PMATH 351 Winter 2022: Notes Jacob Schnell

Contents

(1 Cardinality| 3
(1 Cardmality I|. . . . . . .o 3
(1.1 Bijections| . . . . . ... 3

(1.2 Cardinality|] . . . . . . .. .. 4

.3 CSB Theoreml . . . . 0 . o 0 oo D

[2 Cardmnality II} . . . . . ..o 7
2.1 Countable Sets . . . . . . . . ... 7

2.2 Power Setsl. . . . . . . o 8
2.3 Cardinal Arithmetic . . . .. .. ... oo oo 10

[2.4 Cardinal Exponents|. . . . . . . . ... ... L. 11

2 Topology| 12
(3 Metric Spaces| . . . . . ... 12
(3.1 Metric Spaces| . . . . . . ..o 12

[3.2 Metric Space Examples| . . . . . .. ..o 13

[3.3 CONVErgence| . . . . . . . . v vttt e 17

[3.4 Examples in Convergence| . . . . . . .. ... ... ... ... ... 19

[3.5 Completeness| . . . . . . . . . 20

{4 Topology Il . . . . . . . . 22
4.1 Topological Spaces| . . . . . . .. . ... oo o 22

[4.2 Metric Topologyl . . . . . . . . . .. 23

4.3 Closed Setsl . . . . . . . . . o 24
M4 Closure and Interiorl . . . . . ... ... ... ... L. 26

(5 Continuityl . . . . . . . . . . . 28
(.1 Continuity| . . . . . . . . . . . 28

(5.2 Bounded Linear Maps| . . . . . .. ... ... ... .. 29

(5.3 More Continuity] . . . . . . . . ... .. ... 30

[>.4 Isomorphisms| . . . . . . ... oo 31

Contents il



PMATH 351 Winter 2022: Notes Jacob Schnell

[5.5 Urysohn’s Lemmal . . . . . . .. ... ... ... ... ... . ... 33

[5.6 Completions| . . . . . . . . . . L 33

(6 Connectednessl. . . . . . . . . . 35
6.1  Connectedness|. . . . . . . .. ... L Lo 35

6.2  Path Connectedness) . . . .. .. ... ... ... ... ... 37

6.3 Connected Components| . . . . .. .. ... .. ... ... .. ... 38

[7 Compactness I|. . . . . . .. .o 39
[7.1 Compactness in Topological Spaces| . . . . . . . ... ... ... ... 39

[7.2 Compactness in Metric Spaces| . . . . . . . . . . .. ... ... 41

8 Compactness II| . . . . .. ... 43
(8.1 Compactnessin R™ . . . . . .. . .. ... 43

(8.2 Finite Dimensional Normed Vector Spaces| . . . . . .. ... ... .. 44

8.3 The Cantor Setl . . . . . . .. .. . 45

9 Arzela-Ascoli Theorem| . . . . . . . . . . ... o 46
9.1 Unitorm Convergence|. . . . . . . . . . . . . . ... 46

9.2 Compactness in C'(X)| . . ... ... oo o o 48

(10 Baire Category Theorem| . . . . . . . . .. . ... .. ... .. ... ..... 51
(10.1  First and Second Category| . . . . . . . . . . . . . ... ... ... .. 51

(10.2  Applications|. . . . . . . ... 53

(10.3  Uniform Boundedness Principle| . . . . . .. ... .. ... ... ... 55

(11 Polynomial Approximation| . . . . . . . . . . ... ... ... ... ... ... 56
[1T.1  Weilerstrass Approximation|. . . . . . . . . . . . . . ... ... .... 56
11.2  Stone-Weilerstrass-Lattice Version| . . . . . . . .. .. ... ... ... 60

[11.3  Stone-Weilerstrass-Subalgebra Version| . . . . . . . . ... .. ... .. 62
Mndex] 64

Contents 2



PMATH 351 Winter 2022: Notes Jacob Schnell

Unit 1 Cardinality

Week 1 Cardinality 1

1.1 Bijections

Definition. Injection: Let A, B be sets. A function f : A — B is injective (or an injection)
if for all a,b € A, we have f(a) = f(b) if and only if a = b. Also called a one-to-one function.

Definition. Surjection: Let A, B be sets. A function f : A — B is surjective (or a
surjection) if for all b € B, there is a a € A such that f(a) = 0. That is, f(A) = B. Also
called an onto function.

Definition. Bijection: Let A, B be sets. A function f : A — B is bijective (or a bijection)
if it is both an injective and surjective. Also called an isomorphism.

Proposition. Bijections and Invertibility: Let A, B be sets. A function f: A — Bisa
bijection if and only if there is a function g : B — A such that f(g(b)) = b and g(f(a)) =a
for alla € A and b € B. We write g = f~! and denote g the inverse function of f.

Proof. ( = ) Note that f is surjective. Thus for all b € B, there is an a € A such that
f(a) = b. By way of contradiction suppose there are two distinct points aq,as € A such
that f(ay) = f(az) = b. Since f is injective, we must have a; = as. Therefore, for every
point b € B there is a unique point a € A such that f(a) = b. Let g : B — A denote the
mapping such that g(b) = a where a € A is the unique point such that f(a) = b. Therefore,

f(g(b)) =band g(f(a)) = a, as desired.

( <= ) Suppose that f : A — B has an inverse function (as defined above) g : B — A.
Let b € B be arbitrary. Note g(b) € A is by definition such that f(g(b)) = b. Since such a
g(b) € A must exist, f is surjective. Now let aj, as € A such that f(a1) = f(az), by definition

ar = g(f(a)) = g(f(as)) = as

and so f is injective, and thus a bijection. O

Proposition: Let A, B be non-empty sets. There exists an injection f : A — B if and only
if there exists a surjection g : B — A.

Proof. ( = ) Suppose there is an injection f : A — B. Let a* € A be given. Construct
g: B — A as follows:

1. if b € f(A) then let g(b) be the unique element in A such that f(g(b)) = b. Note
uniqueness is guaranteed by the injectivity of f.

2. if b ¢ f(A) then let g(b) be a*.

1 Cardinality 1, Cardinality I
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Let a € A and consider f(a) € B. By definition of g we have ¢g(f(a)) = a, thus g is surjective.

( <= ) Suppose there is a surjection g : B — A. For every a € A pick b, € B such that
g(by) = a. Note this must exist by the surjectivity of g. Define f : A — B by f(a) = b,.
Let 2,y € A such that f(x) = f(y), this is equivalent to saying b, = b,. Therefore, since g
is well-defined = = g(b,) = g(b,) = y. Therefore f is injective. O

Note that in the above proof, we define b, € B for all a € A. By the surjectivity
of g we know such a b, exists, but how can we algorithmically find such a b, or define such
a b, for every possible a € A? Especially given that there may be several possible choice for
b,. This is because we used the Axiom of Choice.

Definition. Power Set: The power set of a set X is given by P(X) = {A: A C X}. That
is, it is the set of all subsets of X (including ().

Definition. Axiom of Choice: Let X be a non-empty set. Then there exists a (choice)
function f: P(X)\ {0} — X such that f(A) € A for every @ # A C X.

The Axiom of Choice is given its name because in a sense, it chooses an element
from A. That is, the choice function f takes a non-empty subset of A C X and returns a
single element in A, thereby choosing one element from every possible subset.

In the context of the above proof, we use the Axiom of Choice to select b,. Given
a set of possible values in B which map to a (found by the surjectivity of g), a single point
b, 1s selected.

In this course and most courses, we assume the ZFC Axioms.
In particular, this is set Zermelo-Fraenkel Axioms along with the Axiom of Choice.

1.2 Cardinality

The goal of cardinality is to be able to classify
sets based off of their “size” or the “number” of elements in the set.

For instance if f : A — B is injective, then f: A — f(A) is bijective (this is since functions
are obviously surjective to their image). In this sense there is a “bijective copy” of A (namely
f(A)) living in B. That is, our bijection is just relabelling elements in A to elements in B
and so in a sense A exists inside of B. This means A is “smaller” than B.

Definition. Cardinality: Let A, B be sets.

1. We say A has cardinality less than or equal to B, written |A| < |B], if there exists an
injection f: A — B.

2. We say A and B have equal cardinality, written |A| = |B|, if there is a bijection
f:A— B.

As mentioned previously, bijections are often viewed as simply relabelling elements
from one set to another. This is because they are injective (no element map to the same

1 Cardinality 1, Cardinality I
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as another element) and surjective (each element in the codomain is mapped to by some
element in the domain) and so every single element uniquely maps to some other element.
See also isomorphisms from MATH 146. This is why we say that the cardinality or “size” of
sets is equal when we have a bijection between them. We can simply relabel the elements
from domain to codomain.

Example. |N| = |Z|: Show |N| = |Z| where N = Z>,.

Proof. Consider the bijection f : Z — N given by

2n + 2 n>0
f(n):{Q(—n)—l n<0

Note this means the non-negative integers cover the set of even natural numbers and the

negative integers cover the set of odd natural numbers. In particular f(—1) =1, f(0) = 2,
f(=2) =3, f(1) =4 and so on so forth. O

Example. [R| = (0,1)]: Show |R| = |(0,1)].

Proof. Consider for instance the function f : R — (—Z,Z) given by f(z) = arctan(z).

T 202
Clearly f is bijective since frctan has inverse tan. Now consider the bijection g : (=5,%) —
(0,1) given by g(x) = 2 We know that composition of bijections are bijective, and thus

gof:R —(0,1) is a bijection, showing |R| = [(0,1)|, as desired.

Note that while the length of (0,1) is 1, the length of R is infinite. Thus cardinality and
length are separate. O]

1.3 CSB Theorem

Lemma: Let X be a set. Let ¢ : P(X) — P(X) be a function such that ¢(A) C ¢(B)
whenever A C B C X. Then there exists a set F' € P(X) such that ¢(F) = F.

Proof. Let
F= |J 4 *)
ACX
ACp(A)
Note that () is a subset of every set and so necessarily ) C (f)), so this union must be
well-defined. We will show ¢(F) = F. Let A C X be an arbitrary set such that A C p(A).
We must have A C F and so p(A) C ¢(F). Therefore, we have A C p(A) C ¢(F) and
so since A was arbitrary and F' is the union of all sets such that A C p(A), we must have
F C o(F).

Now since F' C ¢(F), we must have ¢(F) C ¢(p(F)). This implies then that p(F') is one of
the sets in the union (*). That is ¢(F) C F. We have then that F' = ¢(F) by construction
of F. O

1 Cardinality 1, Cardinality I
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Theorem. Cantor-Schroeder-Berntein Theorem: Let A, B be sets. If |A| < |B| and
|B| < A then [A] = |B].

Proof. Let f: A — B and g: B — A be injections. Note that if X CY C A, then by the
well-definedness of f and g and some set-theory, we have

Xcy
f(X) € Fiy)
B\ f(Y) € B\ f(X)
g(B\ f(Y)) € g(B\ f(X))
ANg(B\ f(X)) € A\g(B\ f(Y))

Now let ¢ : P(A) — P(A) be given by o(X) = A\ g(B\ f(X)). We see that ¢p(X) C ¢(Y)
whenever X C Y. By the above lemma, we know there is a subset F' C A such that

F=(F)=A\g(B\ f(F))

Note this means that A\ F' = g(B\ f(F')). Now restrict g such that g : B\ f(F) — A\ F.
We have, as mentioned, that A\ F' = g(B\ f(F)) and so g : B\ f(F) — A\ F is in fact a
bijection.

Notice now that g7 : A\ F — B\ f(F) is necessarily a bijection since g is a bijection.
Further the restriction f : F' — f(F) is also clearly a bijection since f is injective and the
co-domain has been restricted to the range of f. Defining h : A — B by

o) = flz) zeF
he) {g‘l(a:) reA\F

is therefore also a bijection. We have then that |A| = |B| as desired. O

The idea of the CSB theorem is that it is often easier to find two (potentially
unrelated) injections f : A — B and g : B — A than it is to find an explicit bijection
h:A— B.

Example: Prove |[N| = |N x NJ.

Proof. Let f: N — N x N be given by f(n) = (n, 1), it is trivial to see that f is an injection,
so IN] < INxNJ|. Let g : Nx N — N be given by g(n,m) = 2" -3™. We know by the
uniqueness of prime factorization that every product 2" - 3™ can be uniquely expressed this
way and so g must be injective. Therefore we have |N x N| < |N| and so |[N| = |N x N| by
CSB as desired. O

1 Cardinality [6] 1, Cardinality I
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Week 2 Cardinality 11

2.1 Countable Sets

Definition. Finite Set: A set A is said to be finite if |A| = |{1,2,3,...,n}| for some
n € N. In this case, we write |A| = n. Otherwise we say A is infinite.

Definition. Countably Infinite Set: A set A is said to be countably infinite if |A| = |N]|.
In this case we write |A] = V.

Definition. Countable Set: A set A is said to be countable if A is finite or A is countably
infinite. Otherwise, we say A is uncountable.

Example: N, Z N x N are all countable sets.
Proposition: If A is infinite then |N| < |A|.

Proof. By the Axiom of Choice we may find a choice function f: P(A)\ {0} — A. Le., for
all ) £ X C A, we have f(X) € X.

Let a; = f(A) € A. Let ay = f(A\{a1}) € A\{a1}. Let a3 = f(A\{a1,a2}) € A\{a1,as},

and so on so forth. This process may go on infinitely since A is infinite.

Notice {aq, as,as,...} C A is countably infinite. Therefore, there is an injection g : N — A
given by g(n) = a,, so |N| < |A] O

Proposition: For any two countably infinite sets A, B, |A x B| = [N x N| = |N|.

Proof. Notice A, B are countably infinite, therefore there exists bijections f : A — N and
g: B — N. Then h: Ax B — N x N given by h(a,b) = (f(a), g(b)) is also a bijection (easy
to show that h is invertible and therefore bijective). We have then |A x B| = |N x N| and
by an above example [N x N| = |N|. O

Example. QQ is countable: Prove Q is countable.

Proof. By an above proposition, we know |N| < |Q|. By CSB, it suffices to show |Q| < |NJ.
Note that every non-zero ¢ € Q can be uniquely written as ¢ = ™ for n € Z and m € N with
ged(n,m) = 1.

This gives an injection f: Q\ {0} — Z x N given by f(2) = (n,m) as above. Therefore,
|Q\ {0}| < |Z x N|. Now where ¢ =0, let f(0) = (0,1). Notice n # 0 for all ¢ # 0, thus this
mapping is unique. We have then extended f : Q — Z x N and so by an above proposition
QI < |Z x N| = |N]. 2

Example. R is uncountable (Cantor’s Diagonal Argument): Prove R is uncountable

1 Cardinality [7] 2, Cardinality 1T
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1)|. By way of contradiction, suppose there is a bijection f : N —
) by surjectivity. Suppose that in decimal form,

f(l) = O.d11d12d13 cee

f(2) = O.d21d22d23 s

f(3) = 0.d3i1dsadss - - -

Proof. Recall |R| = (0,
(0,1). Note (0,1) = f(

where d;; is the jth decimal of f(i). Note that for all n € N f(n) # 0.000 = 0 and
f(n) #0.999 = 1 as these are excluded in our interval.

For every i € N, choose b; € {0,1,2,...,9} such that b; # a; with not all b; = 0 and not all
r = O.blbgbg ce- € (0, 1)

(note x # 0 and = # 1). We have z € (0,1), but ¢ f(N). This is because f(i) # x

for all i € N. In particular, decimal representation is unique and the ith decimal of f(7) is

different from the ith decimal of x (a;; # b; by construction). Since f(N) # (0,1), we have

a contradiction. ]

We denote |R| = ¢ where ¢ is for continuum.

n, N, ¢ are all examples of cardinal numbers. Think of them as symbols used to
denote sizes particular sets may have.

Definition. Continuum Hypothesis: We take the following statement an axiom. If A is
a set with Ry < |A| < ¢ then |A| =V, or |4]| = c.

This axiom is consistent with the normal ZFC axioms, but is also independent of
them. That is, we cannot prove this statement from the ZFC axiom.

