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Unit 1 Cardinality

Week 1 Cardinality I

1.1 Bijections

Definition. Injection: Let A,B be sets. A function f : A→ B is injective (or an injection)
if for all a, b ∈ A, we have f(a) = f(b) if and only if a = b. Also called a one-to-one function.

Definition. Surjection: Let A,B be sets. A function f : A → B is surjective (or a
surjection) if for all b ∈ B, there is a a ∈ A such that f(a) = b. That is, f(A) = B. Also
called an onto function.

Definition. Bijection: Let A,B be sets. A function f : A→ B is bijective (or a bijection)
if it is both an injective and surjective. Also called an isomorphism.

Proposition. Bijections and Invertibility: Let A,B be sets. A function f : A→ B is a
bijection if and only if there is a function g : B → A such that f(g(b)) = b and g(f(a)) = a
for all a ∈ A and b ∈ B. We write g = f−1 and denote g the inverse function of f .

Proof. ( =⇒ ) Note that f is surjective. Thus for all b ∈ B, there is an a ∈ A such that
f(a) = b. By way of contradiction suppose there are two distinct points a1, a2 ∈ A such
that f(a1) = f(a2) = b. Since f is injective, we must have a1 = a2. Therefore, for every
point b ∈ B there is a unique point a ∈ A such that f(a) = b. Let g : B → A denote the
mapping such that g(b) = a where a ∈ A is the unique point such that f(a) = b. Therefore,
f(g(b)) = b and g(f(a)) = a, as desired.

( ⇐= ) Suppose that f : A → B has an inverse function (as defined above) g : B → A.
Let b ∈ B be arbitrary. Note g(b) ∈ A is by definition such that f(g(b)) = b. Since such a
g(b) ∈ A must exist, f is surjective. Now let a1, a2 ∈ A such that f(a1) = f(a2), by definition

a1 = g(f(a1)) = g(f(a2)) = a2

and so f is injective, and thus a bijection.

Proposition: Let A,B be non-empty sets. There exists an injection f : A→ B if and only
if there exists a surjection g : B → A.

Proof. ( =⇒ ) Suppose there is an injection f : A → B. Let a∗ ∈ A be given. Construct
g : B → A as follows:

1. if b ∈ f(A) then let g(b) be the unique element in A such that f(g(b)) = b. Note
uniqueness is guaranteed by the injectivity of f .

2. if b /∈ f(A) then let g(b) be a∗.
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Let a ∈ A and consider f(a) ∈ B. By definition of g we have g(f(a)) = a, thus g is surjective.

( ⇐= ) Suppose there is a surjection g : B → A. For every a ∈ A pick ba ∈ B such that
g(ba) = a. Note this must exist by the surjectivity of g. Define f : A → B by f(a) = ba.
Let x, y ∈ A such that f(x) = f(y), this is equivalent to saying bx = by. Therefore, since g
is well-defined x = g(bx) = g(by) = y. Therefore f is injective.

Remark: Note that in the above proof, we define ba ∈ B for all a ∈ A. By the surjectivity
of g we know such a ba exists, but how can we algorithmically find such a ba or define such
a ba for every possible a ∈ A? Especially given that there may be several possible choice for
ba. This is because we used the Axiom of Choice.

Definition. Power Set: The power set of a set X is given by P(X) = {A : A ⊆ X}. That
is, it is the set of all subsets of X (including ∅).

Definition. Axiom of Choice: Let X be a non-empty set. Then there exists a (choice)
function f : P(X) \ {∅} → X such that f(A) ∈ A for every ∅ ≠ A ⊆ X.

Remark: The Axiom of Choice is given its name because in a sense, it chooses an element
from A. That is, the choice function f takes a non-empty subset of A ⊆ X and returns a
single element in A, thereby choosing one element from every possible subset.

Remark: In the context of the above proof, we use the Axiom of Choice to select ba. Given
a set of possible values in B which map to a (found by the surjectivity of g), a single point
ba is selected.

Note. Assumed Axioms: In this course and most courses, we assume the ZFC Axioms.
In particular, this is set Zermelo-Fraenkel Axioms along with the Axiom of Choice.

1.2 Cardinality

Remark. Motivation of Cardinality: The goal of cardinality is to be able to classify
sets based off of their “size” or the “number” of elements in the set.

