n

with am ̸= 0 and bn ̸= 0. Then f(x)g(x) = (ambn)a
m+n + · · · + a0b0. Since R is an integral

domain, ambn ̸= 0 and thus f(x)g(x) ̸= 0. It follows that R[x] is an integral domain.
Moreover, deg(fg) = deg(f) + deg(g).

(3) Suppose that u(x) is a unit in R[x], say u(x)v(x) = 1. By (2),

deg(u) + deg(v) = deg(1) = 0,

and so deg(u) = 0 = deg(v). Thus u(x) and v(x) are units in R.

Remark: In Z4, we have (2x)(2x) = 4x2 = 0, thus deg(2x) + deg(2x) ̸= deg(2x · 2x) and so
our above proposition only holds if R is an integral domain.

Remark: To extend proposition 82(2) to the zero polynomial, we define deg(0) = ±∞.

9.2 Polynomials over a Field

Definition. Monic Polynomials: Let F be a field and f(x) ∈ F [x]. We say f(x) is monic
if its leading coefficient is 1.

Definition. Divisibility of Polynomials: Let F be a field and f(x), g(x) ∈ F [x]. We
say f(x) divides g(x), denoted by f(x)|g(x), if there exists a q(x) ∈ F [x] such that g(x) =
q(x)f(x).

Proposition 83: Let f(x), g(x), h(x) ∈ F [x]. Then

1. If f(x) | g(x) and g(x) | h(x), then f(x) | h(x).

2. If f(x) | g(x) and f(x) | h(x), then f(x) | (g(x)u(x) + h(x)v(x)) for any u(x), v(x) ∈
F [x].

Proof. Exercise

Proposition 84: Let F be a field and f(x), g(x) ∈ F [x] be monic polynomials. If f(x) | g(x)
and g(x) | f(x), then f(x) = g(x).
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Proof. If f(x) | g(x) and g(x) | f(x), then there exists polynomials u(x), v(x) ∈ F [x] such
that g(x) = f(x)u(x) and f(x) = g(x)v(x). Then f(x) = g(x)v(x) = f(x)u(x)v(x). By
proposition 82, deg f = deg f + deg u + deg v which implies deg(u) = 0 = deg(v). Thus
g(x) = f(x) · s for some s ∈ R. Since f(x) and g(x) are monic, s = 1 and we have
f(x) = g(x).

Remark: We recall that for any a, b ∈ Z if a | b and b | a and a, b are positive, then a = b.
Thus, the set of monic polynomials in F [x] plays the same role as the set of positive integers.

Proposition 85. Division Algorithm for Polynomials: Let F be a field and f(x), g(x) ∈
F [x] with f(x) ̸= 0. Then there exists unique q(x), r(x) ∈ F [x] such that g(x) = q(x)f(x) +
r(x) with deg r < deg f . Note that this includes the case for r(x) = 0 since deg 0 = −∞.

Proof. We prove by induction that such q(x) and r(x) exist. Write m = deg f and n = deg g.
If n < m, then g(x) = 0 · f(x)+ g(x). Suppose n ≥ m and the result hold for all g(x) ∈ F [x]
with deg g < n. I.e., we are inducting on the degree, n, of the dividend.

Write f(x) = a0 + a1x+ · · ·+ amx
m with am ̸= 0 and g(x) = b0 + b1x+ · · ·+ bnx

n. Since F
is a field, a−1

m exists. Consider

g1(x) = g(x)− bna
−1
m xn−mf(x)

= (bnx
n + bn−1x

n−1 + · · · )− bna
−1
m xn−m(amx

m + am−1x
m−1 + · · · )

= 0xn + (bn−1 − bna
−1
m am−1)x

n−1 + · · ·

Since deg g1 < n, by our inductive hypothesis, there exists q1(x), r1(x) ∈ F [x] such that
g1(x) = q1(x)f(x) + r1(x) with deg r1 < deg f . Thus

g(x) = g1(x) + bna
−1
m xn−mf(x)

= (q1(x)f(x) + r1(x)) + bna
−1
m xn−mf(x)

= (q1(x) + bna
−1
m xn−m)︸ ︷︷ ︸

q(x)

f(x) + r1(x)︸ ︷︷ ︸
r(x)

Now to prove uniqueness, suppose we have

g(x) = q1(x)f(x) + r1(x) and g(x) = q2(x)f(x) + r2(x)

Then r1(x)− r2(x) = f(x)(q2(x)− q1(x)). If q2 − q1(x) ̸= 0, we get

deg(r1 − r2) = deg f + deg(q2 − q1) ≥ deg f.

This leads to a contradiction since deg(r1 − r2) < deg f . Thus q2(x)− q1(x) = 0 and hence
r1(x)− r2(x) = 0. It follows that q1(x) = q2(x) and r1(x) = r2(x).

11/14, lecture 10-1

Proposition 86: Let F be a field and f(x), g(x) ∈ F [x] with f(x) ̸= 0 and g(x) ̸= 0. Then
there exists d(x) ∈ F [x] which satisfies the following conditions:
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1. d(x) is monic.

2. d(x) | f(x) and d(x) | g(x).

3. If e(x) | f(x) and e(x) | g(x), then e(x) | d(x).

4. d(x) = u(x)f(x) + v(x)g(x) for some u(x), v(x) ∈ F [x].

Proof. Consider the set X = {u(x)f(x) + v(x)g(x) : u(x), v(x) ∈ F [x]}. Since f(x) ∈ X,
the set contains nonzero polynomials and thus contains monic polynomials (if f ∈ X with
leading coefficient a, then a−1f ∈ X is monic).

Among all monic polynomials in X, choose d(x) = u(x)f(x) + v(x)g(x) of minimal degree.
Then (1) and (4) are satisfied. For (3), if e(x) | f(x) and e(x) | g(x), since d(x) = u(x)f(x)+
v(x)g(x), by proposition 83, e(x) | d(x).

It remains to prove (2). By the division algorithm, we may find q(x), r(x) ∈ F [x] such that
f(x) = q(x)d(x) + r(x) with deg r < deg d. Then

r(x) = f(x)− q(x)d(x)

= f(x)− q(x)
(
u(x)f(x) + v(x)g(x)

)
=

(
1− q(x)u(x)

)
f(x)− q(x)v(x)g(x)

Note if r ̸= 0, let c ̸= 0 be the leading coefficient of r(x). Since F is a field, c−1 ex-
ists. The above expression of r(x) shows that c−1r(x) is a monic polynomial of X with
deg(c−1r(x)) = deg r < deg d which contradicts the choice of d(x) (since d(x) is the minimal
monic polynomial with d(x) = u(x)f(x) + v(x)g(x)). Thus r(x) = 0 and so d(x) | f(x). We
may similarly show d(x) | g(x).