2.2 Power Sets
Proposition: If X is a set with cardinality |X|=n € N, then |P(X)| = 2"

Proof. Notice there are (}) ways to create a subset # C X of k elements (e.g., |z| = k).
Therefore, there are a total of

- n - n i1n—1 n n
Z(k)ZZ(k)“ = (1) =2
=0 =0

possible subsets of X by the binomial theorem. This result could also be proved by induction
without the use of combinatorics. O]

Let A be aset. Let AN = [] A be the cartesian product of A with itself countably
i=1
many times. Alternatively, this can be viewed as the set of sequences in A. We can also

think of this set as
{flf:N= A}

1 Cardinality 2, Cardinality II
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via the correspondance
(CLl, asg, as, . . ) = f(l) = a;

Let A, B be sets. We denote AP := {f | f: B— A} to be the functions from B
to A. Similarly, we denote |A|®l := |{f | f: B — A}

Proposition: For all sets A, [P(A)| =21 = |{f | f: A — {0,1}}.

Proof. Let ¢ : P(A) = {f| f: A— {0,1}} given by ¢(X) = px where

1 ae X
@X(a):{o ad X

Notice ¢ is a bijection. We verify this by finding its inverse
e VI fi A= {0,1}} — P(A)

given by

Notice for all X € P(A) we have
p (X)) =¢ M (ex) ={a€Aae X} =X
and for all f: A — {0,1} we have

1 aE{aEA:f(a):l]}»:f

Ple™ () = p{a € A: fla) = 1}) = {0 e A T 1

Hence ¢ is a bijection as desired. O
Proposition: If A is a set then |[A| < |P(A)].

Proof. The injection f : A — P(A) given by f(a) = {a} proves |A| < |P(A)|. Now by way
of contradiction, suppose there exists a surjection g : A — P(A). Now consider the set

B={zxeA:x¢gx)}CA

Since ¢ is surjective, there is an a € A such that g(a) = B. If a € g(a), then by definition
a ¢ B, but B = g(a). If a ¢ g(a), then by definition a € B, but again B = g(a). So
a€gla) =B < a¢ B = g(a), a contradiction. So g cannot be surjective. Since g was
general, no surjection and therefore no bijection from A to P(A) may exist. O

Notice |[N| < |[P(N)| < |P(P(N))| < -- -, so we can define infinitely many infinities.

Example: Prove |P(N)| = |R|, or equivalently 2% = c.

1 Cardinality ] 2, Cardinality 1T
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Proof. Let X = {f | f: N — {0,1}}. We know then that |P(N)| = |X|. Now consider
¢ X — R given by o(f) = 0.f(1)f(2)f(3)--- where f(i) is the ith decimal of p(f). We
can see that ¢ is an injection, and so |[N| < |P(N)| = |X| < |R| = ¢. So by the continuum
hypothesis, we know |P(N)| = |X| = |R| = ¢, as desired.

Alternatively, we can avoid invoking the continuum hypothesis by constructing an injection
h : R — P(N). First define g : N — Q to be a bijection between the sets (we know this
is possible since |Q| = |N|). Now define the injection h : R — P(N) given by h(z) = {n :
h(n) < x}. By the density of the rationals in R we can see h is injective. O

2.3 Cardinal Arithmetic

Definition. Rules of Cardinal Arithmetic: Let A, B be sets. Then
1. If AN B = () then we define |A| + |B| := |A U B].
2. |A|-|B| =|A x B|.
3. |AIBl=|{f | f: B— A}

The above definitions are consistent with usual arithmetic for finite cardinalities.
Example: We see from above 2% = ¢,
Example: Show Ny + Ry = No.
Proof. Let A = {ay,as,as,...} and B = {by, by, bs,...} be such that AN B = (). Consider
the bijection f: AUB — N given by f(a;) = 2i and f(b;) = 2 —1. Then |[AUB| = R,. Note
that this means even if AN B # (), so long as we can find other sets C, D such that |A| = |C]
and |B| = |D| and C' N D = (), then we can still define |A| + |B| = |C|+ |D| = |[CUD|. O
Example: Show Nj - g = N
Proof. Note Xg - 8y = |[N x N| = |N| = Ry. O

Example: Show Ny + ¢ = c.

Proof. Consider |(0,1)| = ¢ and |[N| = Xy. Notice (0,1) CNU(0,1) CR. Soc <Xy +c<c
or Ng+c=-c. O

Example: Show c¢-c=c.

Proof. By the exponent rules of cardinal arithmetic (see next module) we have
crc=2% . 2% = gNotNo — ofo —

]

1 Cardinality 2, Cardinality II
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Example: Show c® = c.

Proof. By the exponent rules of cardinal arithmetic (see next module) we have

o — (2h0)T0 — gioe — g _

2.4 Cardinal Exponents

Proposition. Exponent Rules: Let A, B,C be sets. Then (|A|‘B‘)|C‘ = |A|IBlCl,

Proof. Let X ={f: B — A}, letY ={f:C — X}, andlet Z = {f : BxC — A}. We must
show that there is a bijection ¢ : Y — Z. Consider ¢ : Y — Z given by ¢(f)(bxc) = f(c)(b).
That is, ¢ is such that given f : C — X, we have ¢(f) : B x C — A € Z is given by

e(f)(bx c) = f(c)(b).
(Injectivity) For all f,g €Y

o(f) = »l(9)
—  f(e)(b) = g(c)(b) Vbe B, N¥eceC
= fle) = gle) VeeC
= f =9

(Surjectivity) Let f € Z so that f : B x C — A is a function. Consider g € Y given by

g(c)(b) = f(b,c). Then p(g)(b,c) = g(c)(b) = f(b,c), so p(g) = f. So since f was arbitrary,
there must be g € Y such that ¢(g) = f.

So ¢ is bijective, as desired. ]

Proposition. Exponent Rules: Let A, B,C be sets such that B N C = (. Then
(1AI17) (A1) = |APiel,

Proof. Let X ={f: B — A}, let Y ={f:C — A},and let Z ={f: BUC — A}. We
must show that there is a bijection ¢ : X x Y — Z. Consider ¢ : X XY — Z given by

f(b) zeB
glc) zeC

o(f,9)(x) = {

(Injectivity) For all fi, fo € X and g1,90 € Y

o(fi,q1) = ¢(f2, 92)

= o(fi,g)(x) = ¢(fs,92)(x) Yee BUC
= o(fi,q1)(0) = ©(f2,92)(b) VbeB

= fi(d) = fo(b) Vb e B

= fi = [

1 Cardinality 2, Cardinality 11
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and
e(fi,q1) = ¢(f2,92)
= o(fi,g)(®) = @(fog)(x) Ve BUC
= o(f,g1)(c) = ¢(f2,92)(c) Veel
- gi1(c) = gl Vee C
= g1 = g2

(Surjectivity) Let f € Z so that f: BUC — A is a function. Consider g € X given by
g(b) = f(b) for all b € B and h € Y given by h(c) = f(c) for all ¢ € C. Then for any
x € BUC we have

_Jglx) zeB [f(x) z€B
@(g,h)(:c)—{h(x) xGC’_{f(x) xEC’_f(x)

So for any f € Z there is (g,h) € X x Y such that ¢(g,h) = f. So ¢ is bijective as
desired. O]

Unit 2 Topology

Week 3 Metric Spaces

3.1 Metric Spaces

In MATH 137/147 we considered R equipped with |-|. In MATH 247 we considered
R" equipped with || || given by ||(z1, za, ..., 2,)|| = /2% + 2% + - -- + 22. In both cases, this
gives us notions of

e Distance between points
e Convergent and Cauchy sequences

e Open and closed sets

Compact sets

Point wise and uniform convergence of functions

Continuity and uniform continuity

Spaces of continuous functions

and more. So equipping R with | - | allowed us to perform calculus, equipping R™ with || - |2
allowed us to perform multi-variable calculus. Calculus is just a subset of analysis though,
so how can we perform analysis on a general space? Not just R or R".

Definition. Metric Space: A metric space is a pair (X, d) where X is a set and d :
X x X — R is a function (called the metric) such that

2 Topology 3, Metric Spaces
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1. For all z,y € X, we have d(x,y) > 0 and d(z,y) = 0 if and only if x = y.
2. For all z,y € X, we have d(x,y) = d(y, x).

3. For all z,y,z € X, we have d(x, z) < d(z,y) + d(y, z) (Triangle Inequality).
The intuition behind the metric d : X x X — R is
that d(x,y) measures the distance between x,y € X. This is just like |z — y| for z,y € R or

|z — y||2 for x,y € R™. But rather, d is a distance calculating function on an abstract set
X. This allows us to do usual mathematical analysis on X.

Definition. Normed Vector Space: Abbr. NVS. Let V be a vector space over a field F
(in this class we will use F € {R,C}. A norm on V is a function || - || : V' — R such that

1. For all v € V, we have ||v|| > 0 and ||v]] = 0 if and only if v = 0.
2. For all @ € F and v € V, we have [|av| = |af - ||v]|.

3. For all u,v € V, we have ||u+ v|| < |lu|]| + ||v|| (Triangle Inequality).

Then we say (V]| - ||) is a normed vector space.

Proposition: Let (V.|| -||) be a normed vector space. Then the function d : V" x V — R
given by d(u,v) = ||u — v|| is a metric on v.

3.2 Metric Space Examples

If (a1, as, as, . . .) is a sequence with a,, € A for all n € N, then we write (a,)5, C
A or simply (a,) C A.

Example. Discrete Metric: Let X be a set. Then

T

is a metric on X. We call d the discrete metric on X.

Example: (R,|-|) is a metric space (note (R, |- ) is a NVS).

Definition. p-norm: For p € [1,00), the function || - ||, : R” — R given by

n 1/p
(@1, szl = (Z |$i|p>

i=1
is called the p-norm.

Definition. Infinity-norm: For p = oo, the function || - ||« : R" — R given by
(1, ..., Z0)|lo = max{|zy|, ..., |z.|}
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is called the infinity-norm (or sup-norm) and is often referred to as a p-norm with p = co.

Definition. Holder Conjugate: Let p € (1,00). We define the Holder conjugate of p to
be ¢ = ]ﬁ. Notice that £ + 1 = 1 and that the Holder conjugate of ¢ is p. We define the
Holder conjugate of 1 to be oo and vice versa.

Lemma. Young’s Inequality: Let p,q € (1,00) be Holder conjugates. If a,b > 0 then

al b
ab < —+ —
p q

Proof. Consider f(z) = %a:p + % — 2 on (0,00). We see that f'(x) = 277! — 1 > 0 for all
x > 1. Moreover, f'(z) <0 for all 0 < x < 1. Since f(1) = 0, we have that f(x) > 0 for all
x>0 (f(x) has minimum at z = 1). Considering z = 5% we see that

f(x) >0
1 a? 1 a S
Eb(q—l)p + 5 I
1 a” 1 a
gb(q—l)p t 5 = pa-1
la? 1 a

2 4> i — o —
pbq—i-q_bq_l Since ¢ = pq — p

1 1
—a? + -b? > ab
p q
as desired. O

Theorem. Holder’s Inequality: For any x = (x1,...,7,) € R"andy = (y1,...,y,) € R™,
>zl < lloliylly
i=1

Proof. Notice if p = oo then

n n n
Ytz <3 lalloolyl = llzllos D 19l = Nzllcllyll = Nallpllylq
i=1 i=1 i=1

as desired. Assume then p,q € (1,00). Assume further that z # 0 and y # 0 as the result

is trivial in this case. Replace z with rt-and y with Hyy||q so that ||z|, = |ly]l, = 1. By

=

Young’s Inequality we have

g " el _ el g1 1
ol < 3 (4 B0 e B2t
; - 2 p q p ¢ p g P

as desired. O
Theorem: For 1 < p < oo, the p-norm || - ||, is a norm on R" for all n € N.
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Proof. We only verify the triangle inequality (the other two requirements are obvious). For
1<p<oo:

n

lz+yllp =D e+ wil?
i=1

=D > vt wil -+ g
=1 =1

< S (il + 1wil) - s + gl

i=1

=D wl -zt wl D il -l
=1 1=1

n 1/q n 1/q
< =1l (Z [ +yz~|<p—1>q> +Ilyl, (Z 2 +yz-|<p—1>q>
=1

i=1
n 1/q n 1/q
= ||z, (Zkﬂﬁyilp) + [yl (leﬁyil”)
i=1 =1
n 1/q
= (lll, + llyll») <Z |zi + y#’)
i=1

1—1
n P
= ([lzllp + llyll,) <Z |z + yz-|p>
=1

)

p(1—1+
Nzl +llyllp) - |z +yllp "
Nl + Nyllp) -z + i~

and so
lz+ylly < (lzlly + lyllp) - o+l — 2+ ylly < llzllp + [yl
as desired. If p = oo, then for any z,y € R™ we see that
i+ uil < ol + [l < lzlloe + [yl
so by definition of the maximum
12+ ylloo < ll2lloo + lylloo
O

Unless stated otherwise, we will always assume R” is equipped with the 2-norm

(i.e., the Euclidean norm).

Example. /7 Spaces: Let RY denote the set of all sequences of real numbers. For 1 < p <

oo and (z;) € RY, let
o 1/p
1(:)llp = (Z |$i|p>
i=1
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For p = oo, let
[(zi)llse = sup{lzi| : © € N}
Then for all p € [1, 0] let

= {(z;) € R : || ()]l < o0}

Then (¢*, ] - ||,) is a NVS.

Proof. Assume p < co. First let ¢ be the Holder conjugate of p and let x € /7 and y € (9.
Then

o0
> lzail < lzlllylly
=1

Then the proof that || ||, is a norm follows from the proof that it’s a norm on R”. The proof
where p = 0o is also the same as in R". O]

Example: Let C([a, b]) denote the set of continuous functions f : [a,b] — R. For 1 < p < oo,

i1 = ([ 1r@pas) ”

[flloe = sup{|f(z)[ - & € [a, b]}

and

are norms on C([a, b]).

Proof. See A2 Q1 O

Example: Let B([a,b]) denote the set of bounded functions f : [a,b] — R. As above || - ||
is a norm on B([a, b]).

Definition. Subspace: Let (X, d) be a metric space. If Y C X then (Y, d) is also a metric
space and we call (Y, d) a subspace of (X, d).

Example: The function

|z — il
d(z,y) = .

; 201+ |z — wil)
is a metric on R™ which does not come from a norm.
Example. Baire Space: The function

= ’3% - yi‘

d(z,y) = .

is a metric on N, The metric space (NV, d) is called the Baire Space in set theory, however,
there is a different meaning for a Baire space in topology which refers to a type of topological
space (e.g., Banach space) rather than a specific set.
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Example. Cantor Space: The function

S |$z - yi|
i=1

is a metric on 2V, the set of all 0 — 1 sequences. The metric space (2%, d) is called the Cantor
Space.

Example. Hamming Distance: Let X be a finite set. Then
d(A, B) = [(AAB)| := [(AU B) \ (AN B)|
is a metric on P(X).

Example. Hausdorff Metric: Let X be a closed subset of R™ and let H(z) denote the
set of all non-empty, closed, bounded subsets of X. For A € H(z) and b € X, define
d(b, A) = mi}‘l |la — b]|. Then

ae

dy(A, B) = max {sup d(a, B),supd(b, A)}
acA beB
is a metric on H(z). See page 5,6 of the course notes.

Example. p-Adic Metric: Let p be a prime number. For every 0 # ¢ € Q, we can write
q = p* =, where a,n,m € Z, m # 0, gcd(n, m) = ged(p,n) = ged(p, m) = 1. We then define

lalp =p™* 0], =0
Then d(x,y) = |z — yl, is a metric on Q. See pages 6,7 of the course notes.

Example. Product Metric: Let (X,d) and (Y, d) be metric spaces. Then

d((z1,y1), (¥2,92)) = d(21, 12) = d(y1, y2)

is a metricon X x Y.

Example. Infinite Product Metric: Let (X, d;) be a metric space for every i € N. Then

oo
x’L? yl

2t 1—|—d (i, 95))

i=1

1s a metric on

11
i=1

3.3 Convergence

Definition. Convergence: Let (X, d) be a metric space. A sequence (x,) C X converges
to x € X if for all ¢ > 0 there exists an N € N such that d(z,,z) < € for all n > N. We
denote this by z,, — z or lim z,, = x.

n—oo
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Definition. Cauchy: Let (X, d) be a metric space. A sequence (x,) C X is Cauchy if for
all € > 0, there exists an N € N such that d(z,,z,,) < € for all n,m > N.

Proposition: Let (X,d) be a metric space. If (z,,) € X converges to z € X, then (z,) is
Cauchy.