For instance if f : A→ B is injective, then f : A→ f(A) is bijective (this is since functions
are obviously surjective to their image). In this sense there is a “bijective copy” of A (namely
f(A)) living in B. That is, our bijection is just relabelling elements in A to elements in B
and so in a sense A exists inside of B. This means A is “smaller” than B.

Definition. Cardinality: Let A,B be sets.

1. We say A has cardinality less than or equal to B, written |A| ≤ |B|, if there exists an
injection f : A→ B.

2. We say A and B have equal cardinality, written |A| = |B|, if there is a bijection
f : A→ B.

Remark: As mentioned previously, bijections are often viewed as simply relabelling elements
from one set to another. This is because they are injective (no element map to the same
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as another element) and surjective (each element in the codomain is mapped to by some
element in the domain) and so every single element uniquely maps to some other element.
See also isomorphisms from MATH 146. This is why we say that the cardinality or “size” of
sets is equal when we have a bijection between them. We can simply relabel the elements
from domain to codomain.

Example. |N| = |Z|: Show |N| = |Z| where N = Z≥1.

Proof. Consider the bijection f : Z → N given by

f(n) =

{
2n+ 2 n ≥ 0

2(−n)− 1 n < 0

Note this means the non-negative integers cover the set of even natural numbers and the
negative integers cover the set of odd natural numbers. In particular f(−1) = 1, f(0) = 2,
f(−2) = 3, f(1) = 4 and so on so forth.

Example. |R| = |(0, 1)|: Show |R| = |(0, 1)|.

Proof. Consider for instance the function f : R → (−π
2
, π
2
) given by f(x) = arctan(x).

Clearly f is bijective since arctan has inverse tan. Now consider the bijection g : (−π
2
, π
2
) →

(0, 1) given by g(x) =
x+ π

2

π
. We know that composition of bijections are bijective, and thus

g ◦ f : R → (0, 1) is a bijection, showing |R| = |(0, 1)|, as desired.

Note that while the length of (0, 1) is 1, the length of R is infinite. Thus cardinality and
length are separate.

1.3 CSB Theorem

Lemma: Let X be a set. Let φ : P(X) → P(X) be a function such that φ(A) ⊆ φ(B)
whenever A ⊆ B ⊆ X. Then there exists a set F ∈ P(X) such that φ(F ) = F .

Proof. Let
F =

⋃
A⊆X

A⊆φ(A)

A (*)

Note that ∅ is a subset of every set and so necessarily ∅ ⊆ φ(∅), so this union must be
well-defined. We will show φ(F ) = F . Let A ⊆ X be an arbitrary set such that A ⊆ φ(A).
We must have A ⊆ F and so φ(A) ⊆ φ(F ). Therefore, we have A ⊆ φ(A) ⊆ φ(F ) and
so since A was arbitrary and F is the union of all sets such that A ⊆ φ(A), we must have
F ⊆ φ(F ).

Now since F ⊆ φ(F ), we must have φ(F ) ⊆ φ(φ(F )). This implies then that φ(F ) is one of
the sets in the union (*). That is φ(F ) ⊆ F . We have then that F = φ(F ) by construction
of F .
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Theorem. Cantor-Schroeder-Berntein Theorem: Let A,B be sets. If |A| ≤ |B| and
|B| ≤ |A| then |A| = |B|.

Proof. Let f : A → B and g : B → A be injections. Note that if X ⊆ Y ⊆ A, then by the
well-definedness of f and g and some set-theory, we have

X ⊆ Y

f(X) ⊆ f(Y )

B \ f(Y ) ⊆ B \ f(X)

g(B \ f(Y )) ⊆ g(B \ f(X))

A \ g(B \ f(X)) ⊆ A \ g(B \ f(Y ))

Now let φ : P(A) → P(A) be given by φ(X) = A \ g(B \ f(X)). We see that φ(X) ⊆ φ(Y )
whenever X ⊆ Y . By the above lemma, we know there is a subset F ⊆ A such that

F = φ(F ) = A \ g(B \ f(F ))

Note this means that A \ F = g(B \ f(F )). Now restrict g such that g : B \ f(F ) → A \ F .
We have, as mentioned, that A \ F = g(B \ f(F )) and so g : B \ f(F ) → A \ F is in fact a
bijection.