Note: Note that if both d1(x) and d2(x) satisfies the above conditions, since d1(x) | d2(x) and
d2(x) | d1(x) and both of them are monic, by proposition 84, we have d1(x) = d2(x). We call
such d(x) the greatest common divisor of f(x) and g(x), denoted by d(x) = gcd(f(x), g(x)).
Thus the greatest common divisor is unique (at least among monic polynomials).

Definition. Irreducible Polynomial: Let F be a field, a polynomial ℓ(x) ̸= 0 in F [x]
is irreducible if deg ℓ ≥ 1 and whenever ℓ(x) = ℓ1(x)ℓ2(x) with ℓ1(x), ℓ2(x) ∈ F [x], then
deg ℓ1 = 0 and deg ℓ2 = deg ℓ or deg ℓ1 = deg ℓ and deg ℓ2 = 0 (recall degree 0 polynomials
are units in F [x]). Polynomials that are not irreducible are reducible.

Example: If ℓ(x) ∈ F [x] satisfies deg ℓ = 1, then ℓ(x) is irreducible. (For deg ℓ = 2 or 3,
see assignment 9).

Example: Let ℓ(x), f(x) ∈ F [x]. If ℓ(x) is irreducible and ℓ(x) ∤ f(x), then gcd(ℓ(x), f(x)) = 1.

Proposition 87: Let F be a field and f(x), g(x) ∈ F [x]. If ℓ(x) ∈ F [x] is irreducible and
ℓ(x) | f(x)g(x), then ℓ(x) | f(x) or ℓ(x) | g(x).

Proof. Suppose ℓ(x) | f(x)g(x). We consider two cases, if ℓ(x) | f(x) then we are done,
otherwise suppose ℓ(x) ∤ f(x). Then gcd(ℓ(x), f(x)) = 1. Thus there exists u(x), v(x) ∈ F [x]
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such that 1 = u(x)ℓ(x) + v(x)f(x). Then

g(x) = g(x)u(x)ℓ(x) + g(x)v(x)f(x)

Since ℓ(x) | ℓ(x) and ℓ(x) | f(x)g(x), by proposition 83, we have ℓ(x) | g(x).

Remark: Let f1(x), . . . , fn(x) ∈ F [x] and let ℓ(x) ∈ F [x] be irreducible. If ℓ(x) | f1(x) · · · fn(x),
by applying proposition 87 repeatedly, we get ℓ(x) | fi(x) for some 1 ≤ i ≤ n.

Theorem 88. Unique Factorization Theorem: Let F be a field and let f(x) ∈ F [x]
with deg f ≥ 1. Then we can write

f(x) = cℓ1(x) · · · ℓm(x)

where c ∈ F ∗ and ℓi(x) are monic, irreducible polynomials for 1 ≤ i ≤ n. The factorization
is unique up to the order of ℓi.

Proof. Exercise, see Piazza.

11/16, lecture 10-2

Proposition 89: Let F be a field. Then all ideals of F [x] are of the form ⟨h(x)⟩ = h(x)F [x]
for some h(x) ∈ F [x]. If ⟨h(x)⟩ ̸= {0} and h(x) is monic, then the generator is uniquely
determined.

Proof. Let A be an ideal of F [x]. If A = {0}, then A = ⟨0⟩. If A ̸= {0}, then A contains a
monic polynomial (since we can multiply by the inverse of the leading coefficient). Choose
h(x) ∈ A of minimal degree. Then ⟨h(x)⟩ ⊆ A.

To prove the other inclusion, let f(x) ∈ A. By the division algorithm, we may write f(x) =
q(x)h(x) + r(x) with deg r < deg h. If r(x) ̸= 0, let u ̸= 0 be its leading coefficient. Since A
is an ideal and f(x), h(x) ∈ A, we have

u−1r(x) = u−1(f(x)− q(x)h(x)) = u−1f(x)− u−1q(x)h(x) ∈ A

which is a monic polynomial in A with deg(u−1r) < deg h, which contradicts the minimality
of deg h. Thus, r(x) = 0 and h(x) | f(x). It follows that A ⊆ ⟨h(x)⟩ and so A = ⟨h(x)⟩.

Also, if ⟨h(x)⟩ = ⟨h′(x)⟩, then h(x) | h′(x) and h′(x) | h(x). If both h(x) and h′(x) are
monic, by proposition 84, h(x) = h′(x).

Exploration: Let A ̸= {0} be an ideal of F [x]. By proposition 89, we can write A = ⟨h(x)⟩
for a unique monic polynomial h(x) ∈ F [x]. Suppose that deg h = m ≥ 1. Consider the
quotient ring R = F [x]/A so that

R = {f(x) = f(x) + A : f(x) ∈ F [x]} where f(x) := f(x) + A.
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Write t = x = x + A, then by the division algorithm (write f(x) = q(x)h(x) + r(x) with
deg r < deg h = m, then our cosets are uniquely determined by r(x)), we have

R = {a0 + a1t+ a2t
2 + · · ·+ am−1t

m−1 : ai ∈ F}

Consider the map θ : F → R given by θ(a) = a. Since θ is not the zero map and ker θ is
an ideal of the field F (F has only two ideals, {0} and F ), we have ker θ = {0}. Thus θ
is an injective ring homomorphism. Since F ∼= θ(F ) by the first isomorphism theorem, by
identifying F with θ(F ), we can write

R = {a0 + a1t+ · · ·+ am−1t
m−1 : ai ∈ F}

Note that in R, we have a0 + a1t + · · · + am−1t
m−1 = b0 + b1t + · · · + bm−1t

m−1 if and only
if a0 = b0, a1 = b1, . . . , am−1 = bm−1 (exercise). So the representation of the elements of R is
unique. Finally, in the ring R, we have h(t) = 0 (since h(t) = h(x) = 0R).