Proof. Suppose (z,) € X is such that x, — =. Let ¢ > 0. Then there is an N € N such
that d(zy,z) < § for all n > N. Let n,m > N. Then

d(xp, Tpm) < d(zp,x) +d(x, 2) = d(Th, ) + d(Tp, ) < = +

DO ™
IR
I
™

So (z,) is Cauchy. O

Example: Consider (z,) C R given by z,, = L. Notice (x,,) converges in (R, |- [), and so
(x,) is Cauchy in (R,|-|), and so (z,) is Cauchy in ((0,1],|- ), but (x,) is divergent in
(0.1], |- |) since 0 ¢ (0, 1].

Definition. Bounded Sequence: Let (X, d) be a metric space. We say A C X is bounded
if
sup{d(z,y) : z,y € A} < 00

We say (x,,) is bouned if
{1‘1, o, .. }

is bounded.

Definition. Ball: Let (X, d), let z € X, and let r > 0. Then
e The open ball centred at x of radius r is
B.(z) ={a € X :d(a,x) <r}
e The closed ball centred at x of radius r is
B.zx]={a€ X :d(a,x) <r}

Proposition: Let (X, d) be a metric space. A set A C X is bounded if and only if there is
an z € X and r > 0 such that A C B,[z].

Proof. (=) Let r = sup{d(z,y) : x,y € A} < oo and let © € A be arbitrary. Then for all
a € A, we necessarily have d(a,z) < r, so a € B,[x]. Therefore A C B,[x].

(<) Let A C B,[z] for some r > 0 and € A. Let a,b € A be arbitrary. Notice
d(a,b) < d(a,z) +d(b,x) <r+r=2r
So necessarily sup{d(z,y) : z,y € A} < 2r < co. O

Proposition: Let (X, d) be a metric space. If (z,,) C X is Cauchy, then (z,) is bounded.
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Proof. Since (x,) is Cauchy, there is an N € N such that d(z,,d,,) < 1 for all n,m > N and
s0 d(zp,zn) < 1for all n > N. Let

R =max{l,d(z1,zn),...,d(xy_1,2N)}

then (z,) C Bg[zy]|. By our above proposition (z,) is bounded. O

3.4 Examples in Convergence

Example: Consider the metric space (Q, |- [2) where [2°2], = .. Let z,, = =C2 Notice

then 3
A e

2_‘ 3 2_ 3

1

n =——=0
Ty

2n

2

so &, — 3. Notice that in (Q,|-|) where |- is the absolute value, z,, is clearly very divergent
since it is unbounded and oscillating.

Example: Consider the Cantor Space (2%, d) where d((x;), (y;)) = > %;Zy’l Let
i=1

=(1,1,---,1,0,0,...)
——

n times

and let z = (1,1,1,...). Notice then

<1 1 1
d(zy, Z_k:QnJrl(l_ ):2_n_>0

SO T, — .

Example: Consider the metric space (¢, | - ||,) for 1 <p < oco. Let

=(1,1,---,1,0,0,...)
——

n times

and let x = (1,1,1,...). Notice then

2 — ||, = 21—1 +Z 1—0p—21_

i=n-+1 i=n-+1

and so clearly |z, — x| /4 0, therefore x,, /A x. Suppose p = oo, then
|2y — 2lloe = 1

so that ||z, — z||s # 0, therefore x,, /4 x. Moreover, ||z, — || = 1 for all n # m, so (x,)
is not Cauchy. Hence (z,,) diverges.
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3.5 Completeness

It is often easier to prove a sequence is Cauchy than convergent. For instance, to
prove convergence, we usually already need to have a pretty good idea of a candidate for the
limit. So when are Cauchy sequences convergent?

Definition. Complete: Let (X, d) be a metric space. A subset A C X is complete if every
Cauchy sequence (a,) € A converges to a point in A. If X is complete in itself, we call
(X, d) a complete metric space.

Definition. Banach Space: A complete normed vector space is called a Banach space.

Example: From MATH 247 we know (R", | - ||2) is a Banach space.

Example: (0,1] is not a complete subset of R. For instance x, = % is Cauchy but not

convergent.

Example: If X is a set and d is the discrete metric on X, then (X, d) is complete.

Proof. Suppose (x,) € X is a Cauchy sequence in X. Then let ¢ = 1 and pick an N € N
such that d(z,,z,,) < e =1 for all n,m > N. Note that the d(a,b) < 1 if and only if a = b,
in which case d(a,b) = 0. So, we have that x,, = x,, = zy for all n,m > N. Then clearly
for all € > 0 we have d(x,,z) =0 < ¢ for all n > N. So z,, — zx as desired. O

Example: /P is a Banach space for all 1 < p < oc.

Proof. Suppose p < co. Let (ax) C 7 be a Cauchy sequence. Say aj = (a,(:),a,(f), ...) for
cach k € N. Let £ > 0 be given, then there is an N € N such that |lax — a,,| < € for all

k,m > N. Fix i € N. Since |a,(:) - a%)| < |lax — anll, < e, we see that (a,(j))iozl is a Cauchy

sequence of real numbers. Since R is complete, we have that a,(;) — b; for some b; € R. We

claim then that ay — b= (by, by, ...).

For k,m > N, we see that

M

> lay) — aldP < Jlax — an? < "
=1

for every M € N. Taking m — oo we have that
M .
> ey — b < e
i=1

for every M € N. Moreover, taking M — oo we see that
> lay) — b <&
i=1

which means that we exactly have |lax — b||, < e for all £ > N. Notice that ay,any —b € 7
guarantees b € (P.
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Suppose p = oo. Let (a,) C ¢ be Cauchy. Say a; = (aél),a,(f), ...) for each k € N. Let
e > 0 be given, then there is an N € N such that ||a, — an|le < € for all k,m > N. Fix
1 € N. Then

0! — al| < sup{a!? —al) :i € N} = |lap — am|los < €

m

We see that (a,g)),iozl is a Cauchy sequence of real numbers. Since R is complete, we have

that as) — b; for some b; € R. We claim then that ay — b = (b1, b,...). Let € > 0 be given
and N € N such that ||a, — a,|| < § for all n,m > N. Then for all i € N and n,m > N, we
have . . -
|a£zz) - aﬁfﬂ <lan = am|loo < 2
So

lim |a?) —a?| <
m—00

— jal) = bi <

no| M
DN ™

Since ¢ was arbitrary, we have
£
lan — blloo < 3 <e

and ‘
‘CL,(;) — bl| <e€

for all 7 € N. Since this holds for all 7 € N, we have
€
lak — bl|oo < 3 <e
as desired. Notice that ay,any — b € (> guarantees b € . n

Example: Let
Coo := {(x,) € £>° :3IN,¥Yn > N,z,, =0}

be the set of all zero terminated sequences in ¢>°. Then (Cyy, || - ||~) is not a Banach space.

Proof. Consider (z,) C Cy given by

1 1
n — 17_7_7'--7_,070,0,...
! ( 2’37 n )

In (| - [|s), we can show that @, — 2 := (1,4,3,...). In particular, let ¢ > 0 and let

N = E} € N so that N > % Then for all n > N we have
1 1

—z,=1(0,0,0,...,0, ——, —— ...

e ( n+1 n+2 )

and 5o ||z — Zpllee = [|#n — 2[loo = sup{:35 4 € N} = —. Butn+1> N > 1 so

|z — zp||00 = #1 < ¢, as desired.

Since x, — = ¢ Cpo, we have that (z,) is Cauchy (since it is convergent in ¢*°) but not
convergent in (Cop, || + ||o) by the uniqueness of limits. O
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Example: If p < oo, then

0 ze[0,1—1]
fa@)=q1+n(xz—-1) ze[l-11]
1 z€ell,2]
is a Cauchy sequence in (C([0,2]), ] - ||,) which does not converge. Each function looks like

the constant zero function, then a linear portion (whose slope gets steeper as n — oo) and
then the constant 1 function.

Week 4 Topology 1

4.1 Topological Spaces

Let V, W be normed vector spaces. Then

e Open set: A subset U C V is said to be open if for all x € U, there is an r > 0 such
that B,.(z) C U.

e Closed set: A subset C' C V is said to be open if V' \ C' is open.

e Union of Open Sets: If {U, }acr are open sets in V', then | J U, is open (note this union
acl
is of any size, including countable and uncountable unions).

e Intersection of Closed Sets: If {C, }aer are closed sets in V, then [ C, is closed (note
ael
this union is of any size, including countable and uncountable unions).

e Finite Intersection of Open Sets: If Uy,...,U, C V are open, then Uy N---NU, is
open.

e Finite Union of Closed Sets: If C4,...,C,, C V are closed, then C; U---UC,, is closed.

e The following are equivalent for f: A — W where A C V: (1) f is continuous, (2) f
preserves convergence, (3) for all open U C W, we have f~(U) is relatively open in

A.

e The following are equivalent for C' C V: (1) C'is compact, (2) every sequence (a,) € C
has a convergent subsequence a,, — a € C, (3) every open cover of C' has a finite
subcover. (Recall a cover of C'is a collection open sets {U, }aer such that C' C |J U,.

acl
A finite subcover is a subset of {U, }aer-)

Notice all of the above common tools in topology can be discussed in terms of open sets.

Definition. Topology: Let X be a set. A topology on X is a collection 7' C P(X) such
that
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1.0, XeT,
2. If {Us}aes € T then |J U, €T,

ael

3. fU,VeTthenUNV eT.

We call (X, T) a topological space and we call the elements of 7" the open (sub)sets of X.
Example: Let X = {a,b,c}. Then

T = {(2)7 X}

T, =P(X)

T3 = {@7X7 {a}’ {b}7 {av b}}
Ty ={0,X,{a,b}}

are all topologies on X.

Example. Discrete Topology: Let X be a set. Then T'= P(X) is a topology, called the
discrete topology.

Example. Trivial Topology: Let X be a set. Then T' = {(), X} is a topology, called the
trivial or indiscrete topology.

Example. Finite-complement Topology: Let X be a set. Then
T={ACX:X\A=Xor X\ A is finite}
is a topology, called the finite-complement topology.
Example. Countable-complement Topology: Let X be a set. Then
T={ACX:X\A=X or X\ Ais countable}
is a topology, called the countable-complement topology.

Example. Subspace Topology: Let (X,T) be a topological space. Let Y C X. Then
Ty ={UNY :U € T} is a topology, called the subspace topology on Y, relative to (X, T).

4.2 Metric Topology

Definition. Open Set: Let (X,d) be a metric space. A set U C X is said to be open if
for all z € U there is an r > 0 such that B,(z) C U.

Proposition: Let (X,d) be a metric space. The collection T; = {U C X : U open} is a
topology on X.

Proof. Clearly 0, X € T,. Let {U,}acr be a collection of open sets in X. Let z € |J U, so
acl

that z € U, for some « € I. Since U, is open, there is an > 0 such that B,.(z) CU, C |,

a€cl
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so |J U, is open. Let U,V C X be open and let z € U N'V. Then there are r1,ry > 0 such
ael

that B, () C U and B,,(x) C V. Then r = min{ry,rs} is such that B,(x) CUNV. So
U NV is open. ]

Definition. Metric Topology: Let (X,d) be a metric space. We call Ty (as in the
proposition above) the metric topology induced/generated by d.

Proposition: Let (X, d) be a metric space and let Y C X. Consider the subspace (Y, d’)
where d' = d|y«y (restriction of d to Y x Y'). Then Ty is exactly the subspace topology of
Y relative to (X, Ty).

Proof. Let U € Ty. Since U is open, this is equivalent to saying that for all x € U there is
an r(z) > 0 such that {a € Y : d'(x,a) < r(z)} C U which is further equivalent to saying
YN{a € X :d(z,a) < r(x)} € U. This is true if and only if U = Y N (U By ()).
zelU
However, |J B, (z) € Ty, so this is true if and only if U is in the subspace topology on Y’

zelU

relative to (X, T). O

Definition. Hausdorff Topological Spaces: A topological space (X,T) is said to be
Hausdorff if for all x,y € X with x # y there is a U,V € T such that x € U and y € V but
unv =140.

Definition. Metrizable Topological Space: A topological space (X,T') is said to be
metrizable if there is a metric d on X such that T' = T,.

Proposition: If (X, T) is metrizable then (X, T) is Hausdorff.

Proof. Suppose T' = T, for some metric d. Let z,y € X with x # y. Let r = d(x,y) > 0
(since  # y). Then let U = B, 2(x) and V = B, 5(y). Clearly € U and y € V. Suppose
zeUNV. Then d(z, 2),d(y, z) < 5. But by the triangle inequality

d(z,y) < d(z,z) +d(z,y) < g+g:r

a contradiction since d(z,y) = r. O

Example: Consider X = {a,b,c} and T = {0, X, {a}, {b}, {a,b}}. Then T is not metrizable
since T is not Hausdorff. To see this pick ¢ and (for instance) b.

4.3 Closed Sets

Definition. Closed Set: Let (X,7T) be a topological space. We say C' C X is closed if
X\ Cisopen (e, X\CeT).

This also means U C X is open if and only if X \ U is closed.
Proposition: Let (X,T) be a topological space.
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1. 0, X are closed.

2. If {C,}aer are closed then () C, is closed.

ael

3. If C, D C X are closed, then C'U D is closed.

Proof. The proof of all of these statements are immediate from De Morgan’s laws and taking
complements in the definition of a topology. m

Proposition: Let (X,T) be a topological space and let Y C X. Consider Y with the
subspace topology Ty. Then C' C Y is closed if and only if C' = Y N D for some closed
DCX.

Proof. Note
C C Y is closed
— Y\C € Ty
— Y\C = YnUUeT
= C = YnNn(X\U)
——
D
where X \ U = D is closed since U € T.. O

Definition. Limit Point: Let (X, T') be a topological space and let A C X. We say = € X
is a limit point of A if for all U € T with z € U, we have U N A # 0.

Ifxe Aand x € U € T, then ANU # () since necessarily x € AN U. Therefore
x is a limit point in every set which contains it.

Example: Let X = (R, |-|) and consider its standard metric topology. Let A = {1} U (2, 3).
Show 2 and 3 are limit points of A.

Proof. Let U C X be an open set with 2 € U. Since U is open, there is an r > 0 such
that B,(2) € X. Then necessarily 2 4+ 5 € U, but for sufficiently small » we also have
245 €(2,3), thus UN(2,3) # 0. Since U was an arbitrary open set, 2 is a limit point of
(2,3) € A. A similar argument shows 3 is a limit point of A. We may in fact show that all
the limit points of A are {1} U [2, 3]. O

Proposition: Let (X, d) be a metric space and let A C X. Then z € X is a limit point of
A if and only if there is a sequence (a,) € A such that a,, — .

Proof. ( =) Suppose z is a limit point of A. Then Bj/,(z) N A # 0 for all in n € N. In
particular, for every n € N let a,, € Byn(z) N A # 0. Then d(a,,z) < £ — 0 so necessarily
Ay — .

( <) Suppose there is a sequence (a,) C A with a,, — x. Let U C X be an open set with
x € U. Then there is an r > 0 such that B,(x) C U. Since a,, — x, there is an ay such that
d(an, ) < r meaning ay € B,(z) and necessarily ay € A, thus ) # B.(x)NACUNA. O
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Proposition: Let (X,T) be a topological space and let A C X. Then A C X is closed if
and only if A contains all of its limit points.

Proof. ( =) Suppose A C X is closed, then X \ A is open. Then there can be no limit
point x of A such that z € X \ A (i.e., z ¢ A) since (X \ A)N A = 0.

( <= ) Suppose A C X contains all its limit points. We claim X \ A is open. To see this,
let z € X \ A be arbitrary. Since z ¢ A then z is not a limit point of A, in particular, there
is an open U, C X such that x € U, and U, N A = (). Note then that U, C X \ A. Then by
definition
xX\Ac | t.cx\4 — X\A= |J U,
zeX\A zeX\A

is open since arbitrary unions of open sets are open. ]

Corollary: Let (X,d) be a metric space and let A C X. Then A is closed if and only if
whenever (a,) C A is such that a, — = € X, then z € A.

4.4 Closure and Interior

Definition. Closure: Let (X,T') be a topological space and let A C X. Then the closure

of Ais
A= ﬂ C

ACC
C' is closed

Definition. Interior: Let (X, T) be a topological space and let A C X. Then the interior

of A is
mt(4):= (J U
UCA
U is open

Note that it is obvious that the closure of A is closed and the interior of A is
open. This follows immediately from the fact that intersections of closed sets are closed and
unions of open sets are open.