Notice now that g−1 : A \ F → B \ f(F ) is necessarily a bijection since g is a bijection.
Further the restriction f : F → f(F ) is also clearly a bijection since f is injective and the
co-domain has been restricted to the range of f . Defining h : A→ B by

h(x) =

{
f(x) x ∈ F

g−1(x) x ∈ A \ F

is therefore also a bijection. We have then that |A| = |B| as desired.

Remark: The idea of the CSB theorem is that it is often easier to find two (potentially
unrelated) injections f : A → B and g : B → A than it is to find an explicit bijection
h : A→ B.

Example: Prove |N| = |N× N|.

Proof. Let f : N → N×N be given by f(n) = (n, 1), it is trivial to see that f is an injection,
so |N| ≤ |N × N|. Let g : N × N → N be given by g(n,m) = 2n · 3m. We know by the
uniqueness of prime factorization that every product 2n · 3m can be uniquely expressed this
way and so g must be injective. Therefore we have |N × N| ≤ |N| and so |N| = |N × N| by
CSB as desired.

1 Cardinality 6 1, Cardinality I
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Week 2 Cardinality II

2.1 Countable Sets

Definition. Finite Set: A set A is said to be finite if |A| = |{1, 2, 3, . . . , n}| for some
n ∈ N. In this case, we write |A| = n. Otherwise we say A is infinite.

Definition. Countably Infinite Set: A set A is said to be countably infinite if |A| = |N|.
In this case we write |A| = ℵ0.

Definition. Countable Set: A set A is said to be countable if A is finite or A is countably
infinite. Otherwise, we say A is uncountable.

Example: N,Z,N× N are all countable sets.

Proposition: If A is infinite then |N| ≤ |A|.

Proof. By the Axiom of Choice we may find a choice function f : P(A) \ {∅} → A. I.e., for
all ∅ ≠ X ⊆ A, we have f(X) ∈ X.

Let a1 = f(A) ∈ A. Let a2 = f(A\{a1}) ∈ A\{a1}. Let a3 = f(A\{a1, a2}) ∈ A\{a1, a2},
and so on so forth. This process may go on infinitely since A is infinite.

Notice {a1, a2, a3, . . .} ⊆ A is countably infinite. Therefore, there is an injection g : N → A
given by g(n) = an, so |N| ≤ |A|

Proposition: For any two countably infinite sets A,B, |A×B| = |N× N| = |N|.

Proof. Notice A,B are countably infinite, therefore there exists bijections f : A → N and
g : B → N. Then h : A×B → N×N given by h(a, b) = (f(a), g(b)) is also a bijection (easy
to show that h is invertible and therefore bijective). We have then |A × B| = |N × N| and
by an above example |N× N| = |N|.

Example. Q is countable: Prove Q is countable.

Proof. By an above proposition, we know |N| ≤ |Q|. By CSB, it suffices to show |Q| ≤ |N|.
Note that every non-zero q ∈ Q can be uniquely written as q = n

m
for n ∈ Z and m ∈ N with

gcd(n,m) = 1.

This gives an injection f : Q \ {0} → Z × N given by f( n
m
) = (n,m) as above. Therefore,

|Q \ {0}| ≤ |Z×N|. Now where q = 0, let f(0) = (0, 1). Notice n ̸= 0 for all q ̸= 0, thus this
mapping is unique. We have then extended f : Q → Z× N and so by an above proposition
|Q| ≤ |Z× N| = |N|.

Example. R is uncountable (Cantor’s Diagonal Argument): Prove R is uncountable
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Proof. Recall |R| = |(0, 1)|. By way of contradiction, suppose there is a bijection f : N →
(0, 1). Note (0, 1) = f(N) by surjectivity. Suppose that in decimal form,

f(1) = 0.d11d12d13 · · ·
f(2) = 0.d21d22d23 · · ·
f(3) = 0.d31d32d33 · · ·

...

where dij is the jth decimal of f(i). Note that for all n ∈ N f(n) ̸= 0.000 = 0 and
f(n) ̸= 0.999 = 1 as these are excluded in our interval.