Proposition 90: Let F be a field and h(x) ∈ F [x] by monic with deg h = m ≥ 1. Then
the quotient ring R = F [x]/⟨h(x)⟩ is given by

R = {a0 + a1t+ · · ·+ am−1t
m−1 : ai ∈ F and h(t) = 0}

in which an element of R can be uniquely represented in the above form.

Proof. See the above exploration.

Example: In Z, we have Z/⟨n⟩ = Zn = {[0], [1], . . . , [n− 1]}, which is analogous to propo-
sition 90.

Example: Consider the ring R[x]. Let h(x) = x2 + 1 ∈ R[x]. By proposition 90, we have

R[x]/⟨x2 + 1⟩ ∼= {a+ bt : a, b ∈ R and t2 + 1=0}
∼= {a+ bi : a, b ∈ R and i2 = −1}
∼= C

In particular, ⟨x2 + 1⟩ is maximal in R[x].

Proposition 91: Let F be a field and let h(x) ∈ F [x] be a polynomial with deg h ≥ 1. The
following are equivalent:

1. F [x]/⟨h(x)⟩ is a field.

2. F [x]/⟨h(x)⟩ is an integral domain.

3. h(x) is irreducible in F [x].

Proof. Let A = ⟨h(x)⟩.

(1 =⇒ 2) Every field is an integral domain.
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(2 =⇒ 3) If h(x) = f(x)g(x) with f(x), g(x) ∈ F [x], then

(f(x) + A)(g(x) + A) = f(x)g(x) + A = h(x) + A = 0 + A ∈ F [x]/A.

By (2), either f(x) + A = 0 + A or g(x) + A = 0 + A. Without loss of generality, suppose
f(x) + A = 0 + A. Then f(x) ∈ A = ⟨h(x)⟩. Thus f(x) = h(x)q(x) for some q(x) ∈ F [x].
Thus

h(x) = f(x)g(x) = h(x)q(x)g(x)

This implies that q(x)g(x) = 1 and hence deg g = 0. Similarly, if g(x) + A = 0 + A, then
deg f = 0. Thus h(x) is irreducible by definition.

(3 =⇒ 1) Note that F [x]/A is a commutative ring. Thus to show it is a field, it suffices
to find an inverse of any nonzero element. Let f(x) + A ̸= 0 + A. Then f(x) /∈ A, i.e.,
h(x) ∤ f(x). Since h(x) is irreducible and h(x) ∤ f(x), gcd(h(x), f(x)) = 1. By proposition
86, there exist u(x), v(x) ∈ F [x] such that

f(x)u(x) + h(x)v(x) = 1

Thus (u(x)+A)(f(x)+A) = 1+A since (h(x)+A)(v(x)+A) = (0+A)(v(x)+A) = 0+A.
Hence f(x) is invertible and so F [x]/A is a field.

Example: Since R[x]/⟨x2 + 1⟩ ∼= C, we see that x2 + 1 is irreducible in R.

Example: Since x3 + x+ 1 has no roots in Z2, it is irreducible in Z2. Thus

Z2[x]/⟨x3 + x+ 1⟩/ ∼= {a0 + a1t+ a2t
2 : ai ∈ Z2 and t3 + t+ 1 = 0}

is a field of 8 elements. Note that Z8 is not a field, thus this gives us an “interesting” finite
field.

11/18, lecture 10-3

Remark: Given a prime p and n ∈ N, there exists an irreducible polynomial of degree n in
Zp[x] (the proof of this result is non-trivial), say ℓ(x). Then Zp[x]/⟨ℓ(x)⟩ is a field of order
pn

Remark: Analogies between Z and F [x]:

Z F [x]
Elements m f(x)

Size |m| deg f
Units ±1 F ∗

“Positives” (Z \ {0})/{±1} ∼= N (F [x] \ {0})/F ∗ ∼= M
UFT m = ±1pα1

1 · · · pαn
n f = cℓα1

1 · · · ℓαn
n

pi is prime c ∈ F ∗, ℓi is monic and irreducible
Ideals ⟨n⟩ (unique if n ∈ N) ⟨h(x)⟩ (unique if h(x) is monic).

Quotient Rings Z/⟨n⟩ is a field iff n is prime F [x]/⟨h(x)⟩ is a field iff h(x) is irreducible.

where M = {f(x) ∈ F [x] : f(x) is monic}. We should also note that both have a division
algorithm.
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Chapter 10 Integral Domains

10.1 Irreducibles and Primes

Definition. Divisibility: Let R be an integral domain and a, b ∈ R. We say a divides b,
denoted by a|b, if b = ca for some c ∈ R.

Proposition 92: Let R be an integral domain. For a, b ∈ R, the following are equivalent:

1. a | b and b | a.

2. a = ub for some unit u ∈ R.

3. ⟨a⟩ = ⟨b⟩.

Proof. Exercise, see Piazza.

Definition. Association: Let R be an integral domain. For a, b ∈ R, we say a is associated
to b, denoted by a ∼ b, if a | b and b | a. By proposition 92, ∼ is an equivalence relation.
More precisely

1. a ∼ a for all a ∈ R.

2. If a ∼ b, then b ∼ a.

3. If a ∼ b and b ∼ c, then a ∼ c.

Moreover, one can show (exercise)

1. If a ∼ a′ and b ∼ b′, then ab ∼ a′b′.

2. If a ∼ a′ and b ∼ b′, then a | b if and only if a′ | b′.

Example: Let R = Z[
√
3] = {m+n

√
3 : m,n ∈ Z}, which is an integral domain. Note that

(2 +
√
3)(2 −

√
3) = 1. Thus 2 +

√
3 is a unit in R. Since (2 +

√
3) ·

√
3 = 3 + 2

√
3. Thus

3 + 2
√
3 ∼

√
3 in R.

Definition. Irreducible Element: Let R be an integral domain. We say p ∈ R is
irreducible if p ̸= 0 is not a unit, and if p = ab with a, b ∈ R, then either a or b is a unit. An
element that is not irreducible is reducible.

Example: Let R = Z[
√
−5] = {m + n

√
−5 : m,n ∈ Z} and let p = 1 +

√
−5. We claim

that p is irreducible in R. For d = m+ n
√
−5, the norm of d is defined to be

N(d) = (m+ n
√
−5)(m− n

√
−5) = m2 + 5n2 ∈ N ∪ {0}

(Note the norm has a clear analogy to the modulus for complex numbers given by |a+ bi| =
(a+ bi)(a− bi).) One can check (see assignment 10):
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• N(ab) = N(a)N(b).