1. Ais the smallest closed set containing A.

2. Int(A) is the largest open sets contained in A.

3. Int(A) C A C A

4. Ais closed if and only if A= A and A is open if and only if A = Int(A).

Proposition: Let (X, T)_be a topological space and let Y C X. If A C Y then A with
respect to (Y, Ty ) is Y N A with respect to (X, 7). (Note the definition of closure/interior
depends on the topology in which we are working.)
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Proof.

A= ﬂ{C : A CC,C is closed w.r.t. Ty}
= n{Y NC:ACCCisclosed wr.t. T}
=Yn (ﬂ{C’ :ACC,Cis closed w.r.t. T}>
=YnNA
[l

Proposition: Let (X, T) be a topological space and let Y C X. If A CY then Int(A) with
respect to (Y, 7y ) is Y N Int(A) with respect to (X, 7).

Proof.

Int(A) = U{U : U C AU is open w.r.t. Ty}
= U{Y NU:U C AU is open w.r.t. T}
=YnN (U{U : U C AU is open w.r.t. T}>
=Y Nint(A)

Proposition: Let (X,T) be a topological space and let A C X. Then

A={r € X :zis alimit point of A}

Proof. Let L = {z € X : x is a limit point of A}.

(C) Let # € A. Let U € T (U is open) such that x € U. By way of contradiction, suppose
ANU =0, so that A C X \ U. Then necessarily since X \ U is closed, v € A C X \ U.
However, this is a contradiction since by construction x € U. Therefore, AN U # () and so
x is a limit point of A (i.e., z € L).

(D) Suppose z € L. Let C be closed, such that A C C. By way of contradiction, suppose
x ¢ C, then z € X \ C which is open. Then (X \ C)N A # 0, however, A C C and so
(X\C)N A = (), a contradiction. So x € C for any arbitrary closed C' such that A C C.
Le.,

T € ﬂ C=C

ACC
C' is closed

]

Definition. Interior Point: Let (X,7T') be a topological space and let A C X. Then we
say x € A is an interior point of A if there is an open U € T such that x € U C A.
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If (X,d) is a metric space, then = € A is an interior point if and only if there is
an r > 0 such that B,(z) C A.

Proposition: Let (X,T) be a topological space and let A C X. Then

Int(A) = {x € A: x is an interior point of A}

Proof. Let I = {x € A: x is an interior point of A}

(C) Let « € Int(A) so that there is an open U € T such that z € U C A. Then by definition
xel.

(D) Let = € I so that there is an open U € T such that x € U C A. Then necessarily

reUC U U =Int(A)

UCA
U is open

]

Example: Let (N,|-|) be the metric space of discussion. Notice B;(1) = {1} is closed.
Further, note that

Bill) = {1} = {1} = Bu(1) # Bil1] = {1,2}
Similarly, note that By[1] = {1,2} = By/2(1) U By,2)(2) is open and so

Int(Bu[1]) = {1,2} = Bi[1] # Bi(1) = {1}

It is relatively easy to show, however, that in an NVS (V|| - ||) we do in fact have

B.(a) = B,|a] and Int(B,[a]) = B.(a)

Week 5 Continuity

5.1 Continuity

Definition. Continuous: Let (X, T}) and (Y, T3) be topological spaces. Wesay f: X — Y
is continuous if

U ={zeX: f(x)eUteT
for all U € Ts.
Proposition: Let (X,77) and (Y,T,) be topological spaces and let f : X — Y. The

following are equivalent

1. f is continuous.

2. f(A) C f(A) forall A C X.
3. If C CY is closed, then f~!(C') C X is closed.
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Proof. (1 = 2) Suppose f is continuous. Let A € X. We want to show f(A) C f(A). Let
y € f(A)sothaty = f(z) forsomez € A. Let U CY be open withy € U. Then x € f~1(U)
is open, and since x is a limit point of A thereis an a € A with a € f~'(U)NA # (). Therefore
f(a) € f(A)NU # (. Since y was arbitrary, y is a limit point of f(A) and so y € f(A).

(2 = 3) Suppose f(A) C f(A) for all A C X. Let C C Y be closed. Let A = f~1(C).
We want to show A = A (that A is closed). Let # € A. Then

flx)e f(A) C f(A)cC=C
Then clearly z € f~'(C) = A. Since A € A was arbitrary, A = A.

(3 = 1) Assume f~!(C) for all closed C C Y. Let U C Y be open. Then C =Y \ U is
closed and

FHO) =M\ =X\ ()
is closed. Therefore f~1(U) is open. O

Proposition: Let (X, d) and (Y, d’) be metric spaces. Then f : X — Y is continuous if and
only if f(z,) — f(x) whenever (x,) C X with z, — z.

Proof. ( =) Suppose f is continuous. Let (x,) C X with 2, — 2 € X. Let ¢ > 0 be
given and consider U = B.(f(x)). Since z € f~}(U) is open, there is an r > 0 such that
B.(xz) C f~Y(U). Since x, — z, there is an N € N such that d(z,,z) < r for all n > N.
Then for all n > N clearly

v €B.(x) CfIU) = flz.) €U =B(f(2))

That is for all n > N we have d(f(z,), f(x)) <€ so f(z,) — f(z).

( <= ) Suppose f(x,) — f(z) whenever z,, — z. Let A C X. If # € A then there is a

sequence (a,) € A with a, — z. Therefore f(a,) — f(z) an so f(z) € f(A). Since z € A
was arbitrary, we have f(A) C f(A), and therefore f is continuous. O

5.2 Bounded Linear Maps

Definition. Bounded: Let VW be normed vector spaces. Let T': V' — W be a linear
transformation. We say T' is bounded if

1T lop := sup{IT'(@)[| - [l=[| = 1} < o0

Definition. Operator Norm: || - ||,, (as defined above) is a norm on the vector space of
bounded linear maps B(V, W). We call this norm the operator norm.

Proposition: Let V, W be normed vector spaces, and let T': V' — W be linear. Then, T is
continuous if and only if T is bounded.
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Proof. ( =) We prove by contrapositive. Suppose 7" is not bounded. Then for all n € N
there is an x,, € V with ||z,|| = 1 such that || T(z,)|| > n. Then

1 1
| 22| = Slleall =~ =0
n
n 1 1
7 Gl = G 2 2 =1
n n n

n
So T'(%») /4 T(0) = 0, and therefore T" is not continuous since it is not convergence preserv-
ing.

T

n

but

( <) Suppose T is bounded. Let (z,) C V be such that z, - x € V. If x, — x # 0, then

1

%xHHT(m —T(z)] = HT (H) H < | T lop

||1En ’xn -

T, — T

_m =1
ln — ] ‘

and therefore

this means
|T () = T(x)|| < | Tlopllzn — 2| =0

by the squeeze theorem since |7, < oo is constant and |z, — x| — 0 since z,, — x.
Therefore T is continuous since 7' is convergence preserving. O

5.3 More Continuity

Definition. Uniform Continuity: Let (X,d) and (Y, d’) be metric spaces. We say f :
X — Y is uniformly continuous if for all ¢ > 0, there is a § > 0 such that d'(f(a), f(b)) < ¢
whenever a,b € X are such that d(a,b) < 4.

Notice uniform continuity means that for all choices of ¢ > 0 we can simultane-
ously show that f is continuous at every point a € X with the same ¢ for all points.

Definition. Lipschitz: Let (X,d) and (Y,d’) be metric spaces. We say f : X — Y is
Lipschitz if there is an M > 0 with d(f(x), f(y)) < Md(z,y) for all z,y € X.

Proposition: Let (X,d) and (Y, d’) be metric spaces. If f: X — Y is Lipschitz then f is

uniformly continuous.

Proof. Let f be such that d(f(z), f(y)) < Md(x,y) for all z,y € X. Let € > 0. Set 0 = ;.
Then whenever z,y € X are such that d(z,y) < d, we have

d(f(x), fy)) < Md(z,y) < M - % —

]

Example: Let f:[0,1] — R given by f(x) = y/z. Show f is uniformly continuous but not
Lipschitz.
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Proof. Let € > 0. Let z,y € [0, 1] with |z — y| < & := €*. Then

Vo= VilP = Ve =il Ve =il < Ve = Vil - Ve 4 Vil = o -yl < &
so |v/x — \/y| < €, proving f is uniformly continuous.

By way of contradiction, suppose f is Lipschitz so that there is an M > 0 with |\/a — \/B| <
Mla—b| for all a,b € [0,1]. Without loss of generality, suppose M > 1 (if it holds for M < 1
it will also hold for M’ > 1 > M). Then since 0, 77 € [0, 1] we have

1
-0 <M|— -0
VM* ‘ B ‘M ! ’
1 1
SR
Since M > 1, this is a contradiction. O

5.4 Isomorphisms

In a very broad sense, in mathematics we say two “objects” are isomorphic if they
are the same “object” where one is just a relabelling of the other. These objects can include
vector spaces, groups, rings, metric spaces, topological spaces, etc. Recall from MATH 146
that vector spaces are isomorphic if there exists an isomorphism (bijection) between them.

Let (X,T}) and (Y,T5) be topological
spaces and let f: X — Y. What does it mean for (X, 77) to be isomorphic to or “the same”
as (Y,T)? We clearly want f to bijective so that the set Y is a relabelling of the set X.
We also want the open sets to be the same up to relabelling. In particular, whenever U is
open we should have f(U) is open. It is sufficient to impose then that f and f~! both be
continuous.

To see that having f and f~! be continuous, notice that if U C X is open then note that
f(U) = (f~H7YU) is open by the continuity of f~'. If V C Y is open then note that
U = f~1(V) is open by the continuity of f and V = f(U) since f is bijective.

Definition. Homeomorphism: Let (X,7}) and (Y,T3) be topological spaces. We say
f: X — Y is homeomorphism is f is bijective, f is continuous, and f~! is continuous. If
such an f exists, we say (X,7T3) and (Y,Ts) are homeomorphic. Homeomorphisms are the
isomorphisms on the category of topological spaces.

Example: The topological space ({0, 1}, {0, {0,1},{1}}) is homeomorphic to the topological
space ({a,b},{0,{a,b},{b, }}).

Example: Consider f : [0,27) — {(z,y) : 2> + y* = 1} where each is equipped with the
usual norm to induce a topology given by f(6) = (cos#,sinf). Then clearly f is a continuous
bijection, however, these two spaces are not homeomorphic. To see this notice that [0, 27)
is not compact, while {(z,y) : ? + y* = 1} is (more on compactness in week 7).
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Let (X,d) and (Y,d') be metric
spaces and let f: X — Y. What does it mean for (X, d) to be isomorphic to or “the same”
as (Y, d')? We again want f to be bijective so that Y is a relabelling of X. But we also want
the metrics to be “the same”. That is we want d'(f(z), f(y)) = d(z,y) for all x,y € X.

Definition. Isometry: Let (X, d) and (Y,d’) be metric spaces. We say f: X — Y is an
isometry if d'(f(x), f(y)) = d(x,y) for all z,y € X.

Definition. Isometric Isomorphism: Let (X,d) and (Y,d’) be metric spaces. We say
f X — Y is an isometric isomorphism if it is both an isometry and a bijection. In this
case we say (X,d) and (Y,d') are isometrically isomorphic. Isometric isomorphisms are
isomorphisms on the category of metric spaces.

Proposition: Let (X, d) and (Y, d’) be metric spaces and let f : X — Y be an isometry.
Then f is continuous and injective.

Proof. Since f is an isometry, we can clearly see f is Lipschitz with M = 1. We also see
that f is injective since if f(z) = f(y), then d'(f(z), f(y)) = 0 = d(z,y) and so x = y since
d is a metric. O

Proposition: Let (X, d) and (Y, d') be metric spaces and let f : X — Y. If f is an isometric
isomorphism then f~! is an isometric isomorphism.

Proof. Let x1,29 € X and let y; = f(x1),y2 = f(z2). Then notice that d'(f(z1), f(x2)) =
d(z1,22) and so d' (y1,%2) = d(f*(y1), [ (y2)). Notice also inverses of bijections are bijec-
tive. Therefore f~! is an isometric isomorphism. O]

Proposition: Let (X, d) and (Y, d') be metric spaces and let f : X — Y. If f is an isometric
isomorphism then f is a homeomorphism between (X, 7y) and (Y, Ty).

Proof. By the above propositions, we know both f and f~! are isometric isomorphisms and
thus are both continuous. So since f is a bijection and f and f~! are continuous, f is a
homeomorphism. O

Example: Consider f : R — R with f(z) = 2®. Then f is a homeomorphism but not an
isometric isomorphism. To see this, note for instance that |0 — 2| = 2 but |f(0) — f(2)] =
|0 — 8] =8.

Example: Let B; = {(a,b) : a,b € R} and By = {(a,b] : a,b € R}. Then (R,Tp,) and
(R, T,) are not homeomorphic since (R, Tp,) is second-countable, whereas (R, 7Tg,) is not
second-countable.

Example: Notice that ¢! and /> are not isometrically isomorphic since ¢! is separable but
(> is not.
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5.5 Urysohn’s Lemma

Definition. Normal Topological Space: Let (X,T) be a topological space. We say
(X, T) is normal if for all closed C, D C X with C' N D = {), there exists U,V € T such that
UNV=0and C CU and D CV.

Proposition: Let (X,T) be a topological space. If (X,T) is metrizable, then (X,T) is
normal.

Proof. See A3Q4. O

Theorem. Urysohn’s Lemma: Let (X, d) be a metric space and let A, B C X be closed
with AN B = (). Then there exists a continuous f : X — [0,1] such that f|4 = 0 and

fls =1.
Proof. Let (X,d) be a metric space. Let A C X be closed. Define
da(z) :=inf{d(z,a) : a € A}

Remark that if da(x) = 0, then for all n € N there is a a,, € A with d(z,a,) < . Then

a, — x and so x € A. That is, d4(z) = 0 if and only if x € A.

3=

Remark that for all z,y € X and any a € A we have

da(z) < d(z,a) <d(z,y) +d(y,a)
- dA(:B) - d(l’, y) < d(?J? a)
= da(z) —d(z,y) < da(y)
= da(r) —daly) < d(z,y)
= |da(z) —da(y)| < d(x,y)

Where the third inequality holds since da(z) — d(x,y) formed a lower bound on d(y,a) for
an arbitrary a € A and so d4(y) being the greatest lower bound (infimum) must be greater.
We have then that d4 : X — R is Lipschitz.

Now let A, B C X be closed with AN B = () as above. We claim that

dA<CL’)

f(SC) - dA(I) + dB(ZL’)

is as above. It is obvious that if a € A then d4(z) = 0 so f(a) = 0, and so since a was

arbitrary f|4 = 0. Conversely if b € B then dp(b) = 0 and so f(b) = Z’:EZ; = 1, since b was

arbitrary f|p = 1. O

5.6 Completions

Definition. Dense: Let (X,T) be a topological space. We say A C X is dense in X if
A=X.
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Definition. Completion: Let (X,d) be a metric space. A completion of (X,d) is a
complete metric space (Y, d') such that X is isometrically isomorphic to a dense subset of Y.

Example: Show R is a completion of Q.

Proof. 1t is known that Q is dense in R and clearly @Q is a dense subset of R which is
isometrically isomorphic to Q. (Under the standard metric.) O]

Lemma: Let (X,d) be complete. Then A C X is complete if and only if A is closed.

Proof. (=) Let A C X be complete. If a,, — = where (a,,) C A and z € X, then (a,) is
Cauchy. Since A is complete and limits are unique, x € A. Since A contains its limit points,
A is closed.

( <) Let A be closed. If (a,) C A is Cauchy, then (a,) € X is Cauchy. Since X is
complete, a, — = € X. Since A is closed and limits are unique, x € A. Since every Cauchy
sequence in A is convergent, A is closed. n

Proposition: Let (X, d) be a metric space. Denote
Cy(z) :={f: X = R| f is continuous and bounded}

Define || f||coc = sup{|f(x)| : # € X}. Then (Cp(X),| - ||) is @ Banach space.
Proof. We will prove this fact in a few weeks. O
Theorem. Completion Theorem: Every metric space has a completion.