For every i ∈ N, choose bi ∈ {0, 1, 2, . . . , 9} such that bi ̸= aii with not all bi = 0 and not all
bi = 9. Let

x = 0.b1b2b3 · · · ∈ (0, 1)

(note x ̸= 0 and x ̸= 1). We have x ∈ (0, 1), but x /∈ f(N). This is because f(i) ̸= x
for all i ∈ N. In particular, decimal representation is unique and the ith decimal of f(i) is
different from the ith decimal of x (aii ̸= bi by construction). Since f(N) ̸= (0, 1), we have
a contradiction.

Notation: We denote |R| = c where c is for continuum.

Remark: n,ℵ0, c are all examples of cardinal numbers. Think of them as symbols used to
denote sizes particular sets may have.

Definition. Continuum Hypothesis: We take the following statement an axiom. If A is
a set with ℵ0 ≤ |A| ≤ c then |A| = ℵ0 or |A| = c.

Remark: This axiom is consistent with the normal ZFC axioms, but is also independent of
them. That is, we cannot prove this statement from the ZFC axiom.

2.2 Power Sets

Proposition: If X is a set with cardinality |X| = n ∈ N, then |P(X)| = 2n.

Proof. Notice there are
(
n
k

)
ways to create a subset x ⊆ X of k elements (e.g., |x| = k).

Therefore, there are a total of
n∑

i=0

(
n

k

)
=

n∑
i=0

(
n

k

)
1i1n−i = (1 + 1)n = 2n

possible subsets of X by the binomial theorem. This result could also be proved by induction
without the use of combinatorics.

Remark: Let A be a set. Let AN =
∞∏
i=1

A be the cartesian product of A with itself countably

many times. Alternatively, this can be viewed as the set of sequences in A. We can also
think of this set as

{f | f : N → A}

1 Cardinality 8 2, Cardinality II
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via the correspondance
(a1, a2, a3, . . .) ≡ f(i) = ai

Notation: Let A,B be sets. We denote AB := {f | f : B → A} to be the functions from B
to A. Similarly, we denote |A||B| := |{f | f : B → A}

Proposition: For all sets A, |P(A)| = 2|A| = |{f | f : A→ {0, 1}}.

Proof. Let φ : P(A) → {f | f : A→ {0, 1}} given by φ(X) = φX where

φX(a) =

{
1 a ∈ X

0 a /∈ X

Notice φ is a bijection. We verify this by finding its inverse

φ−1 : {f | f : A→ {0, 1}} → P(A)

given by
φ−1(f) = {a : f(a) = 1}

Notice for all X ∈ P(A) we have

φ−1(φ(X)) = φ−1(φX) = {a ∈ A : a ∈ X} = X

and for all f : A→ {0, 1} we have

φ(φ−1(f)) = φ({a ∈ A : f(a) = 1}) =

{
1 a ∈ {a ∈ A : f(a) = 1}
0 a /∈ {a ∈ A : f(a) = 1}

= f

Hence φ is a bijection as desired.

Proposition: If A is a set then |A| < |P(A)|.

Proof. The injection f : A → P(A) given by f(a) = {a} proves |A| ≤ |P(A)|. Now by way
of contradiction, suppose there exists a surjection g : A→ P(A). Now consider the set

B = {x ∈ A : x /∈ g(x)} ⊆ A

Since g is surjective, there is an a ∈ A such that g(a) = B. If a ∈ g(a), then by definition
a /∈ B, but B = g(a). If a /∈ g(a), then by definition a ∈ B, but again B = g(a). So
a ∈ g(a) = B ⇐⇒ a /∈ B = g(a), a contradiction. So g cannot be surjective. Since g was
general, no surjection and therefore no bijection from A to P(A) may exist.

Remark: Notice |N| < |P(N)| < |P(P(N))| < · · · , so we can define infinitely many infinities.

Example: Prove |P(N)| = |R|, or equivalently 2ℵ0 = c.

1 Cardinality 9 2, Cardinality II
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Proof. Let X = {f | f : N → {0, 1}}. We know then that |P(N)| = |X|. Now consider
φ : X → R given by φ(f) = 0.f(1)f(2)f(3) · · · where f(i) is the ith decimal of φ(f). We
can see that φ is an injection, and so |N| < |P(N)| = |X| ≤ |R| = c. So by the continuum
hypothesis, we know |P(N)| = |X| = |R| = c, as desired.