• N(d) = 1 if and only if d is a unit.

• If N(ℓ) is a prime then ℓ is irreducible.

Now suppose that p = 1 +
√
−5 = ab with a, b ∈ R. Note that N(p) = 6 = N(a)N(b).

Note the only factorization of 6 is 6 = 1 · 6 or 6 = 2 · 3. If N(m + n
√
−5) = m2 + 5n2 = 2,

then n = 0 and thus m2 = 2, which is not possible. Thus N(m + n
√
−5) ̸= 2. Similarly

N(m+ n
√
−5) ̸= 3. Thus we have either N(a) = 1 or N(b) = 1, i.e., either a or b is a unit.

Thus p is irreducible.

11/21, lecture 11-1

Proposition 93: Let R be an integral domain and let 0 ̸= p ∈ R with p not being a unit.
The following are equivalent:

1. p is irreducible.

2. If d | p, then d ∼ 1 or d ∼ p.

3. If p ∼ ab in R, then p ∼ a or p ∼ b.

4. If p = ab in R, then p ∼ a or p ∼ b.

As a consequence, we see that if p ∼ q, then p is irreducible if and only if q is irreducible.

Proof. (1 =⇒ 2) If p = da for some a ∈ R, by (1) either d or a is a unit. Then d ∼ 1 or
d ∼ p.

(2 =⇒ 3) If p ∼ ab, then b | p. By (2), either b ∼ 1 or b ∼ p. In the first case, we get p ∼ a.

(3 =⇒ 4) Clearly true.

(4 =⇒ 1) If p = ab, then by (4), p ∼ a or p ∼ b. If p ∼ a, write a = up for some unit u.
Then p = ab = (up)b = pub. Since R is an integral domain and p ̸= 0, we have ub = 1, i.e.,
b is a unit. Similarly, p ∼ b implies that a is a unit. Thus (1) follows.

Definition. Prime Element: Let R be an integral domain and p ∈ R. We say p is a prime
if p ̸= 0 is not a unit, and if p | ab with a, b ∈ R, then p | a or p | b.

Remark: If p ∼ q, then p is prime if and only if q is prime. Also, by induction, if p is prime
and p | a1a2 · · · an, then p | ai for some 1 ≤ i ≤ n.

Proposition 94: Let R be an integral domain and p ∈ R. If p is a prime, then p is
irreducible.
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Proof. Let p ∈ R be a prime. If p = ab in R, then p | a or p | b since p is a prime. If p | a,
write a = dp for some d ∈ R. Since R is commutative, we have a = dp = d(ab) = a(db).
Since 0 ̸= a and R is an integral domain, we have db = 1 and thus b is a unit with inverse d.
Similarly, if p | b, then a is a unit. It follows that p is irreducible.

Example: The converse of proposition 94 is false. Consider for instance, R = Z[
√
−5] and

p = 1 +
√
−5 ∈ R. We have seen that p is irreducible in R. We claim that p is not a prime

in R.

Note that 2 · 3 = 6 = (1 +
√
−5)(1−

√
−5). If p is a prime, since p | 2 · 3 then p | 2 or p | 3.

Suppose that p | 2, say 2 = qp for some q ∈ R. It follows that 4 = N(2) = N(q)N(p) =
N(q) · 6 which is not possible, since we know that N(q) ∈ Z and 6 ∤ 4 in Z. Similarly, if p | 3
is not possible, since N(p) = 6 ∤ 9 = N(3). Thus p is not a prime.

Note: The following are good exercises:

1. Construct another irreducible element that is not a prime.

2. Given a prime p ∈ Z, i.e., p = (±1)(±p) is the only factorization of p, try to think
what is needed to prove Euclid’s Lemma that p | ab implies p | a or p | b?

10.2 Ascending Chain Conditions

Definition. Ascending Chain Conditions: An integral domain R is said to satisfy the
ascending chain conditions on principal ideals (ACCP) if for any ascending chain of principal
ideals in R, ⟨a1⟩ ⊆ ⟨a2⟩ ⊆ ⟨a3⟩ ⊆ · · · , then there exists an integer n ∈ N such that
⟨an⟩ = ⟨an+1⟩ = ⟨an+2⟩ = · · · .

Example: We claim Z satisfies ACCP.

Proof. If ⟨a1⟩ ⊆ ⟨a3⟩ ⊆ ⟨a3⟩ ⊆ · · · in Z, then a2 | a1, a3 | a2, a4 | a3, . . .. Taking absolute
values gives |a1| ≥ |a2| ≥ |a3| ≥ · · · . Since each |ai| ≥ 0 is an integer, we get |an| = |an+1| =
· · · for some n. It implies that ai+1 = ±ai for all i ≥ n. Thus ⟨ai⟩ = ⟨ai+1⟩ for all i ≥ n.

11/23, lecture 11-2

Example: Consider R = ⟨n + xf : n ∈ Z, f ∈ Q[x]} the set of polynomials in Q[x] whose
constant term is in Z. Then R is an integral domain (exercise), but ⟨x⟩ ⊊ ⟨1

2
x⟩ ⊊ ⟨1

4
x⟩ ⊊

⟨1
8
x⟩ ⊊ · · · . Thus R does not satisfy ACCP, as this chain does not have a constant tail.

Theorem 95: Let R be an integral domain satisfying ACCP. If 0 ̸= a ∈ R is not a unit,
then a is a product of irreducible elements of R.

Proof. By way of contradiction, suppose that there exists a nonunit 0 ̸= a ∈ R which is not
a product of irreducible elements. Since a is not irreducible, by proposition 93, we may write
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a = x1a1 with a ≁ x1 and a ≁ a1. Note that at least one of x1 and a1 are not a product of
irreducible elements (if both of them are, so is a).

Without loss of generality, suppose a1 is not a product of irreducible elements. Then as
before, we can write a1 = x2a2 with a1 ≁ x2 and a1 ≁ a2 and where a2 is not a product of
irreducible elements. This process may be continued infinitely and we have

⟨a⟩ ⊆ ⟨a1⟩ ⊆ ⟨a2⟩ ⊆ · · ·

Since a ≁ a1, a1 ≁ a2, . . ., by proposition 92 we have

⟨a⟩ ⊊ ⟨a1⟩ ⊊ ⟨a2⟩ ⊊ · · · .