Proof. Let (X,d) be a metric space. Fix ag € X. Consider ¢ : X — Cy(x) where ¢(a) = f,
where f,(z) = d(z,a) — d(x,ap). Notice f, € Cp(X). To see this, let a € X then for all
reX

fo(z) =d(z,a) — d(x,a0) < d(z,a0) + d(ag,a) — d(x,ap) = d(a,ap) < o0

Since x was arbitrary sup{f(z) : z € X} < 00, so f, is bounded. To see that f, is continuous,
let a € X and let (x,) C X be such that z,, — x for some z € X. Then

|fa($n) - fa($)|

(Tn, a) — d(xy, a0) — d(z,a) + d(z, ag)|
(Tn,a) — d(x,a)| + |d(x,, ap) — d(x, ag)
(

|d
<|d
< |d(@n, )| + |d(zn, 7)| (*)
= 2d(x,,z) — 0

where (*) holds by the reverse triangle inequality: d(z,y) — d(y, z) < d(x, z) (this is a result
immediate from the triangle inequality). Since f, is convergence preserving, f is continuous.
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Notice for all a,b € X

le(a) = o(0)lle = sup{|fa(z) = fo(2)] - 2 € X}
= sup{|d(z,a) — d(z,ap) — d(x,b) + d(z, ap)| : . € X}
= sup{|d(z,a) — d(x,b)| : z € X}

However,
d(z, a)
= d(z,a) —d(x,b)
= |d(z,a) —d(z,b)]
— ) = o(b)l

Where the third inequality holds since if d(x,a) < d(x,b), swapping a and b would result in
d(xz,a) > d(z,b) (and d(a,b) = d(b,a)). Note further that |f,(b) — f,(b)| = d(a,b) and so

lp(a) = o(O)|| = sup{|fa(z) — fol2)| : 2 € X} = d(a, )

So ¢ is an isometry. Therefore, X is isometrically isomorphic to ¢(X) since isometries are
injective and ¢ : X — ¢(X) is necessarily surjective. Since p(X) C Cy(X) is closed and
Cy(X) is a Banach space, ¢(X) is complete. Note also that necessarily ¢(X) is dense in
0(X), 50 (©(X), ]| - ||so) is & completion for X. O

VA VANRVANIVAN

Week 6 Connectedness

6.1 Connectedness

Definition. Connected: Let (X,7T) be a topological space. We say (X,T) (or X for
short) is connected if there does not exist open, disjoint, non-empty sets U, V' C X such that
X=UUV.

That is X is connected if you cannot break apart X into two open, disjoint sets.

Let (X, T) be a topological space and let A C X. If we say A is connected, we
meant A is connected with respect to the subspace topology.

Example: Consider the standard topology on Q. We will show Q is not connected. To see
this, consider ((—o0,v/2) N Q) U ((v/2,00) N Q). Each of these sets is open with respect to
the subspace topology.

Example: Let X = R and let 7' = T where B = {[a,b) : a < b}. Since we saw that all
open sets in T are closed, we can separate R = [0,1) U (R \ [0,1)). So R is not connected
with respect to 1.

Many books will say a simultaneously open and closed set is clopen.

Proposition: Let (X,T) be a topological space. Then X is connected if and only if the
only subsets of X which are both open and closed are X and 0.

2 Topology 6, Connectedness



PMATH 351 Winter 2022: Notes Jacob Schnell

Proof. ( = ) Let A C X be open and closed and also A # X and A # (). Then X =
AU (X \ A) which are disjoint, non-empty, and since A is both open and closed, both are
open. Therefore X is not connected. Then by contrapositive the result holds.

( <) Let X be not connected. Then there are open, disjoint, non-empty sets U,V such
that X = U UV. Then X \ U =V, so since U open, V is open and closed. O

Proposition: Let a < b. Then I = [a,b] C R is connected. In fact, we may generalize that
every interval in R is connected.

Proof. By way of contradiction, suppose I is not connected, so that there exists open U,V C
R such that I = (UNI)U(VNI), such that (UNI)N(VNI) = (), and such that UNT, VNI # ().
Without loss of generality, suppose a € U N I. Let x = sup{t : [a,t] C U NI1}. We consider
two cases.

Case 1: Suppose x € U. Since U is open, there is an r > 0 such that (z—r,z+r)NI CUNI.
This contradicts the definition of x, unless x = b in which case V NI = (), which is a
contradiction since V M [ is non-empty.

Case 2: Suppose x € V. Since V is open, there is an r > 0 such that (x—r,z+r)NI C VNI.
Then since  — § < z, by definition of  we have [a,z— %] € UNI and therefore x—% € UNI.
However, we also clearly have x — § € V' N I, therefore U NV # (), a contradiction.

We conclude I must be connected. Similar proofs extend this result to all intervals in R. [
Proposition: If A C R is connected, then A is an interval.

Proof. We may assume A # (). Let a = inf A and b = sup A (note a,b € R). By way of
contradiction, suppose there is a a < ¢ < b with ¢ ¢ A. Then picking U = (c0,¢) N A and
V = (¢,00) N A we have U,V are open, disjoint, and non-empty, so that A is not connected.
This is since for all x € A we have x € U = (0o,c)NAorxz € V = (¢,00) N A but never
x = csince ¢ ¢ A. This is a contradiction since A is connected. O

Proposition: Let (X,77) and (Y,T») be topological space and let f : X — Y. If f is
continuous and X is connected, then f(X) is connected. (Note we could also consider the
subspace topology for any A C X).

Proof. Suppose there are U,V C Y which are open such that f(X) = (f(X)NU) U (f(z)N
V') where each of f(X)NU and f(X) NV is disjoint. Note this means that X = (X N
FHO) U(X N f~YV)) where f~1(U), f~1(V) € X. But then this means we have X =
Y U)U f~YV). By the continuity of f and the openness of U and V, we have f~!(U)
and f~1(V) are open. Further, we know f~}(U) and f~(V) are disjoint since we can’t have
r € f~HU)N f~Y(V) which maps to f(z) € UNV = (. Since X is connected, assume
without loss of generality that f~'(U) = . Then f(X)NU = 0 since if u € U then
fHuw) e fFHU)=0. So f(X)NU = 0. O
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Corollary. Intermediate Value Theorem: abbr. IVT. If a,b € R with a < b and
f :la,b] = R is continuous, then f([a,b]) is an interval.

Corollary. General Intermediate Value Theorem: If (X, T) is connected and f : X —
R is continuous, then f(X) is an interval.

Proposition: Let (X, T) be a topological space and let A C X. If A is connected then A
is connected.

Proof. Let A = (ANU)U(ANV) where (ANU) and (ANV) are disjoint and where U,V C X
are open. Then A = (ANU)U(ANV). Since (ANU) and (ANV) are disjoint, then (ANU)
and (AN V) are disjoint. Since A is connected, suppose without loss of generality, suppose

that ANV =0 sothat A=ANU.

This means, however, that
A=ANUCANU=AN(X\V)

However, since V' is open, A n (X \V)is closed. By the smallness of closures, we have
AC AN (X \V). Therefore, ANV =), and so A is connected. O

6.2 Path Connectedness

Definition. Path: Let (X,T) be a topological space and let a,b € X. A path from a to b
is a continuous function f : [0, 1] — X with f(0) = a and f(1) = 0.

Example: Intuitively in a space such as R? this makes a graph (i.e., line) going from a to b.

Definition. Path Connectedness: Let (X,T') be a topological space. We say X is path
connected if for all a,b € X there is a path in X from a to b.

Proposition: Let (X, T) be a topological space. If X is path connected then X is connected.

Proof. By way of contradiction, suppose X is path connected, but not connected. In partic-
ular, suppose X = U UV where U and V are non-empty, disjoint, open sets. Since U,V are
non-empty, let « € U and b € V so that there is a continuous function f : [0,1] — X such
that f(0) = a and f(1) = b. Then [0,1] = f~Y(U)U f~1)(V). By the continuity of f, we
have f~1(U) and f~'(V') are non-empty, open, and disjoint. However, [0, 1] is connected so
we have a contradiction. O

Proposition: Every normed vector space is connected.

Proof. Let V be a normed vector space. Let u,v € V be arbitrary. Then there is a path in
V from w to v given by f(t) : [0,1] — V where f(t) = tu+ (1 —t)v. O
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6.3 Connected Components

The idea is that if a topological space X is not connected, we should be able to
write it as a union of connected pieces, called X’s components. That is, we can partition X
is connected pieces.

Definition. Connected Components: Let (X, T) be a topological space and let = € X.
Define C, :=|J{A C X : 2 € A and A is connected}. We call C, the connected component
of x.

Lemma: Let (X,T) be a topological space. Let C, C X be connected where a € I for
some index set I. If () C, # 0 then C = |J C,, is connected.

acl ael

Proof. Suppose C' = (CNU)U(CNV) where CNU and C NV are disjoint and U,V C X
are open. For a € I we have then that C, = (C, NU) U (C, NV). By the connectedness of
C,,, suppose without loss off generality that C,, NV = () so that C,, = C,NU. Let 8 € I. We

can’t have then Cz = C3sNV. Because we have [ C, # 0 but this would imply C,NCs = 0.
acl
So we must be able to conclude that C NV = (), and therefore that C' is connected. n

Corollary: Let (X, T) be a topological space and let = € X. The connected component C,
is connected.

Proposition: Let (X,T) be a topological space and let z € X. The connected component
C, is closed.

Proof. Since C, is connected, C, is connected and since z € C,, we have that C, C C,.
Therefore C,, is closed. O

Proposition: Let (X, T) be a topological space. The connected components of X partition
X.

Proof. Let z,y € X and let Cy, Cy, be the corresponding connected components. Suppose
C,NCy # 0. Then C, UC, is connected. Further, by the largeness of connected components
C, C C, UC, C C, and by the same argument C, C C,. O

Let (X, T) be a topological space and let x € X. Define
P, = U{A :x € AC X Ais path connected}

to be the path connected component of x. Let y, z € P,, then we know there is a path from y
to x and a path from z to z, so P, is path connected. Notice the path connected components
partition X. Finally note that for all x € X, we have P, C C, since path connected implies
connected.

Example. Topologist’s Sine Curve: Let A = {(z,sin(2)) : 0 < # < 1} and further let

X = AU{(0,0)} € R*. We claim X is connected. To see this, note that A is path connected

and therefore connected, but since lin% sin(%) =0, we have A = X and so X is connected.
z—
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We also claim X is not path connected. By way of contradiction, suppose there is a continu-
ous f : [0,1] — X with £(0) = (0,0) and f(1) = (£,0). Then we can write f(t) = (a(t), b(t)),
where a, b : [0,1] — R is continuous. By the continuity of a and the Intermediate Value The-
orem there is a 0 < ¢; < 1 such that a(t;) = 2. By a second application of IVT there

3m”
is a ty < t; such that a(ty) = % By continuing this way we get a decreasing sequence
(t,) € [0,1] such that a(t,) = m Note since (t,,) C [0, 1] is decreasing, by the mono-

tone convergence theorem we know ¢, — t € [0,1]. By continuity we know b(¢,) — b(t),
however b(t,,) = (—1)" for all n € N which does not converge. Hence we have a contradiction,
the only assumption we made that X is path connected.

Note this also shows that path connected components are not necessarily closed. For instance
we know that (0,0) is a limit point of A which is not in A and we know A is path connected.

Week 7 Compactness I

7.1 Compactness in Topological Spaces
Recall some results of compactness

1. (Heine-Borel) A C R™ is compact if and only if A is closed and bounded.
2. A C R" is compact if and only if every open cover of A has a finite sub-cover.

3. A C R™is compact if and only if every (a,,) C A has a subsequence (a,,) C (a,) with
ap, — a € A.

4. (Extreme Value Theorem) Let K C R" and f : K — R be continuous, then f attains
its maximum and minimum.

5. Continuous functions on compact domains are uniformly continuous.
6. Images of compact sets on continuous functions are compact.

7. If K CR" is compact, then C'(K) is a Banach space with || - ||c-

Definition. Open Cover: Let (X,T) be a topological space. An open cover of X is a
collection {U, : a € I} C T where [ is an index set such that X = |J U,.

ael
Definition. Subcover: Let (X, T) be a topological space. A subcover of a cover {U, : o €
I} C T is a collection {U, : a € J} where J C I and where X = |J U,. If J is finite, we

acJ
call this a finite subcover.

Definition. Compactness: Let (X,T) be a topological space. We say X is compact if
every open cover of X has a finite subcover.

(1

Example: Consider (0,1] C with the standard subspace topology. Then (0,1] =

13

is an open cover (0, 1] with no finite subcover.
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Example: Consider R with the standard topology. Then notice R = J (—n,n) is an open
n=1
cover of R with no finite subcover.

Example: Let A = {z € (* : In € Nz = e,} where ¢; = (0,0,...,0,1,0,0,...) is the

sequence with a 1 in the ith component and 0’s elsewhere. Then A = |J Bj(e,) is an open
n=1
cover of A. Notice for all 7,5 € N we have ||e; — €|« = 1, so no finite subcover contains all

€.

Lemma. Shortcut Lemma: Note shortcut lemma is not a commonly used name. Let
(X,T) be a topological space and let Y C X. Then Y is compact (with respect to Ty) if

and only if whenever Y C |J U, where U, C X is open in X then there are ay,...,a, € I
ael
such that Y C U,, U---UU,,. That is, if every open cover of Y in X has a finite sub-cover.

Proof. Let Y C |J U, this is true if and only if Y = |J (Y NU,). Then if we have that one

ael acl
can be finitely covered clearly the other can be finitely covered. O

Proposition: Let (X,T) be a compact topological space. If Y C X is closed then Y is
compact.

Proof. Let Y C |J U, where U, € X is open. Therefore X = (|J U,)U (X \Y) since X \V
ael acl
is open. Since X is compact there is a finite sub-cover for X, i.e., there is aq, . .., o, such that

X =U, U---UU,, U(X\Y) (note X\ Y might not be necessary for this cover). Therefore,
we also have that Y C U,, U---UU,,. So by the shortcut lemma Y is compact. O]

Proposition: Let (X, T) be a Hausdorff topological space. If Y C X is compact, then Y is
closed.

Proof. We will show X \Y is open. Fix z € X \ Y. Since X is Hausdorff, for all y € Y there

are open sets x € U, and y € Vj, such that U, NV, = (. Then clearly Y C |J V,. And so,
yey
there are y;,...,y, such that Y C V,, U---UV, . Then we know z € U, :=U,, N---NU,,

and that U, is open. We know that U, C X \ Y because for all y € U, N'Y we must have
that y € V,,, for some 7 and also that y € U,,, a contradiction by our Hausdorff assumption.

Then X \Y = |J U, and so X \ Y is open. O

zeX\Y

Example: Consider X = R and let 7' = {A C R : R\ Ais finite} U {0}. Note the closed

sets are R and all finite sets. Let x,y € X. Let A C R. Suppose A C |J U, (without loss
aecl
of generality suppose U, # ) for all « € I). Take o € I. Then R\ oy is finite. Notice then

we have A\ U,, is finite. In particular suppose A\ U,, = {a1,...,a,}. Then find «; so that
for all 1 <7 <mn we have a; € U,,. So ACU,,UU,, U---UU,,.

Proposition: Let (X,T}) and (Y, T3) be topological spaces. Let f: X — Y be continuous.
If X is compact then f(X) is compact.
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Proof. Let f(X) C | Va. Since f is compact, X C (J f~(V4) where each f~1(V,) is open.
acl acl

Since X is continuous X C f~1(V,,)U---U f~1(V,,). Therefore f(X) C V,, U---UV,, . O

Proposition: Let (X,T}) be a compact topological space. Let (Y,73) be a Hausdorff
topological space. Let f : X — Y be bijective and continuous. Then f is a homeomorphism.
(Le. f~!is continuous.)

Proof. We want to show f~! is continuous. Let C' C X be closed. Since C is closed, it
is compact. Then (f~1)7(C) = f(C) is compact. Since f(C) C Y is compact and Y is
Hausdorff, we know f(C') is closed. O

Proposition. Generalized Nested Intervals: Let (X, T) be a compact topological space.
Let C; 2 Cy D -+ be closed and non-empty. Then C' = () C,, # 0.

neN

Proof. By way of contradiction, suppose C' = ) so that X \ C' = X. However, X = X \ C' =

U (X \ C,) where each X \ C,, is open. Then there are n; < ny < --- < n,, so that
neN

X=X\Cp)U---U(X\C,,)=X\C,,

So C,,,, =0, a contradiction since we assumed each C,, was non-empty. O

7.2 Compactness in Metric Spaces

Definition. Totally Bounded: Let (X, d) be a metric space. We say X is totally bounded
if for all € > 0 there are finitely ay,...,a, € X such that X = B.(a;) U---U B:(ay).