Alternatively, we can avoid invoking the continuum hypothesis by constructing an injection
h : R → P(N). First define g : N → Q to be a bijection between the sets (we know this
is possible since |Q| = |N|). Now define the injection h : R → P(N) given by h(x) = {n :
h(n) < x}. By the density of the rationals in R we can see h is injective.

2.3 Cardinal Arithmetic

Definition. Rules of Cardinal Arithmetic: Let A,B be sets. Then

1. If A ∩B = ∅ then we define |A|+ |B| := |A ∪B|.

2. |A| · |B| = |A×B|.

3. |A||B| = |{f | f : B → A}.

Note: The above definitions are consistent with usual arithmetic for finite cardinalities.

Example: We see from above 2ℵ0 = c.

Example: Show ℵ0 + ℵ0 = ℵ0.

Proof. Let A = {a1, a2, a3, . . .} and B = {b1, b2, b3, . . .} be such that A ∩ B = ∅. Consider
the bijection f : A∪B → N given by f(ai) = 2i and f(bi) = 2i−1. Then |A∪B| = ℵ0. Note
that this means even if A∩B ̸= ∅, so long as we can find other sets C,D such that |A| = |C|
and |B| = |D| and C ∩D = ∅, then we can still define |A|+ |B| = |C|+ |D| = |C ∪D|.

Example: Show ℵ0 · ℵ0 = ℵ0.

Proof. Note ℵ0 · ℵ0 = |N× N| = |N| = ℵ0.

Example: Show ℵ0 + c = c.

Proof. Consider |(0, 1)| = c and |N| = ℵ0. Notice (0, 1) ⊆ N ∪ (0, 1) ⊆ R. So c ≤ ℵ0 + c ≤ c
or ℵ0 + c = c.

Example: Show c · c = c.

Proof. By the exponent rules of cardinal arithmetic (see next module) we have

c · c = 2ℵ0 · 2ℵ0 = 2ℵ0+ℵ0 = 2ℵ0 = c
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Example: Show cℵ0 = c.

Proof. By the exponent rules of cardinal arithmetic (see next module) we have

cℵ0 =
(
2ℵ0
)ℵ0

= 2ℵ0·ℵ0 = 2ℵ0 = c

2.4 Cardinal Exponents

Proposition. Exponent Rules: Let A,B,C be sets. Then
(
|A||B|)|C|

= |A||B|·|C|.

Proof. LetX = {f : B → A}, let Y = {f : C → X}, and let Z = {f : B×C → A}. We must
show that there is a bijection φ : Y → Z. Consider φ : Y → Z given by φ(f)(b×c) = f(c)(b).
That is, φ is such that given f : C → X, we have φ(f) : B × C → A ∈ Z is given by
φ(f)(b× c) = f(c)(b).

(Injectivity) For all f, g ∈ Y

φ(f) = φ(g)
=⇒ f(c)(b) = g(c)(b) ∀b ∈ B, ∀c ∈ C
=⇒ f(c) = g(c) ∀c ∈ C
=⇒ f = g

(Surjectivity) Let f ∈ Z so that f : B × C → A is a function. Consider g ∈ Y given by
g(c)(b) = f(b, c). Then φ(g)(b, c) = g(c)(b) = f(b, c), so φ(g) = f . So since f was arbitrary,
there must be g ∈ Y such that φ(g) = f .

So φ is bijective, as desired.

Proposition. Exponent Rules: Let A,B,C be sets such that B ∩ C = ∅. Then(
|A||B|) (|A||C|) = |A||B|+|C|.