This is a contradiction of the ACCP condition on R. Thus all non-unit 0 ̸= a ∈ R are
products of irreducible elements of R.

Theorem 96: If R is an integral domain satisfying ACCP, so is R[x].

Proof. By way of contradiction, suppose that R[x] does not satisfy ACCP. Then there exists

⟨f1⟩ ⊊ ⟨f2⟩ ⊊ ⟨f3⟩ ⊊ · · ·

in R[x]. Thus we have · · · | f3 | f2 | f1. Let ai be the leading coefficient of fi. Since fi+1 | fi,
we have ai+1 | ai for all i. Thus

⟨a1⟩ ⊆ ⟨a2⟩ ⊆ ⟨a3⟩ ⊆ · · ·

in R. Since R satisfies ACCP, we have ⟨an⟩ = ⟨an+1⟩ = ⟨an+2⟩ = · · · for some n ≥ 1. We see
then that an ∼ an+1 ∼ an+2 ∼ · · · by proposition 92. For m ≥ n, let fm = gfm+1 for some
g(x) ∈ R[x] (since fm+1 | fm). If b is the leading coefficient of g, then we get am = bam+1.
Since am ∼ am+1, we must have that b is a unit in R (again by proposition 92). Since
⟨fm⟩ ⊊ ⟨fm+1⟩, g(x) is not a unit as otherwise fm ∼ fm+1. Thus g(x) ̸= b and deg g ≥ 1.

Thus by proposition 82, it implies that deg fm > deg fm+1. This is true for all m ≥ n. Thus
we have

deg fn > deg fn+1 > deg fn+2 > · · ·

which leads to a contradiction since deg fi ≥ 0. Thus R[x] satisfies the ACCP.

Example: Since Z satisfies ACCP, so does Z[x]. (So does Z[x, y], polynomials in two
variables over Z.)

10.3 Unique Factorization Domains and Principle Ideal Domains

Definition. Unique Factorization Domain: An integral domain R is called a unique
factorization domain (UFD) if it satisfies the following conditions:

1. If 0 ̸= a ∈ R is not a unit, then a is a product of irreducible elements in R.
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2. If p1p2 · · · pr ∼ q1q2 · · · qs, where pi and qj are irreducible for all i, j, then r = s and
after possibly rearranging, pi ∼ qi for all 1 ≤ i ≤ r.

Example: Z and F [x] (where F is a field) are unique factorization domains.

Example: Every field is a unique factorization domain, since it has non nonzero nonunit
elements.

Proposition 97: Let R be a unique factorization domain and p ∈ R. If p is irreducible,
then p is prime.

Proof. Let p ∈ R be irreducible. If p | ab with a, b ∈ R, write ab = pd for some d ∈ R. Since
R is a UFD, we can factor a, b and d into irreducible elements. Say,

a = p1p2 · · · pk, b = q1q2 · · · qℓ, d = r1r2 · · · rm

(here we allow k, ℓ, or m to be zero to cover the case that a, b or d is a unit). Since pd = ab,
we write

pr1r2 · · · rm = p1p2 · · · pkq1q2 · · · qℓ.

Since p is irreducible, by proposition 93, it implies p ∼ pi for some i or p ∼ qj for some j.
Thus p | a or p | b, as desired.

11/25, lecture 11-3

Example: Consider R = Z[
√
−5] and p = 1 +

√
−5 ∈ R. We have seen before that p is

irreducible, but not prime. By proposition 97, R is not a UFD. For example, (1+
√
−5)(1−√

−5) = 6 = 2 · 3 where 1 ±
√
−5, 2, 3 are irreducible (exercise). However, (1 +

√
−5) ≁ 2

and (1 +
√
−5) ≁ 3. Since N(1 +

√
−5) = 6 while N(2) and N(3) = 9.

Example: We claim that R = Z[
√
−5] satisfies ACCP.

Proof. If ⟨a1⟩ ⊆ ⟨a2⟩ ⊆ ⟨a3⟩ ⊆ · · · in R, then a2 | a1, a3 | a2, . . .. Taking their norms gives
N(a1) ≥ N(a2) ≥ · · · . Since N(ai) ≥ 0 is an integer, we get N(an) = N(an+1) = · · · for
some n ∈ N. Since N(d) = 1 if and only if d is a unit in R, it follows that ai+1 ∼ ai for all
i ≥ n. Thus ⟨ai⟩ = ⟨ai+1⟩ for all i ≥ n.

Definition. Greatest Common Divisor: Let R be an integral domain and a, b ∈ R. We
say d ∈ R is a greatest common divisor (note that it’s no longer unique) of a, b, denoted by
d = gcd(a, b), if it saatisfies the following conditions:

1. d | a and d | b

2. If e ∈ R with e | a and e | b, then e | d
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One can prove

Proposition 98: Let R be a UFD and a, b ∈ R\{0}. If p1, p2, . . . , pk are the non-associated
primes dividing a and b, say

a ∼ pα1
1 pα2

2 · · · pαk
k b ∼ pβ1

1 pβ2

2 · · · pβk

k

with αi, βi ∈ N ∪ {0} for all 1 ≤ i ≤ k. Then

gcd(a, b) ∼ p
min{α1,β1}
1 p

min{α2,β2}
2 · · · pmin{αk,βk}

k

Proof. Exercise.

Remark: If R is a UFD with d, a1, . . . , am ∈ R, we have

gcd(da1, da2, . . . , dam) ∼ d gcd(a1, a2, . . . , am)

Theorem 99. Nagata Criterion: Let R be an integral domain. The following are equiv-
alent:

1. R is a UFD

2. R satisfies ACCP and gcd(a, b) exists for all nonzero a, b ∈ R

3. R satisfies ACCP and every irreducible element in R is prime

Proof. (1 =⇒ 2) By proposition 98, gcd(a, b) exists. By way of contradiction, suppose that
there exists 0 ̸= ⟨a1⟩ ⊊ ⟨a2⟩ ⊊ ⟨a3⟩ ⊊ · · · in R, since ⟨a1⟩ ̸= R, a1 is not a unit. Write
a1 ∼ pk11 pk22 · · · pkrr where pi are non-associated primes and ki ∈ N. Since ai | a1 for all i,
we have ai ∼ p

di,1
1 · · · pdi,rr for 0 ≤ di,j ≤ kj for all 1 ≤ j ≤ r. Thus there are only finitely

many non-associated choices for ai and so there exists m ̸= n with am ∼ an. This implies
⟨am⟩ = ⟨an⟩, a contradiction. Thus R satisfies ACCP.