Example: Let X = {z € {* : ||z||.oc = 1}. Then X is clearly bounded, but is not totally
bounded. In particular, let ¢ = 1. Then any B.(a;) can only contain a single e; and therefore
there cannot be a finite union of balls which covers X.

Definition. Subsequence: A subsequence of a sequence (a,) C A is a sequence of the
form (a,, )2, where ny <ng < ---.

Lemma: Let (X,d) be a metric space. Then X is totally bounded if and only if every
sequence in X has a Cauchy subsequence.

Proof. ( =) Suppose X is totally bounded. Let (z,) € X. Since X is totally bounded,
there is a by € X such that 77 := {n : x, € By(b)} is infinite. Since (z,) is infinite and by
the total boundedness of X there are finitely many sets which cover X, so such a set must
exist. Similarly, there is a by € X such that 75 := {n € T} : x,, € By2(bs)}, this is again
since T} is infinite. Continuing, we may pick n; < ny < --- such that z,, € By/(by). For
k > { we have that x,,,x,, € Bi/(B;) since T, C T;. Then

1
d(xnk7 xne) S d(xnkv bﬂ) + d(bﬁyxng) S z +
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( <= ) Suppose by way of contrapositive X is not totally bounded. Then Je > 0 such

that X = |(J B.(z) has no finite subcover (since otherwise X would be totally bounded
reX
by definition). Fix z; € X. Then there is an x5 ¢ B.(z1), as otherwise B.(z1) is a finite

subcover. There is again an x5 ¢ B.(z1) U B.(23) as otherwise B.(x1) U B.(z2) is a finite
subcover. Continuing infinitely we have (z,) € X such that d(x,,x,,) > ¢ for all n # m.
Then (x,) cannot have any Cauchy subsequence. ]

Recall from MATH 247 we proved that a NVS V' is compact if and only if every
sequence has a convergent subsequence.

Example: Show that if X is totally bounded then X separable. For all n € N we may write
X = Bl/n(agn)) U---u Bl/n(a,g:)). Then D := {a"} is a countable dense subset of X.

Definition. Sequentially Compact: Let (X, d) be a metric space. We say X is sequen-
tially compact if and only if every sequence in X has a convergent subsequence.

Lemma. Lebesgue Number Lemma: Let (X, d) be a sequentially compact metric space.

Let X = |J U, be an open cover. Then there is an R > 0 (called the Lebesgue number)
acl
such that for all z € X, Br(x) C U, for some « € I.

Proof. By way of contradiction, suppose no such R exists. In particular, for all n € N, there
is an a, € X such that for all @ € I then By,(a,) € U,. By the sequential compactness
of X there is a subsequence with a,, = a € X. Say a € U,,. Then for a sufficiently large
N, Bi/n(a) C U,, (since Us,, is open). Then for sufficiently large k, we have B, (a,,) C
Bi/n(a) C Us,, by the convergence of ay,. This is a contradiction by our assumption. O

Theorem. Characterization Theorem of Compactness: Let (X, d) be a metric space.
The following are equivalent:

1. X is sequentially compact,
2. X is complete and totally bounded,

3. X is compact.

Proof. (1 <= 2) Note X is totally bounded if and only if every sequence has a Cauchy
subsequence and X is sequentially compact if and only if every subsequence has a convergent
subsequence. These are equivalent where X is complete.

(1 = 3) Let X = |J U, be an open cover. Let R be the Lebesgue number for this open
acl

cover. Since X is totally bounded (by 2), we may say X = Bg(x;) U ---U Bg(z,). But for
all z;, there is an «; € I such that Bg(x;) C U,,, so we may write X C U,, U---UU,, .

(3 = 1) Let (x,) C X. For all n € N, define C,, := {x} : k > n}. Since we know C,

is closed, we know it is compact. By the generalized nested intervals, we know [\ C, # 0.
neN
Take x € [ C,. We may then find n; such that d(z,,,z) < 1. We may also find ny > n,
neN
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such that d(z,,,r) < 1. We can repeatedly do this to get a subsequence ()2, where
z,, — =. Note that we know this is the case because z is as close as we may want to all tail
ends our sequence. O

Proposition: Let (X, d) and (Y, d’) be metric spaces. Let f: X — Y. If X is compact and
f is continuous, then f is uniformly continuous.

Proof. By way of contradiction, suppose f is not uniformly continuous. In particular, there
is an € > 0 and sequences (a,), (b,) € X such that d(a,,b,) < £ but d'(f(a,), f(by)) > €
since no % for n € N is a valid choice of §. Since X is compact, say a,, — a € X. Then by
the triangle inequality

d(bn,,a) < d(bn,,an,) + d(a,,,a) =0

0 bp, — a. But by the continuity of f we have f(a,, ) — f(a) and f(b,,) — f(a). But by
our assumption we said that d'(f(a,), f(b,)) > € for all n € N, a contradiction. O

Week 8 Compactness 11

8.1 Compactness in R”
Lemma: Let a < b € R. Then [a,b] is totally bounded.

Proof. Let € > 0. Let n be such that b’T“ <e. Thenlet ; = a + b’T“ -4 for 0 < ¢ <n. Then
la,b] C | Be(z).
i=0

Note technically we need [a,b] = |J B:(x;), but we can just intersect each B.(z;) with [a, b]
=0

to get the desired result. In general Y C |J B.(z;) if and only if Y = (J (Y N Be(z;)). O
=0 i=0

We may similarly show [a,b]" C R" is totally bounded.

Note that A C R" is bounded if and only if A C [—R, R]" if and only if A is
totally bounded.

Theorem. Heine-Borel Theorem: A C R” is compact if and only if A is closed and
bounded.

Proof. Since R" is complete, A is closed if and only if A is complete (since closed subsets of
complete spaces are complete). By our remark we also have that A is bounded if and only
if it is totally bounded. But we know A is complete and totally bounded if and only if it is
compact. ]

Theorem. Extreme Value Theorem: Abbr. EVT. If (X,d) is a compact metric space
and f: X — R is continuous, Then f attains its max and minimum on X.
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Proof. Since f is continuous, f(X) is compact, and so f(X) is closed and bounded. Let
m = inf f(z) and M = sup f(x). Then for all € > 0 there is an f(x;) < m+ ¢ (since m+¢ is
not a greatest lower bound) and an f(x9) > M —¢ (since M — ¢ is not a least upper bound).
Then for any ¢ > 0 with |f(z1) — m| < € and |f(z2) — M| < . We could form sequences
(an), (by) such that a, — x; and b, — x2. So we know that m, M € f(X) = f(X), as
desired. O

8.2 Finite Dimensional Normed Vector Spaces

Let V be a normed vector space. Recall from A%, two norms || - ||, and || - ||, on
V' are strongly-equivalent if and only if there are C', D > 0 such that

Cllzlla < flzlly < Dzl

forallz e V.

Theorem: Let V be a finite dimensional normed vector space. Any two norms on V' are
strongly-equivalent.

Proof. Assume V is a vector space over R. Let {by, bs,...,b,} be a basis for V. Note since V'
is n-dimensional, it is isomorphic to R™ (i.e., there is an invertible linear map 7' : V' — R™).

Recall any v € V' may be uniquely written in the form v = > ¢;b; for some ¢y,..., ¢, € R.

=1
Define

n 1/2
V]l = (Z\Cﬁ) =Tl

is a norm on V for some 7' : V' — R™ such that T'(b;)e; for all 1 < i < n. Moreover, we have
that (V|| - ||2) is isometrically isomorphic to (R™, || - ||2). Let || - | be an arbitrary norm on
V. We have then

n n 1/2 n 1/2
TI cs
loll <> el - bl < (E Icz»|2> ~<§ ||bz-|!2> = Dl[v]2
i=1 i=1 =1

D
by the triangle inequality and the Cauchy-Schwartz inequality (note we can view (|cq], . .., |cn])
and (||b1]], ..., ]|bn]|) as vectors in R™, hence why we can view the sum as a dot product).

Consider f: (V]| -]l2) — R where f(x) = ||z||. Notice f is defined on V' equipped with || - ||
but is giving ||z|| (different norms). Then

(@) = F)l = [llzll = Iyll] < llz =yl < Dl — yll2

by the reverse triangle inequality. So f is Lipschitz and therefore continuous. Let S = {v €
V i ||v|la = 1} be the unit circle. Then we know S is closed and bounded in (V|| - ||2). But
since V' is isometrically isomorphic to R™, we have by Heine-Borel that S is compact. Then
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by the extreme value theorem, f|s : S — R achieves its minimum. In particular, there is a
vy € S (e.g., ||vo]l2 = 1) such that

[vol[ = min f(5) = min{][z[ : [zfly = 1} = C
(Note we know vy # 0 since ||vgllo = 1.) For any 0 #v € V|

since T is a vector with norm 1 and we found above that [|u|| > C for all vectors with
[ull2 = 1. Then [jv]| = C|[v[2, as desired. -

v

1]l

Suppose V is a finite dimensional normed vector space over R with norm || - ||.
We know that
Cllvlla < [loll < Difv]ls

Now consider
foV-2) = (V- ) vew

Clearly f is invertible and therefore a bijection. We also have
1f(v) = f(w)]| = [lv — w]| < Dljv = w]]

so f is Lipschitz. We can similarly show f~! is Lipschitz. So (V|| - ||) is homeomorphic to
(VoI - |l2)- We also saw in the above proof that (V)| - ||) is homeomorphic to R™. That is,
every finite dimensional normed vector space over R is homeomorphic to R™.

8.3 The Cantor Set

Definition. Cantor Set: Let Cy = [0,1]. Let C; = [0,3] U [2,1]. Let Co = [0, 3] U [3, 3] U
2 778

15,51 U5, 1]. In general, for each C; we remove the open middle third of each set in the

union.

o
Let C' = () C, be the Cantor set.
n=1
Note that each C; is closed because its the finite union of closed sets. Since C' is
the infinite intersection of these sets, C' is closed. We also know that C' is non-empty, as for
instance 0,1 € C. Since C' C R is closed and bounded, C' is compact.

The Cantor set contains no non-empty open intervals. In particular, no matter
what open interval U we pick, we can find a C,, such that U & C,,. This means Int(C) = (),
or otherwise we say C' is nowhere dense.

For all z € C, the connected component C, = {z}. We say that C is totally
disconnected.

Think of the number 0 as left, the number 2 as right. We can also write C} as

Cy=100,3]U3 1] =1 UL
N =
Io Ip)
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we can do this also for C:

—— e
[()() 102 120 I22

In general, when constructing C,; from C,, for each set
Ia1a2-~~an g On

we use the set
[a1a2~~-an0 U [a1a2~~~an2 g C’n—i-l

We can show that Iy, ...q, = [[0.a102 - - - ay]s, [0.a1a2 - - - ap]3+37] where [0.a1az - - - ay]
is base three number with decimals points ajas - - - a,. Then

1
C = ﬂ |:[O.a1a2 e an]g, [O.a1a2 s an]g + 3_n = {[0.&1&2 . ']3 Ta; € {O, 2}}
neN

So there is a bijection between C' and the set of sequences of 0’s and 2’s. In particular, there
is a bijection between C' and the sequence of 0’s and 1’s. Therefore |C| = |2V] = ¢. So as a
topological space the Cantor set is small but as a set it is large.

Theorem: If (X, d) is compact, then there is a continuous surjection ¢ : C' — X, where C
is the Cantor set.

Week 9 Arzela-Ascoli Theorem

9.1 Uniform Convergence

Definition. Function Convergence: Let (X,d) and (Y,d') be metric spaces. Let f, :
X — Y be a sequences of functions.

1. We say (f,,) converges to f: X — Y pointwise if f,(z) — f(x) for all z € X.

2. We say (f,) converges to f: X — Y uniformly if for all € > 0 there is an N € N such
that for all n > N we have that || f, — f||occ := sup{d'(fn(x), f(2)) 1z € X} <e.

The function ||f|l.c = sup{|f(z)| : z € X} is called the
uniform norm, but note this is not necessarily an actual norm. E.g., there is no guarantee
that || f|loo < o0.

1. Suppose f,, — f uniformly. Then for all £ > 0 there is an N € N such that for all
x € X we have that d'(f,(x), f(z)) < ||fn — flleo < €. Therefore, f, — f pointwise
and given € > 0 we can find an N that proves f,(z) — f(z) for all x (uniformly) at
the same time.
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2. Recall
Co(X)={f: X = R| f is bounded and continuous}

where ||f|looc = sup{|f(z)| : z € X}. Then (Cp(X),| - |lw) is @ normed vector space
where || - || is the uniform norm. Note this is a well defined norm due to the bound-
edness of functions in Cp(X). Therefore, we see that f, — f uniformly if and only if

Jo = fin (Co(X), || - [loo)-

Proposition: Let (X, d) and (Y,d') be metric spaces. Let f, : X — Y be a sequence of
continuous functions. Then

1. If f, — f uniformly, then f is also continuous.

2. If (fn) € Cp(X) and f,, — f uniformly, then f € Cy(X).

Proof. (1) Let (z,) C X with z,, — = € X. We claim that f(z,) — f(z) and therefore that
f is continuous. Let € > 0. Since f, — f, there is an N € N such that ||fx — f|l- < 3.
Therefore, since fy is continuous, there is an M € N such that d'(fn (), fv(7)) < 3 for all
n > M. So, by the triangle inequality

d'(f(zn), f(x)) < d'(f(2n), fn(@n)) + & (fx(2n), fn(2) +d'(fn(2), f(2))
< f = flloo + d'(fn(an), fn () + (15 = flloo

<€—|—€—|—8—5
3 3 3

(2) If (fn) € Cy(z) and f,, — f uniformly, then by (1) f is continuous. Recall since f,, — f
uniformly there is an N € N such that || fy — f|lec < 1. In particular we have that

[flloe < lf = fivlloo + | fv]loe < 00

<1 <oo

Example: Let f, : [0,1] — R be given by f,(z) =a™. Let f:[0,1] = R

fla) = {0 if 2 €[0,1)

1 otherwise

Then f, — f pointwise, but each f, is continuous whereas f is not.

Proposition: Let (X, d) be a metric space. Then (Cy(x), | - ||o) is a Banach space.

Proof. Let (f,) € Cy(X) be Cauchy. Let ¢ > 0. Then there is an N € N such that
| fn = finlloo < € for all n,m > N. In particular, for all x € X and n,m > N we have that

|fu(@) = fi(@)] < || fo = finlloo < €. Therefore, (f,(x))2, is Cauchy, but since R is complete
this implies there is an f(z) € R such that f,(x) — f(z). Therefore, we may construct a
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function f: X — R such that f,, — f pointwise (picking the function values to the be limit
point f(z)).

Since limits are unique, we know that if f, — f uniformly, it must be the f given above.
For n > N we have that

(since || fn, — fiml|| < € for n,m > N). Since x € X was arbitrary, we have that || f, — f|l« < €
and so f, — f uniformly. Therefore, by our previous result f, — f € Cyp(X). O

Recall this proposition is something we called a fact in the proof for the completion
theorem (module 5.6).

If (X,d) is a compact metric space, then Cy(X) = C(X) where C(X) is the set
of continuous functions from X to R.

9.2 Compactness in C(X)

Example: Let A = {f,(z) = 2" : n € N} C C([0,1]). For all n € N, we have that
| fullo = 1. Therefore we see that A is bounded. We claim A is closed. To see this, let
(gn) € A be convergent. We will show g, — g € C([0,1]). Note we have for all n that
Gn = fn, for some k € N (e.g., g, € A).

Consider two cases. Suppose there is an m € N such that g, = f,, for infinitely many g,,
then (g,) has a subsequence (fi, fi, fm,--.). Since subsequences and sequences must share
limits, and clearly f,, — f,, then g, — f,, € A.

Otherwise, there is a subsequence of (g,) which is a subsequence of (f,,) as to have infinitely
many different f,, terms in (g, ), we need eventually that m — oco. Therefore, since

P {0 ifzeo,1)

1 otherwise
Then again since subsequences share limits with their sequences, every subsequence of (f,,)
has f, — f pointwise. Therefore, g, — f pointwise. But recall we mentioned that the
convergence f, — f is pointwise but not uniform, therefore g, — f pointwise but not
uniformly. In particular, this means g, /4 f in C([0, 1]).