Proof. Let X = {f : B → A}, let Y = {f : C → A}, and let Z = {f : B ∪ C → A}. We
must show that there is a bijection φ : X × Y → Z. Consider φ : X × Y → Z given by

φ(f, g)(x) =

{
f(b) x ∈ B

g(c) x ∈ C

(Injectivity) For all f1, f2 ∈ X and g1, g2 ∈ Y

φ(f1, g1) = φ(f2, g2)
=⇒ φ(f1, g1)(x) = φ(f2, g2)(x) ∀x ∈ B ∪ C
=⇒ φ(f1, g1)(b) = φ(f2, g2)(b) ∀b ∈ B
=⇒ f1(b) = f2(b) ∀b ∈ B
=⇒ f1 = f2
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and
φ(f1, g1) = φ(f2, g2)

=⇒ φ(f1, g1)(x) = φ(f2, g2)(x) ∀x ∈ B ∪ C
=⇒ φ(f1, g1)(c) = φ(f2, g2)(c) ∀c ∈ C
=⇒ g1(c) = g2(c) ∀c ∈ C
=⇒ g1 = g2

(Surjectivity) Let f ∈ Z so that f : B ∪ C → A is a function. Consider g ∈ X given by
g(b) = f(b) for all b ∈ B and h ∈ Y given by h(c) = f(c) for all c ∈ C. Then for any
x ∈ B ∪ C we have

φ(g, h)(x) =

{
g(x) x ∈ B

h(x) x ∈ C
=

{
f(x) x ∈ B

f(x) x ∈ C
= f(x)

So for any f ∈ Z there is (g, h) ∈ X × Y such that φ(g, h) = f . So φ is bijective as
desired.

Unit 2 Topology

Week 3 Metric Spaces

3.1 Metric Spaces

Remark: In MATH 137/147 we considered R equipped with |·|. In MATH 247 we considered
Rn equipped with ∥ ·∥ given by ∥(x1, x2, . . . , xn)∥ =

√
x21 + x22 + · · ·+ x2n. In both cases, this

gives us notions of

• Distance between points

• Convergent and Cauchy sequences

• Open and closed sets

• Compact sets

• Point wise and uniform convergence of functions

• Continuity and uniform continuity

• Spaces of continuous functions

and more. So equipping R with | · | allowed us to perform calculus, equipping Rn with ∥ · ∥2
allowed us to perform multi-variable calculus. Calculus is just a subset of analysis though,
so how can we perform analysis on a general space? Not just R or Rn.

Definition. Metric Space: A metric space is a pair (X, d) where X is a set and d :
X ×X → R is a function (called the metric) such that
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1. For all x, y ∈ X, we have d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.

2. For all x, y ∈ X, we have d(x, y) = d(y, x).

3. For all x, y, z ∈ X, we have d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality).

Remark. Intuition of a Metric: The intuition behind the metric d : X × X → R is
that d(x, y) measures the distance between x, y ∈ X. This is just like |x− y| for x, y ∈ R or
∥x − y∥2 for x, y ∈ Rn. But rather, d is a distance calculating function on an abstract set
X. This allows us to do usual mathematical analysis on X.

Definition. Normed Vector Space: Abbr. NVS. Let V be a vector space over a field F
(in this class we will use F ∈ {R,C}. A norm on V is a function ∥ · ∥ : V → R such that

1. For all v ∈ V , we have ∥v∥ ≥ 0 and ∥v∥ = 0 if and only if v = 0.

2. For all α ∈ F and v ∈ V , we have ∥αv∥ = |α| · ∥v∥.

3. For all u, v ∈ V , we have ∥u+ v∥ ≤ ∥u∥+ ∥v∥ (Triangle Inequality).

Then we say (V, ∥ · ∥) is a normed vector space.

Proposition: Let (V, ∥ · ∥) be a normed vector space. Then the function d : V × V → R
given by d(u, v) = ∥u− v∥ is a metric on v.

3.2 Metric Space Examples

Notation: If (a1, a2, a3, . . .) is a sequence with an ∈ A for all n ∈ N, then we write (an)∞n=1 ⊆
A or simply (an) ⊆ A.

Example. Discrete Metric: Let X be a set. Then

d(x, y) =

{
1 x ̸= y

0 x = y

is a metric on X. We call d the discrete metric on X.

Example: (R, | · |) is a metric space (note (R, | · |) is a NVS).

Definition. p-norm: For p ∈ [1,∞), the function ∥ · ∥p : Rn → R given by

∥(x1, . . . , xn)∥p =

(
n∑

i=1

|xi|p
)1/p

is called the p-norm.