(2 =⇒ 3) Let p ∈ R be irreducible and suppose p | ab. By (2), let d = gcd(a, p). Thus
d | p, and since p is irreducible, we have d ∼ p or d ∼ 1. In the first case, since d ∼ p and
d | a, we get p | a. In the second case, since d = gcd(a, p) ∼ 1, then gcd(ab, pb) ∼ b. Since
p | ab and p | pb, we have p | gcd(ab, pb), i.e., p | b.

(3 =⇒ 1) If R satisfies ACCP, by theorem 95, every nonunit 0 ̸= a ∈ R is a product of
irreducible elements of R. Thus is suffices to show such factorization is unique. Suppose we
have p1p2 · · · pr ∼ q1q2 · · · qs where pi, qj are irreducible. Since p1 is prime, then p1 | qj for
some j, say q1. By proposition 93, we have p1 ∼ q1. Similarly, p2 ∼ q2. Continuing in this
way, we see have that r = s and pr ∼ qr.

11/28, lecture 12-1
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Definition. Principal Ideal Domain: An integral domain R is said to be a principal ideal
domain (PID) if every ideal is principal. That is, every ideal of the form ⟨a⟩ = aR for some
a ∈ R.

Example: Z and F [x] (where F is a field) are PIDs.

Example: A field F is a PID since the only ideals in F are {0} = ⟨0⟩ and F = ⟨1⟩.

Proposition 100: Let R be a be a PID and let a1, . . . , an ∈ R be nonzero elements of R.
Then d ∼ gcd(a1, . . . , an) exists and there exist r1, . . . , rn ∈ R such that

gcd(a1, . . . , an) = r1a1 + · · ·+ rnan.

Proof. Let A = {r1a1+ · · ·+rnan : ri ∈ R} = ⟨a1, . . . , an⟩ be an ideal of R. Since R is a PID,
there exists d ∈ R such that A = ⟨d⟩. Thus d = r1a1 + · · · + rnan for some r1, . . . , rn ∈ R.
We claim that d ∼ gcd(a1, . . . , an).

Since A = ⟨d⟩ and ai ∈ A, we have d | ai for all 1 ≤ i ≤ n. Also, if r | ai for all
1 ≤ i ≤ n, then r | (r1a1 + · · · + rnan), i.e., r | d. By the definition of the GCD, we have
that d ∼ gcd(a1, . . . , an).

Theorem 101: Every PID is a UFD.

Proof. If R is a PID, by theorem 99 and proposition 100, it suffices to show that R satisfies
ACCP. Suppose we have ⟨a1⟩ ⊆ ⟨a2⟩ ⊆ ⟨a3⟩ ⊆ · · · in R, let A = ⟨a1⟩∪⟨a2⟩∪⟨a3⟩∪· · · . Then
A is an ideal (exercise). Since R is a PID, we can write A = ⟨a⟩ for some a ∈ R. Thus, we
must have a ∈ ⟨an⟩ for some n ∈ N and hence

⟨a⟩ ⊆ ⟨an⟩ ⊆ ⟨an+1⟩ ⊆ · · · ⊆ ⟨a⟩.

Thus, ⟨an⟩ = ⟨an+1⟩ = · · · = ⟨a⟩, i.e., R satisfies ACCP, as desired. Hence R is a UFD.

Theorem 102: Let R be a PID. If 0 ̸= p ∈ R is not a unit, the following are equivalent:

1. p is a prime

2. R/⟨p⟩ is a field

3. R/⟨p⟩ is an integral domain.

By propositions 77 and 78, we see from (2) and (3) that in a PID, every nonzero prime ideal
is maximal

Proof. (2 =⇒ 3) every field is an integral domain.

(3 =⇒ 1) Suppose p | ab with a, b ∈ R. Then

(a+ ⟨p⟩)(b+ ⟨p⟩) = ab+ ⟨p⟩ = 0 + ⟨p⟩
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in R/⟨p⟩. Since R/⟨p⟩ is an integral domain, we have a+ ⟨p⟩ = 0+ ⟨p⟩ or b+ ⟨p⟩ = 0+ ⟨p⟩.
It follows that either p | a or p | b. Thus p is a prime.

(1 =⇒ 2) Consider 0 ̸= x = a + ⟨p⟩ in R/⟨p⟩. Then a /∈ ⟨p⟩ and thus p ∤ a. Consider
A = {ra+ sp : r, s ∈ R} which is an ideal of R. Since R is a PID, we have A = ⟨d⟩ for some
d ∈ R. Since p ∈ A, we have d | p. Since p is prime and thus irreducible, we have d ∼ p or
d ∼ 1. If d ∼ p, then we have ⟨p⟩ = ⟨d⟩ = A. Since a ∈ A, this implies p | a, which is a
contradiction. Thus we have d ∼ 1. It follows that A = ⟨1⟩ = R. In particular, 1 ∈ A, say
1 = ab+ cp for some b, c ∈ R. If y = b+ ⟨p⟩ in R/⟨p⟩, then

xy = (a+ ⟨p⟩)(b+ ⟨p⟩) = ab+ ⟨p⟩ = 1− cp+ ⟨p⟩ = 1 + ⟨p⟩ = 1R/⟨p⟩

in R/⟨p⟩, since clearly p | cp. Thus R/⟨p⟩ is a field, as desired

Remark: In a PID, an ideal is maximal if and only if it is a prime ideal (in general we only
have that maximal ideals are prime ideals). In a UFD, an element is prime if and only if it
is irreducible (in general we only have that prime elements are irreducible).

Note: Note that we have

Rings︸ ︷︷ ︸
Mn(R)

⊋ Commutative rings︸ ︷︷ ︸
Zn for composite n

⊋ Integral domain︸ ︷︷ ︸
{n+xf : n∈Z,f∈Q[x]}

⊋ ACCP︸ ︷︷ ︸
Z[
√
−5]

⊋ UFDs︸ ︷︷ ︸
Z[x]

⊋ PIDs︸ ︷︷ ︸
Z

⊋ Fields︸ ︷︷ ︸
Q

For each type of ring, the ring described underneath is of that type, but not of the next type.
E.g., Mn(R) is a ring, but is not a commutative ring.