Note also that A is not compact. To see this, note that (f,,) has no convergent subsequence,
since again such a subsequence would need to converge to f which is not possible. So, despite
0, 1] being compact by Heine-Borel, C([0, 1]) is not.

Since C'(X) is complete, K C C(X) is compact if and only if K is complete and
totally bounded. Since C'(X) is complete, K is compact if and only if it closed and totally
bounded.

We want to try and remove
the condition that K C C'(X) needs to be totally bounded to be compact. In particular, we
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want to find some property such that K is compact if and only if it closed, bounded, and
satisfies our property.

Suppose K is compact. Let € > 0. Since K is totally bounded then there are fi,..., f, € K
such that K C B.(f;) U---U B.(f,). Since each f; € C(X), it is uniformly continuous. So
for all 1 < ¢ < n there is a §; > 0 such that if a,b € X are such that d(a,b) < ¢; then
|fila) — fi(b)] < e. Let 6 = min{dy,...,d,}. Let f € K be arbitrary. Let a,b € X with
d(a,b) < 6. Then since f € K and K C B.(f1) U---U B.(f,) there is an f; such that
| f — fillo < ¢ and so

[f(a) = FO)] < |f(a) = fila)| + | fila) = fi()| +|fi(b) = F(O)] < 2| f — fillo +& <3
<e

So for all f € K we have shown f is uniformly continuous. Furthermore, we proved so
uniformly, that is for all € > 0 there is a 6 > 0 which proves that f is uniformly continuous
for all f e K.

Definition. Equicontinuous: Let (X, d) be a compact metric space. We say A C C(X)
is equicontinuous if for all € > 0 there is a 6 > 0 such that for all f € A we have that

d(a,b) <6 — |f(a) = f(b)] < e

Proposition: Let (X,d) be a compact metric space. If K C C(X) is compact, then K is
equicontinuous.

Proof. See investigation above. m

Theorem. Arzela-Ascoli Theorem: If (X, d) is a compact metric space, then K C C(X)
is compact if and only if K is closed, bounded, and equicontinuous.

Proof. ( =) This follows from our above proposition and an earlier remark.

( <) Suppose K C C(X) is closed, bounded, and equicontinuous. Note that since K is
closed and C'(X) is complete, K is complete. It remains to show that K is totally bounded.

Let € > 0 be given. Let 0 > 0 be so that

dab) <6 = |f(a)=fO)] <7

as per the equicontinuity of K. Since X is compact and therefore totally bounded, there are
x1,...,T, € X such that X = Bs(x1) U---U Bs(x,). Consider

T:C0(X) = R [ llc) [ (fl@1), f(®2),..., [(zn))
Note then that

IT()loe = max{[f(z1)],..., [f(zn)|} < sup{|f(z)]: 2 € X} = [[f]l

Since K is bounded, by definition ||f||. is bounded for all f € K and therefore T(K) is
bounded. This means that T(K) C R™ is also bounded, and therefore since it is closed,
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it compact by Heine-Borel. Therefore, T'(K) is also totally bounded and so there are
fi, fo, .., fm € K such that

T(K) € Beja(T(f1)) U+ U Bepa(T(fm))

Note this follows since for all a € T(K), there is a T'(f) € T(K) which is arbitrarily close
to a. Let f € K be arbitrary. Then there is a j such that || T(f) — T'(f;)|lc < § since

T(f) € T(K) and we saw T'(K) is totally bounded. Let y € X be arbitrary. Then since X
is totally bounded there is an ¢ with d(z;,y) < 6.

Notice that since d(z;,y) < 6, we have |f(y) — f(z;)| < § and |f;(y) — f;(z:)] < 5. Notice
also that
(i) = fi(wa)| < max{|f(z1) = fi(x)], - [f(2n) = fi(zn)|}

= |T() = Tl < =

Therefore,

fQy) = flxa)| + [ f (@) = filwa)| + [ fi(zi) — f3(y)]
3e

1f(y) = fi(y)] <

N
4 4

)
4 4

Therefore since y € X was arbitrary

17 = Flle = sup{l7(0) — L)y € X} < & <

Therefore since f € K was arbitrary, we have that K C B.(f;) U---U B.(fn). So K is
totally bounded, and as remarked previously K is complete, thereby showing K is compact,
as desired. O

Example: Fix M > 0. Let K = {f € C([0,1]) : Vz,y|f(z) — f(y)] < M|z — y|}. That is,
K is the set of all C'([0,1]) with the same Lipschitz constant M. Notice, however, K is not
bounded as it is unbounded.

Fix L > 0. Let K" = {f € C([0,1]) : Va,y|f(x) — f(y)| < M|z —yl,|f(0)] < L}. We show
K is compact.

(Equicontinuous) Let € > 0. Let 6 = . If f € K and =,y € [0,1] with |z — y| < § then

£
M

=£

|f(z) = fy)| < M|z —y[ < M-

(Bounded) If z € [0, 1] then by the reverse triangle inequality,
|f(@)] = 1O < |f(z) = f(0)] < M|z — 0] < M

so |f(z)] < L+ M since |f(0)| < L. Therefore, for f € K we have || f|lcoc < L+ M.
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(Closed) Let (f,) € K such that f, — f € C([0,1]) uniformly. So f,(0) — f(0). Then
|fn(0)] < L for all n € N we necessarily also have |f(0)| < L. For x,y € [0,1] and n € N we
have that

1f(x) — fly)] < M|z —y] Taking n — oo

Note this follows since limits preserve order. We can see then that f € K, so K is closed.

Week 10 Baire Category Theorem

10.1 First and Second Category

Definition. F, Set: Let (X, d) be a metric space. Wesay A C X isa F, setif A= |J C,,
n=1
where C,, C X is closed.

Definition. G5 Set: Let (X, d) be a metric space. Wesay A C X is a Gsset if A= () U,,
n=1

where U,, C X is open.
Notice that we can see a set A C X is Fj, if and only if its complement X \ A is G
Definition. Nowhere Dense Set: Let (X, d) be a metric space. We say A C X is nowhere

dense if int(A) = 0.

Notice this means that a closed A C X is nowhere dense if and only if its interior is
empty.
Definition. First Category: Let (X,d) be a metric space. We say A C X is of first
category if A = fjl A,, where A, C X is nowhere dense.

Definition. Second Category: Let (X,d) be a metric space. If A C X is not first
category, we say it is of second category in X.

Definition. Residual Set: Let (X,d) be a metric space. We say A C X is residual if
X \ A is of first category.

Example: Consider A = [0,1). We may write this as A = (J[0,1 — 1], therefore A is F,.

n=1

[e.e]
However, we may also write this as A = () (==, 1), therefore A is Gs.
n=1

Example: Let C C X be closed. Let U, = |J Bi/n(2) so that U, is open. Prove that
zeC

C= QU
n=1

Proof. Clearly, C' C () U, since each x € C'is in U,, for all n € N. Let = € [ U,. So there
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is a ¢, € C such that d(z,c,) < % We see then that ¢, — x, so x € C. O

Example: Let C' be the cantor set. Recall C' is closed and notice int(C') = (.

Example: Clearly Q = |J {¢}. Since {q} is nowhere dense for all ¢ € Q, we have that Q is
q€Q
of first category. Notice then the irrationals R\ Q are thus residual.

Let (X, d) be a metric space and let A C X. Recall from 247 that X \ A =
X \Int(A) and Int(X \ A) = X \ A.

Suppose A is nowhere dense in X. Consider X \ =X \Int(A) = X\0=X. So X\ Ais
dense in X.

(Idea around first category sets) First category sets are in a sense “topologically
thin” in that they are the union of nowhere dense sets. Residual sets are therefore “topolog-
ically fat” and very big.

Theorem. Baire Category Theorem: Let (X,d) be a complete metric space. Let
U, C X be open and dense in X for n € N. Then () U, is dense in X.

neN

Proof. Let x € X. Let ¢ > 0 be given. We may find z; € X and 0 < r; < 1 such that
B, [z1] € B.(x)NU; (since B.(x)NUy is open and since U is dense in X we know r exists).
Similarly, we may find 2o € X and 0 < 7y < = such that B,,[xs] C By, (xl) N U,. Continuing,
we construct a sequence B, [Tr41] C B, (a:k) N Uy with 0 < 1y < k+1

By an assignment, we know there is an xg € () By, [zx] # 0. Then we see that zo € ﬂ Un
k=1
since each B, [xry] C Ug. Recall also that xy € B, [z1] C B.(z). That is, for all x G X

and £ > 0, we may find an zq € [ U, with d(zo,x) < &, thereby showing zy € ﬂ U, is

n=1 n=1

dense. =

Corollary: A complete metric space (X, d) is of second category in itself.

Proof. By way of contradiction, suppose X = U A,, where Int(A,) = 0 for all n € N. Then

n=1

[e.e]

X:UAn

n=1

-

n=1

0=[()X\4,
n=1

g

Recall from our remark that X \ A is dense in X if A is nowhere dense in X and clearly
X \ A is open. Therefore by the Baire Category Theorem () is dense in X, which is a
contradiction. O
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10.2 Applications

Proposition: Q C R is not a Gy set.

Proof. By way of contradiction, suppose Q = (1 U,, where U,, C R is open. Since Q C U,
n=1
is dense in R, then R C Q C U, C R and so U, is dense in R. Since Q is countable, suppose
Q={q1,q,...}. Set V,, = U, \ {gn} so that V,, is still open and dense. Therefore we know
that () V,, = 0, but by the Baire Category theorem, (1 V,, is dense in R, a contradiction. [J
n=1 n=1

Definition. Oscillation: Let (X, d) be a metric space and let f : X — R. We define the
oscillation of f at x to be

wy(@) = infsup {1 (@) = SO)| - a.b € By}

The oscillation measures how much f can bounce around as you get closer and
closer to z.

f is continuous at x if and only if ws(z) = 0.

Lemma: Let (X,d) be a metric space and let f : X — R. Let ¢ > 0 be given. Then
U={re X wsz)<e}is open.

Proof. Let x € U. For some § > 0, we have that sup{|f(a) — f(b)| : a,b € Bs(z)} < e. Take
y € X such that r := d(y,x) < 0. Then the Bs_,.(y) C Bs(z). To see this, let z € Bs_,.(y),
then

d(z,z) <d(z,y)+dy,z) <d—r+r=39

Therefore,

sup{[f(a) = f(0)] - a,b € Bsr(y)} < sup{|f(a) = f(b)]: a,b € Bs(x)} <e

Therefore, ws(y) < . And so, for any y € Bs(x) we have y € U. Therefore, Bs(z) C U,
showing that is U is open. [

Proposition: There is no f : R — R which is continuous at every rational but discontinuous
at each irrational.

Proof. By way of contradiction, suppose such a function f exists. Let C,, = {x € R : wy(z) >
1}, We know by our lemma that C,, is closed. Then since f is continuous at the rationals

but discontinuous at the rationals, we know R\ Q = (J C,,. Therefore, by De Morgan’s law
neN

Q= N R\ C, where R\ C, is open. This implies Q is Gy, a contradiction. O

neN
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Example: Consider Thomae’s function

0 z¢Q
fIR=-R 2= 0t 2=2eQ
1 z=0

which is continuous at each irrational but discontinuous at each rational.

Proposition: Let (f,) C C([a,b]). If f,, — f pointwise then f is continuous on a residual
subset of [a, b]

Proof. Let C,, = {z € [a,b] : wr(x) > 1}. Recall C,, is closed since its complement is open.

o0
Therefore f is discontinuous on [ J C,, therefore if this set is of first category, then f is
n=1

continuous on a residual set. We are then required to show Int(C,,) = Int(C,,) = 0.

By way of contradiction, suppose there is a K € N and an open interval I such that I C Ck.
(Technically we mean open with respect to the [a,b] but open intervals in [a, b] are simply
open intervals.) If there is an open interval contained in Cx then Ck is not nowhere dense.
Let 0 < e < 3.

For all i,j € N, let X;; = {z € I : |fi(x) — fi(z)] < e}. Alsolet E, = (] X;;. Fix
ij>n

x € 1. We know that f,(z) — f(x). In particular, we know there is an N € N such that

|fu(x) = f(z)] < § for n > N. By the triangle inequality, for 4,7 > N then |fi(z) — f;(z)| <

|fi(x) — f(z)] + |f(z) — fi(7)] < e. So we have that for any = € I there is a N € N so that

x € Ey (since for all i,j > N we have z € X, as shown above). So I = E,. Note
n=1

also that I is complete by Heine-Borel (I is a closed, bounded interval). Note that by the

-1
continuity of f;, f; we have that z;; = |f; — f;/([0,¢]) and so x;; is closed. Then since E,, is
——

continuous
an infinite union of the Xj;, then £, is closed for all n € N.

By the Baire Category Theorem there is an ng such that Int(E,,) # (0 we may then find an
open interval J C I (note again this is with respect to I subspace topology, but if there is
an open interval with respect to I) such that J C FE,,. Therefore, for n > ng and = € J
we have that |f, — f,,,] < € (since z € E,,;). Take n — oo, then since limits preserve order

’f(.T) - fno(x)| <e.

Now f,, is uniformly continuous since it is continuous on [a, b] which is compact by Heine-
Borel. Then there is a 69 > 0 such that if |y — z| < g then |f,,(y) — fn,(2)| < . Fix
z € J. Let C = [a,b] \ J. Let 6, = min{%,dc(X)}. Note that §, # 0 since z € J. Note
if |z —y| < d, then y € J since d¢(z) is the minimum distance between points not in .J
and x. In particular, Bs, (x) C J and if y,z € Bs,(z) then |y — 2| < 2, < d9 and so

|fno(y> - fn0(2>| < E.

For y, z € Bs,(x) we have

1F (@) = FE<TFW) = Fao @]+ [Fno (4) = fuo (2)] + [ frg (2) = F(2)] < 32 < %
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(Recall that we saw eons ago that |f(z) — f,,(x)| < e.) Therefore, for z € J we see that
wy(z) < 3. So J C la,b] \ Ck. But J C I C Ck. O

Corollary: Let (f,) C C([a,b]). If f, — f pointwise then f is continuous on a (residual,)
dense, G5 subset of [a, b].

o0
Proof. Use notation as in the above proof. Then the discontinuities of f are |J C, where
n=1

C,, is closed and Int(C,,) = (). So f is continuous on () [a,b] \ C,. We see immediately that

n=1
f is continuous on a Gy set. Now notice [a, b] \ C,, = [a,b] \ Int(C},) = [a, b] is clearly dense
in [a,b]. But then by Baire Category Theorem ([a,b] \ C,, is dense in [a, b], as desired. [

Corollary: Suppose f : [a,b] — R is differentiable. Then f’ is continuous a residual, dense,
Gy set of [a, b].

Proof. Consider f,(z) = w — f'(x) so that f,, — f’ point wise. This then follows

by our above corollary. O

Example: Consider (—1,1) and R. These are homeomorphic. To see this consider 2 arctan(z).
However, R is complete and (—1,1) is not. In particular homeomorphisms do not preserve
completeness as this is a metric space property. However, isometric isomorphisms will pre-
serve completeness.

10.3 Uniform Boundedness Principle

Recall if XY are normed vector spaces and T : X — Y is linear. Then T is
continuous if and only if 7" is bounded if and only if

1T lop := sup{[IT'(@)[| - [|=[| = 1} < o0

Therefore, the space B(X,Y) of bounded linear transformations from X to Y is a normed
vector space with || - ||,, as the norm. Note this is also the space of all continuous linear
transformations. Also we see then that for 7' € B(X,Y)

T
HT (m) H <7l <= NT@I < Tlop- 1]

Theorem. Uniform Boundedness Principle: Abbr. UBP. Let X,Y be normed vector
spaces and suppose X is complete. Let F' C B(X,Y). If for all € X we have sup{||T'(z)|| :
T € F} <oothen F C B(X,Y) is bounded. That is, sup{||T||op : T € F} < 0.