Definition. Infinity-norm: For p = ∞, the function ∥ · ∥∞ : Rn → R given by

∥(x1, . . . , xn)∥∞ = max{|x1|, . . . , |xn|}
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is called the infinity-norm (or sup-norm) and is often referred to as a p-norm with p = ∞.

Definition. Holder Conjugate: Let p ∈ (1,∞). We define the Holder conjugate of p to
be q = p

p−1
. Notice that 1

p
+ 1

q
= 1 and that the Holder conjugate of q is p. We define the

Holder conjugate of 1 to be ∞ and vice versa.

Lemma. Young’s Inequality: Let p, q ∈ (1,∞) be Holder conjugates. If a, b > 0 then

ab ≤ ap

p
+
bq

q

Proof. Consider f(x) = 1
p
xp + 1

q
− x on (0,∞). We see that f ′(x) = xp−1 − 1 > 0 for all

x > 1. Moreover, f ′(x) < 0 for all 0 < x < 1. Since f(1) = 0, we have that f(x) ≥ 0 for all
x > 0 (f(x) has minimum at x = 1). Considering x = a

bq−1 we see that

f(x) ≥ 0

1

p

ap

b(q−1)p
+

1

q
− a

bq−1
≥ 0

1

p

ap

b(q−1)p
+

1

q
≥ a

bq−1

1

p

ap

bq
+

1

q
≥ a

bq−1
Since q = pq − p

1

p
ap +

1

q
bq ≥ ab

as desired.

Theorem. Holder’s Inequality: For any x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn,

n∑
i=1

|xiyi| ≤ ∥x∥p∥y∥q

Proof. Notice if p = ∞ then

n∑
i=1

|xiyi| ≤
n∑

i=1

∥x∥∞|yi| = ∥x∥∞
n∑

i=1

|yi| = ∥x∥∞∥y∥1 = ∥x∥p∥y∥q

as desired. Assume then p, q ∈ (1,∞). Assume further that x ̸= 0 and y ̸= 0 as the result
is trivial in this case. Replace x with x

∥x∥p and y with y
∥y∥q so that ∥x∥p = ∥y∥q = 1. By

Young’s Inequality we have

n∑
i=1

|xiyi| ≤
n∑

i=1

(
|xi|p

p
+

|yi|q

q

)
=

∥x∥pp
p

+
∥y∥qq
q

=
1

p
+

1

q
= 1 = ∥x∥p∥y∥p

as desired.

Theorem: For 1 ≤ p ≤ ∞, the p-norm ∥ · ∥p is a norm on Rn for all n ∈ N.
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Proof. We only verify the triangle inequality (the other two requirements are obvious). For
1 ≤ p <∞:

∥x+ y∥pp =
n∑

i=1

|xi + yi|p

=
∑
i=1

n∑
i=1

|xi + yi| · |xi + yi|p−1

≤
n∑

i=1

(|xi|+ |yi|) · |xi + yi|p−1

=
n∑

i=1

|xi| · |xi + yi|p−1 +
n∑

i=1

|yi| · |xi + yi|p−1

≤ ∥x∥p

(
n∑

i=1

|xi + yi|(p−1)q

)1/q

+ ∥y∥p

(
n∑

i=1

|xi + yi|(p−1)q

)1/q

= ∥x∥p

(
n∑

i=1

|xi + yi|p
)1/q

+ ∥y∥p

(
n∑

i=1

|xi + yi|p
)1/q

= (∥x∥p + ∥y∥p)

(
n∑

i=1

|xi + yi|p
)1/q

= (∥x∥p + ∥y∥p)

(
n∑

i=1

|xi + yi|p
)1− 1

p

= (∥x∥p + ∥y∥p) · ∥x+ y∥
p(1− 1

p
)

p

= (∥x∥p + ∥y∥p) · ∥x+ y∥p−1
p

and so

∥x+ y∥pp ≤ (∥x∥p + ∥y∥p) · ∥x+ y∥p−1
p ⇐⇒ ∥x+ y∥p ≤ ∥x∥p + ∥y∥p

as desired. If p = ∞, then for any x, y ∈ Rn we see that

|xi + yi| ≤ |xi|+ |yi| ≤ ∥x∥∞ + ∥y∥∞
so by definition of the maximum

∥x+ y∥∞ ≤ ∥x∥∞ + ∥y∥∞

Remark: Unless stated otherwise, we will always assume Rn is equipped with the 2-norm
(i.e., the Euclidean norm).