Example: We claim that Z[x] is not a PID.

Proof. Consider A = {2n + xf(x) : n ∈ Z, f(x) ∈ Z[x]} which is an ideal of Z[x] (exercise).
Suppose A = ⟨g(x)⟩ for some g(x) ∈ Z[x]. Then g(x) | 2. It follows that g(x) ∼ 1 or g(x) ∼ 2
and thus A = Z[x] (but, for instance, 1 /∈ A) or A = ⟨2⟩ (but, for instance, 2+x /∈ A). Both
are not possible, thus Z[x] is not a PID.

Remark: Note that Z[x] is a UFD, but we need section 10.4 to prove this.

11/30, lecture 12-2

10.4 Gauss’ Lemma

Example: Note that the fraction field of Z is Q. Consider 2x+ 4 in Z[x] and in Q[x].

• Since deg(2x+ 4) = 1, we see 2x+ 4 is irreducible in Q[x].

• Since 2x+ 4 = 2(x+ 2) and 2 is not a unit, we see 2x+ 4 is reducible in Z[x].
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Definition. Content: If R is a UFD and 0 ̸= f(x) ∈ R[x], a greatest common divisor of
the nonzero coefficients of f(x) is called a content of f(x) and is denoted by c(f). If c(f) ∼ 1,
we say f(x) is a primitive polynomial.

Example: In Z[x]

c(6 + 10x2 + ‘15x3) ∼ gcd(6, 10, 15) ∼ 1 =⇒ primitive
c(6 + 9x2 + ‘15x3) ∼ gcd(6, 9, 15) ∼ 3 =⇒ not primitive

Lemma 103: Let R be a UFD and 0 ̸= f(x) ∈ R[x]. Then

1. f(x) can be written as f(x) = c(f)f1(x) where f1(x) is primitive.

2. If 0 ̸= b ∈ R, then c(bf) ∼ bc(f).

Proof. 1. For f(x) = amx
m + · · · + a1x + a0x ∈ R[x], let c = c(f) ∼ gcd(a0, a1, . . . , am).

Write ai = cbi for some bi ∈ R for all 0 ≤ i ≤ m. Then f(x) = cf1(x) where
f1(x) = bmx

m + · · · b1x+ b0. Thus

c ∼ gcd(a0, a1, . . . , am) ∼ gcd(cb0, cb1, . . . , cbm) ∼ c gcd(b0, b1, . . . , bm)

Thus gcd(b0, b1, . . . , bm) ∼ 1 and hence f1 is primitive.

2. Exercise.

Lemma 104: Let R be a UFD and let ℓ(x) ∈ R[x] be irreducible with deg ℓ ≥ 1. Then
c(ℓ) ∼ 1.

Proof. By lemma 103, write ℓ(x) = c(ℓ)ℓ1(x) with ℓ1(x) being primitive. Since ℓ(x) is
irreducible, either c(ℓ) or ℓ1(x) is a unit. Since deg ℓ1 = deg ℓ ≥ 1, we see ℓ1 is not a unit.
Thus c(ℓ) ∼ 1.

Theorem 105. Gauss’s Lemma: Let R be a UFD. If f ̸= 0 and g ̸= 0 in R[x], then
c(fg) ∼ c(f)c(g). In particular, the product of primitive polynomials is primitive.

Proof. Let f(x) = c(f)f1(x) and g(x) = c(g)g1(x) where f1 and g1 are primitive.. Then, by
lemma 103,

c(fg) ∼ c
(
c(f)f1 c(g)g1

)
∼ c(f)c(g)c(f1g1)

Thus it suffices to shows that f1(x)g1(x) is primitive if c(f1) ∼ 1 and c(g1) ∼ 1. By
way of contradiction, suppose f1 and g1 are primitive but f1g1 is not primitive. Since R
is a UFD, there exists a prime p dividing each coefficient of f1(x)g1(x). Write f1(x) =
a0+ a1x+ · · ·+ amx

m and g1(x) = b0+ b1x+ · · ·+ bnx
n. Since f1(x) and g1(x) are primitive,

p does NOT divide every ai or every bj. Thus there exists k, s ∈ N ∪ {0} such that

1. p ∤ ak, but p | ai for 0 ≤ i < k
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2. p ∤ bs, but p | bj for 0 ≤ j < s

Note the coefficient of xk+s in f(x)g(x) is

ck+s =
∑

i+j=k+s

aibj

Because of (1) and (2), p divides all aibj with i + j = k + s, except akbs. In particular, we
see that p | aibk+s−i since p | ai for all 0 ≤ i < k, and similarly p | ak+s−jbj since p | bj for all
0 ≤ j < s. However, p ∤ akbs since p ∤ ak and p ∤ bs. It follows that p ∤ ck+s, a contradiction.
Thus f1(x)g1(x) is primitive.

Theorem 106: Let R be UFD whose field of fraction is F . Regard R ⊆ F as a subring of
F as usual. If ℓ(x) ∈ R[x] is irreducible in R[x], ℓ(x) is irreducible in F [x].

Proof. Let ℓ(x) ∈ R[x] be irreducible. Suppose ℓ(x) = g(x)h(x) with g(x), h(x) ∈ F [x]. If a
and b are the products of the denominators of the coefficients of g(x) and h(x) respectively,
then g1(x) = ag(x) ∈ R[x] and h1(x) = bh(x) ∈ R[x]. Note that abℓ(x) = g1(x)h1(x) is a
factorization in R[x]. Since ℓ(x) is irreducible in R[x], by lemma 104, c(ℓ) ∼ 1. Then, by
Gauss’ Lemma,

ab ∼ abc(ℓ) ∼ c(abℓ(x)) ∼ c(g1h1) ∼ c(g1)c(h1) (*)

Write g1(x) = c(g1)g2(x) and h1(x) = c(h1)h2(x) where g2(x) and h2(x) are primitive in
R[x]. Thus,

abℓ(x) = g1(x)h1(x) = c(g1)c(h1)g2(x)h2(x)