Proof. For n € Nlet C,, = {z € X : VT € F,|[|[T(z)|]| < n}. Then by our assumption
X = U C,. We will show each C, is closed. Let (z3) C C,, such that z;, — = € X. Then

n=1
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for all T € F, we have T(zy) — T(z) (since each T' € F' is bounded and linear and therefore
continuous). We also have ||T'(xy)|| < n which implies that || 7(z)|| < n since limits preserve
continuity. By Baire Category Theorem, X is of second category, therefore there isann € N
such that Int(C,,) # 0 (otherwise X = |J C,, is a union of nowhere dense sets, and so X is of

n=1

first category, a contradiction). There is then an zq € X and € > 0 such that B.(z¢) C C,,.
We see then that since C,, is closed that B.(zg) C C,. Let T' € F and = € X with ||z| = 1.
Therefore

2n

1 1
7@ = ZITC 2o +ex ) = T(o)l < < (IT@o+ )+ [T(ao)I ) < =

[|zo+ex—axo||=¢ eChp eChp

Since T and x were arbitrary, we see ||T'||,, < 2% < oo forall T € F, and so F is bounded. [

We can also show the contrapositive is true. In particular, if F¥ C B(X,Y) is
bounded, then
[T @) < T llopllz| < M[|z]]

where M is bound on F'.

Example: Let (f,,) € C(R). Suppose for all x € R there is an n € N such that f,(z) € Q.
Prove that for all a < b there are a < ¢ < d < b and an n € N such that fn|(c7d) is constant.
Jnl(ap) bounded by EVT.

Proof. Consider g, : [a,b] — R given by g, = fuljay. Enumerate Q = {q1,¢»,...}. Define
Com = g, ({gm}). Since g is continuous and {g,} is closed, C,, , is closed. So [a,b] =
U Crm- Then there are n, m € N so that Int(C,,,,) # 0. In particular there is (¢, d) C C, .

Then gn((c,d)) = {qm}, as desired. O

Week 11 Polynomial Approximation

11.1 Weierstrass Approximation

A classic result we will see is: “For all ¢ > 0 and for all f € C([a,b]) there is a
polynomial p such that ||f — p|l« < e. That is, the polynomials are dense in C([a, b]).”

These are simplifications we will make throughout this section.

8

1. Let ¢ : [a,b] — [0,1] be given by p(x) = 7=%. Then ¢ is a continuous, increasing
bijection. More over, ¥ : C([0,1]) — C([a,b]) given by (f) = f o ¢! is an isometric

isomorphism. Thus, to prove a result on C([a, b]), it suffices to prove it on C([0,1]).

2. Let f € C(0,1)). Let g(z) = f(x) — [(F(1) — F(0))z + £(0)). Notice g(0) = g(1) = 0.
Moreover, if we can approximate g by a polynomial, we can do the same for f. This is
since their difference is a polynomial. Thus, we may assume f(0) = f(1) = 0.
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Lemma. Bernoulli’s Inequality: For all n € N and z € [0, 1], then (1 — 2?)" > 1 — nz?.

Proposition. Leibniz’s Rule: Let f : [a x b] = [¢,d] — R be continuous. Further,
suppose f, is continuous. Then

d b b
d_y/a f(x,y)dx:/a fy(z,y)dx

Proof. By Fubini’s theorem, for y € [c, d] we have

y b by
) /cy/abfz(x,z)dxdz{(ll /Cb fzy(x,z)dzdx
d_y/c/afz(a:,z)dxdz:d_y/a /C Fo(z, 2)dzda

b b
[ staiza =1 [ ) = st

b d b d b
Afy(x,y)dxd:d—y/a f(x,y)dx—d—y/a f(z,c)dx

b b
/afy(ﬁ,y)dxd:diy/a f(x,y)dx
]

Theorem. Weierstrass Approximation Theorem: The set of polynomials (with domain
la,b]) is dense in C([a, b]).

Proof. We assume a = 0 and b = 1 by simplification 1. Let f € C([0,1]) be fixed. Let € > 0
be given. We may assume f(0) = f(1) = 0 by simplification 2. In particular, f may be
extended to a uniformly continuous function on R by setting f = 0 for (—oo,0)U(1,00) (f is
continuous on compact [0, 1] so f is uniformly continuous on [0, 1], extending by a constant
function preserves uniform continuity).

For n € N let Q,(z) = ¢,(1 — 2?)™ where ¢, > 0 is chosen such that fj1 Qn(z)dr = 1. We

may choose this as [', (1 — )" = ¢ for £ > 0 since (1 — 2?)" is non-negative on [~1,1], so

/11(1 —2H)"dr = 2 /01(1 —2H)"dx

we may pick ¢, = %. Now
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Then, multiplying both sides by ¢, we have

! C
1= [ Quz)dz > =
| Onl(w)de > =

We see then that ¢, < /n. Define P,(z) = f_ll f(x 4+ t)Q,(t)dt (notice by our extension of
f this is valid). However, since f is zero outside of [0, 1], we have that

Pola) = /_ e+ )0 (1)t

Then performing the substitution u = z + ¢, we have f01 f(w)Qn(u — z)du.

P,(x) = /_11 flz+t)Qn(t)dt valid by extension of f
= o flz+t)Q,(t)dt since f =0 for x ¢ [0, 1]
= /1 f(u)Qn(u — z)du substituion for u = x +¢

0

Then by Leibniz’s Rule, since P, is a polynomial of degree 2n

d2n+1 1 82n+1 1

dx2n+1 ”(x) - 0 WQn(u - x)du = O0du =0

o

Then by Taylor’s approximation theorem, we have that P,(z) is a polynomial of degree at
most 2n. Let M = ||f||o. Let 0 < 0 < 1 such that |f(z) — f(y)| < € whenever |z —y| < 0.
We then see

|P.(x) — f(x)| = ’ » flx+t)Qn(t)dt — /_1 f(x)Qn(t)dt' since z fixed and /_1 Qn(t)dt =1
- | [ o0 - sanauo
< /_1 (2 +1) — f(2)|Qn(b)dt since Qy > 0
)
= [ U@t - f@iuar
- )
+ [ 11+ 0) = FlQub
+ [ 15+ 0 - st
=5 ’
< / 2MQ, (1) dt

1

5
+/65Qn(t)dt
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1
+ /6 2MQ,(t)dt

-6
g/ 2Me, (1 — t3)"dt
-1

1
+ / eQn(t)dt integrating over larger region
—1
1
+/ 2Me, (1 —t*)"dt
0

-6
g/ 2Mec, (1 — 6*)"dt
-1

1
+e | Qn(t)dt
-1
1

+/ 2Mec, (1 — 6*)"dt
1
<AM+/n(1—08)(1—6)" +¢

Notice that since § > 0, as n — oo we have 4M+/n(1 — §)(1 — 6*)" — 0 and so there is a
polynomial P,(x) such that |P,(z) — f(z)]| < e. O

Corollary: C([a,b]) is separable.

Proof. This holds since the rationals are dense in R, and so the rational polynomials are
dense in the polynomials and in turn are dense in C(]a, b]). O

Example: Let f € C([0,1]) be such that fol 2" f(z) =0 for all n > 0. Prove f = 0.

Proof. Since the polynomials are dense in C([a, b]), there is a sequence (P,) C C([0, 1]) such
that P, — f uniformly. We obviously see then that P,f — f? uniformly. Now notice for
any polynomial p(z) = ag + a7 + asx® + - - - + a,2" we have

' — ' 0 ' 1 e ' n — PR =
/Op(x)f(x)dx—ao/o a:f(x)d:z:—l—al/o z f(z)dz+ +an/0 2" f(z)dx = 040+ --+0 =0

In particular, we see that

1 1
| P@t@dr— [ P
0 0
=0
and so since f?(x) is continuous and f?(x) > 0, we see that

/OfQ(m)d$=0 —  fHr)=0 = f(x)=0

as desired. O
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11.2 Stone-Weierstrass-Lattice Version

Let (X,d) be a compact metric space. Let x,y € X such that = # y. Let
D C C(X) be dense. Let f € C(X) be given by f(t) = d(t,z) so that f(z) # f(y).
Then there is a sequence (g,) C D such that g, — f uniformly. In particular, we see that
gn(z) = f(x) and g,(y) — f(y). This means there is an n € N such that g,(z) # g.(y).

Definition. Separating Points: Let (X, d) be a metric space. We say A C C'(X) separates
points if for all z,y € X with  # y we have that there is an f € A such that f(z) # f(y).

As seen above, whenever (X, d) is a compact metric space and D C C(X) is dense
(with respect to || - ||o), then D separates points. Notice we need (X, d) to be compact so
that Cy(X) = C(X) and therefore so that the uniform norm || - || may in fact be a norm
on C(X). Then convergence with respect to || - ||« implies uniform convergence on C(X),
as desired.

Lemma: Let (X, d) be a compact metric space. Let V' C C(X) be a linear subspace which
separates points and such that 1 € V' (constant function). Then for all a,b € X with a # b
and «, f € R, there is an f € V such that f(a) = « and f(b) = 5.

Proof. Let a,b € X with a # b. Then since V' separates points, there is a g € V' such that
g(a) # g(b). Then by linearity, consider

e~ g0
=t =) =g <7

Then f(a) = aand f(b) = 3. Notice if @« = § we can use the function f(z) = a-1(z) = a. O
Definition. Lattice: Let (X, d) be a metric space. A linear subspace V' C C'(X) is a lattice
if for all f,geV

fVvg:=max{f,g} €V and fAg:=min{f g} eV

Notice that C'(X) is a lattice since linear combinations preserves continuity and
absolute values preserve continuity and so we see

Assume V' C C(X) is a linear subspace such that fV g € V whenever f,g € V.
Therefore,
frg=-((=f)Vv(-g) eV
by the linearity of V. So if V' is closed under maximums, it is also closed under minimums,
and vice-versa.

Theorem. Stone-Weierstrass-Lattice Version: Let (X, d) be compact. If V C C(X) is
a lattice such that V' separates points and such that 1 € V, then V' is dense in C(X).
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Proof. Let f € C(X). Let € > 0 be given. Fix z € X. By our lemma, for all y € X there
is a ., € V such that ¢, ,(z) = f(z) and ¢, ,(y) = f(y). Notice this is true even if z =y
as we can use the constant ¢, ,(2) = f(z) function. Note that ¢, , — f is continuous at y
because ¢, , and f are both continuous. By continuity, for all y € X there is a d, > 0 such
that

d(t,y) <o, = |00y () = [ (1) = (Loy (W) = FW)| = 0ay(t) = (1) <&

By the compactness of X, there are yq,...,y, € X such that

X = Bs,, (1) U---UBs, (Yn)
Define
Oo = Pagyy VoV Qpy, € vV

(we can prove ¢, € V by induction since fV g € V). For z € X, there is a d,, such that
z € Bs, (yi) so that

—€ < Puy(2) — fl2) <e - f(2) — € < Yy (2) < @u(2) (1)

Where the latter inequality holds since ¢,(z) is the maximum over all ¢,,.. We see then
that since z was arbitrary (and no terms depend on z), that f — e < ¢,. By the continuity
of ¢, — f, for all x € X, there is a , > 0 such that

d(t,z) < b, — |p2(t) = f(E) = gala) + f(@)| = |@a(t) = f()] <2 (2)
by continuity (note ¢,(2) = @ay, (2) V -+ V 9y () = max{f(2),. .., ()} = [(x)). As
before, by compactness of X we may find x4, ..., 2, € X such

X = Bs, (t1)U---UB;s, (zm)
Define
=P NNy, €V
For z € X, there is a d;, such that z € By, (z;)

f(2) —e <@(2) < a;(2) < f2) + ¢

Notice the first inequality holds since for all 1 < j < m we have f(z) —¢ < @,,(2), so
since this holds for all j, we have f(z) — ¢ < ¢(z), as desired (taking minimums). The last
inequality holds by (2). We see then that since z € X is arbitrary, || f — ¢|| < €. O

Example: Let V be the space of piecewise-linear continuous functions such that V' C
C([a,b]). That each f € V is a piecewise function defined on finitely many intervals, where
f is linear on each. We can show that V is in fact a lattice and V' separates points (with
1 € V), so that we see from above V' is dense in C(X).
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11.3 Stone-Weierstrass-Subalgebra Version

Definition. Subalgebra: Let (X, d) be a metric space. A linear subspace V C C(X) is a
subalgebra if f-g € V for all f,g € V where (f - g)(x) = f(x) - g(x).

Let (X,d) be a compact metric space. We can show that if V' C C(X) is a
subalgebra then V' is a subalgebra.

Theorem. Stone-Weierstrass-Subalgebra Version: Let (X, d) be a compact metric
space. If V' C C(X) is a subalgebra such that V' separates points and 1 € V' (this is called
a unital subalgebra) then V' is dense in C'(X).

Proof. Without loss of generality, assume V is closed. Let f € V. Since f is continuous

and X is compact, we know f(X) is bounded, in particular, there is an M > 0 such that

f(X) C[—M, M]. Let € > 0 be given. By the Weierstrass Approximation Theorem, there is

a polynomial P : R — R such that |P(z) — |z|| < ¢ for all x € [-M, M]. Then for all z € X

we have ||Po f —|fl|llcc = | P(f(x)) —|f(x)|| < e. Since € > 0 was arbitrary, and V is closed,
————

ev
we may conclude |f| € V. Then for all f,g € V, we have fV g € V, so V is dense by the
Stone-Weierstrass-Lattice Version. O

Big idea of the proof: Note if V is dense in C'(X), then we have that V = V=X
(the double closure) and so V' is dense in X. Note also that if p is a polynomial and f € V,
then p(f) € V since V' is a subalgebra (note being closed under powers is equivalent to being

closed under function multiplication). Recall that fV g = H%U_g', so we will show that
feVvV = |fleV.

Example: Notice that where V' are the polynomials, we see that V' is a unital subalgebra,
and so we see this quickly subsumes the Weierstrass Approximation Theorem (though this
theorem still requires the Weierstrass Approximation Theorem).

Example: Let V = span{l,z? 2%, ...}, we can see then that V is dense in C([0, 1]), but V'
is not dense in C'([—1,1]) (it can’t separate a from —a).

Definition. Infinity Norm on Complex Functions: Let (X,d) be compact. Then
C(X,C) ={f: X — C|f is continuous} and we define || f||oc = sup{|f(z)|: z € X} where
| - | is the complex modulus. Then (C(X,C), || - ||») is a Banach space.

If feC(X,C), then f(z) = (f)(x) +i(f)(z) where (x + yi) = z and (z + yi) =
y. Notice also if we f, — f in C(X,C), then (f,) — (f) and (f.) — ( ). Moreover,

Re(f),Im(f) € C(X). Further, Re(f) = % and Im(f) = f2;z where f(z) = f(x) where
x + yi = x — yi. Notice finally Im(f) = Re(—if).

Theorem. Stone-Weierstrass-Complex Version: Let (X, d) be a compact metric space.
Itvc C'(X,C) is a subalgebra such that 1 € V| V separates points, and if for all f € V
then f € V (this is call a self-conjugate unital subalgebra), then V' is dense in C(X,C).

Proof. Let V € C(X,C) be a subalgebra as above. Define W = {Re(f) : f € V} C C(X).
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Notice if f € V, then Im(f) = Re(—if) € W. Then W is a subalgebra of C(X) such

—if
%
€
that 1 € W, and W separates points. By Stone-Weierstrass-Lattice Version, W is dense in
C(X). Take f € C(X,C). We know there are (g,), (h,) € W such that g, — Re(f) and
h, — Im(f). Then we see that g, +ih, € V is such that g, +ih, — Re(f)+ilm(f) = f. O

If T'={z € C:|z| =1}, then the polynomials on T" are not dense in C(T, C).
Example: Let T'= {z € C: |z| = 1} and consider C(T,C). Let

X ={feCT.C): f(-m) = f(m)}

Let ¢ : X — C(T, C) such that ¢(f)(e??) = f(). We can check that ¢ is a homeomorphism.
Let
Trig([—, 71]) := spanc{e™ :n € Z} C X

be the trigonometric polynomials. We claim Trig([—m, 7]) = X. Since ¢ is a homeomorphism
it suffices to show ¢(Trig([—m,7])) is dense in ¢(X) = C(T,C). Notice we know that 7" is
compact by Heine-Borel Theorem, so C(T,C) is compact. Let f,(z) = ¢ € X. Then
o(fn)(e®) = fu(x) = €™, or if y = €, then ¢(f,)(y) = y". In particular {f,},cz can be
viewed as the polynomials (plus negative powers). That is

o(Trig([—m,7])) = spanc{e™ — ™ :n € Z}

Easily enough, by this knowledge we know ¢(Trig([—m, 7])) is a subalgebra of C'(T, C) which
contains 1, separates points, and is closed under conjugation. By Stone-Weierstrass-Complex
Version, we see that ¢(Trig([—m,7])) = C(T,C). This is the basis of Fourier Analysis, that
(Lebesgue integrable) functions can be approximated by trigonometric polynomials.
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