By (*), we have ℓ(x) ∼ g2(x)h2(x) in R[x] since ab ∼ c(g1)c(h1). Now, since ℓ(x) is irreducible
in R[x], it follows that h2(x) ∼ 1 or g2(x) ∼ 1. If g2(x) ∼ 1 in R[x], then

ag(x) = g1(x) = c(g1)g2(x) = c(g1)u

for some unit u ∈ R∗. Thus g(x) = a−1c(g1)u is a unit in F [x] since for all 0 ̸= r ∈ R, we
have that r ∈ F ∗. Similarly, if h2 ∼ 1 in R, we can show that h(x) is a unit in F [x]. Thus
ℓ(x) = g(x)h(x) in F [x] implies that either g(x) or h(x) is a unit in F [x]. Thus, by definition
ℓ(x) is irreducible in F [x]

12/02, lecture 12-3

Remark: We see from the proof of theorem 106 that if f(x) ∈ R[x] admits a factorization
in F [x] as g(x)h(x), then by Gauss’ Lemma, there exists g̃(x), h̃(x) ∈ R[x] such that f(x) =
g̃(x)h̃(x). For example,

2x2 + 7x+ 3 = (x+ 1
2
)(2x+ 6) = (2x+ 1)(x+ 3)

Remark: The converse of theorem 106 is false. For example, 2x + 4 is irreducible in Q[x],
but 2x+ 4 = 2(x+ 2) is reducible in Z[x].

Proposition 107: Let R be UFD whose field of fractions is F . Regard R ⊆ F as a subring
of F . Let f(x) ∈ R[x] with deg f ≥ 1. The following are equivalent:
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1. f(x) is irreducible in R[x]

2. f(x) is primitive (in R[x]) and irreducible in F [x]

Proof. (1 =⇒ 2) Follows immediately from lemma 104 and theorem 106.

(2 =⇒ 1) By way of contradiction, suppose that f(x) is primitive and irreducible in F [x],
but f(x) is reducible in F [x]. Then the non-trivial factorization of f(x) in R[x] must be of
the form f(x) = dg(x) with d ∈ R and d ≁ 1. This is since, if f(x) = g(x)h(x) with deg g ≥ 1
and deg h ≥ 1, then since R[x] ⊆ F [x] this would provide a non-trivial factorization in F [x].
Since d | f(x) and d ≁ 1, we see d must divide each coefficient of f(x), which contradicts
the fact that f(x) is primitive (since d ≁ 1). Thus f(x) is irreducible in R[x].

Theorem 108: If R is a UFD, the polynomial ring R[x] is also a UFD.

Proof. Note, since R is a UFD it satisfies ACCP, then by theorem 96 R[x] also satisfies ACCP.
Hence to prove R[x] is a UFD, it suffices to show every irreducible element ℓ(x) ∈ R[x] is
prime by theorem 99.

Let ℓ(x) | f(x)g(x) in R[x]. We will prove either ℓ(x) | f(x) or ℓ(x) | g(x). Suppose deg ℓ = 0
so that ℓ is a constant. Then ℓ | f(x)g(x) implies ℓ | c(fg) = c(f)c(g). Since ℓ is prime in
R, we have ℓ | c(f) or ℓ | c(g). So ℓ | f(x) or ℓ | g(x) respectively. Assume deg ℓ ≥ 1. We
claim it suffices to show that if ℓ(x) | f1(x)g1(x) where f1(x) and g1(x) are primitive, then
ℓ(x) | f1(x) or ℓ(x) | g1(x).

We now prove our claim. Since ℓ(x) | f(x)g(x) in R[x] (where f(x) and g(x) are not
necessarily primitive), we have ℓ(x)h(x) = f(x)g(x) for some h(x) ∈ R[x]. By lemma 103,
write f(x) = c(f)f1(x), and g(x) = c(g)g1(x), and h(x) = c(h)g1(h), where f1(x), g1(x), and
h1(x) are primitive in R[x]. By lemma 104 (this is why we need deg ℓ ≥ 1), we see c(ℓ) ∼ 1.
It follows that c(h) ∼ c(f)c(g). Since c(h)h1(x)ℓ(x) = c(f)c(g)f1(x)g1(x), it follows that
h1(x)ℓ(x) ∼ f1(x)g1(x). By the assumption of our claim we have ℓ(x) | f1(x) or ℓ(x) | g1(x).
Thus ℓ(x) | f(x) or ℓ(x) | g(x), as desired.

Thanks to our claim, we now assume that ℓ(x) | f(x)g(x) where f(x) and g(x) are primitive
in R[x]. Let F denote the field of fractions of R and consider R ⊆ F as a subring of F .
Then we have ℓ(x) | f(x)g(x) in F [x]. Since ℓ(x) ∈ R[x] is irreducible, by theorem 106 ℓ(x)
is irreducible in F [x]. By proposition 87, we have ℓ(x) | f(x) or ℓ(x) | g(x) in F [x]. Suppose
that ℓ(x) | f(x) in F [x], say f(x) = ℓ(x)k(x) for some k(x) ∈ F [x]. If d ∈ R is the product
of all the denominators of nonzero coefficients of k(x), then k0(x) = dk(x) ∈ R[x], and we
have df(x) = dℓ(x)k(x) = k0(x)ℓ(x). Since f(x) is primitive and ℓ(x) is irreducible (so that
c(ℓ) ∼ 1 by lemma 104), we have

d ∼ c(df) ∼ c(k0ℓ) ∼ c(k0)c(ℓ) ∼ c(k0)

If we write k0(x) = c(k0)k1(x) with k1(x) ∈ R[x], then df(x) = k0(x)ℓ(x) = c(k0)k1(x)ℓ(x).
Since d ∼ c(k0), it follows that f(x) ∼ k1(x)ℓ(x). Thus ℓ(x) | f(x) in R[x]. Similarly, if
ℓ(x) | g(x) in F [x], then we can show that ℓ(x) | g(x) ∈ R[x]. It follows that ℓ(x) is prime
and thus R[x] is a UFD.
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Definition. Multivariable Polnomial Ring: Let R be a UFD and x1, . . . , xn be n com-
muting variables, i.e., xixj = xjxi for all i ̸= j. Define the ring R[x1, . . . , xn] of polynomials
in n variables by R[x1, . . . , xn] = (R[x1, . . . , xn−1])[xn] for n ≥ 1.

Corollary 109: If R is a UFD, then for all n ∈ N the polynomial ring in n variables
R[x1, . . . , xn] is also a UFD.

Proof. Immediate consequence of theorem 108.

Corollary 110: Z[x] and Z[x1, . . . , xn] are UFDs.

Proof. Follows from theorem 108 and corollary 109 since Z is a UFD.
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