Example. ℓp Spaces: Let RN denote the set of all sequences of real numbers. For 1 ≤ p ≤
∞ and (xi) ∈ RN, let

∥(xi)∥p =

(
∞∑
i=1

|xi|p
)1/p
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For p = ∞, let
∥(xi)∥∞ = sup{|xi| : i ∈ N}

Then for all p ∈ [1,∞] let

ℓp = {(xi) ∈ RN : ∥(xi)∥p <∞}

Then (ℓp, ∥ · ∥p) is a NVS.

Proof. Assume p < ∞. First let q be the Holder conjugate of p and let x ∈ ℓp and y ∈ ℓq.
Then

∞∑
i=1

|xiyi| ≤ ∥x∥p∥y∥q

Then the proof that ∥ · ∥p is a norm follows from the proof that it’s a norm on Rn. The proof
where p = ∞ is also the same as in Rn.

Example: Let C([a, b]) denote the set of continuous functions f : [a, b] → R. For 1 ≤ p <∞,

∥f∥p =
(∫ b

a

|f(x)|pdx
)1/p

and
∥f∥∞ = sup{|f(x)| : x ∈ [a, b]}

are norms on C([a, b]).

Proof. See A2 Q1

Example: Let B([a, b]) denote the set of bounded functions f : [a, b] → R. As above ∥ · ∥∞
is a norm on B([a, b]).

Definition. Subspace: Let (X, d) be a metric space. If Y ⊆ X then (Y, d) is also a metric
space and we call (Y, d) a subspace of (X, d).

Example: The function

d(x, y) =
∞∑
i=1

|xi − yi|
2i(1 + |xi − yi|)

is a metric on Rn which does not come from a norm.

Example. Baire Space: The function

d(x, y) =
∞∑
i=1

|xi − yi|
2i(1 + |xi − yi|)

is a metric on NN. The metric space (NN, d) is called the Baire Space in set theory, however,
there is a different meaning for a Baire space in topology which refers to a type of topological
space (e.g., Banach space) rather than a specific set.
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Example. Cantor Space: The function

d(x, y) =
∞∑
i=1

|xi − yi|
2i

is a metric on 2N, the set of all 0−1 sequences. The metric space (2N, d) is called the Cantor
Space.

Example. Hamming Distance: Let X be a finite set. Then

d(A,B) = |(A∆B)| := |(A ∪B) \ (A ∩B)|

is a metric on P(X).

Example. Hausdorff Metric: Let X be a closed subset of Rn and let H(x) denote the
set of all non-empty, closed, bounded subsets of X. For A ∈ H(x) and b ∈ X, define
d(b, A) = min

a∈A
∥a− b∥. Then

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
is a metric on H(x). See page 5,6 of the course notes.

Example. p-Adic Metric: Let p be a prime number. For every 0 ̸= q ∈ Q, we can write
q = pa n

m
, where a, n,m ∈ Z, m ̸= 0, gcd(n,m) = gcd(p, n) = gcd(p,m) = 1. We then define

|q|p = p−a, |0|p = 0

Then d(x, y) = |x− y|p is a metric on Q. See pages 6,7 of the course notes.

Example. Product Metric: Let (X, d) and (Y, d) be metric spaces. Then

d((x1, y1), (x2, y2)) = d(x1, x2) = d(y1, y2)

is a metric on X × Y .

Example. Infinite Product Metric: Let (Xi, di) be a metric space for every i ∈ N. Then

d((xi), (yi)) =
∞∑
i=1

di(xi, yi)

2i(1 + di(xi, yi))

is a metric on
∞∏
i=1

Xi

3.3 Convergence

Definition. Convergence: Let (X, d) be a metric space. A sequence (xn) ⊆ X converges
to x ∈ X if for all ε > 0 there exists an N ∈ N such that d(xn, x) < ε for all n ≥ N . We
denote this by xn → x or lim

n→∞
xn = x.
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Definition. Cauchy: Let (X, d) be a metric space. A sequence (xn) ⊆ X is Cauchy if for
all ε > 0, there exists an N ∈ N such that d(xn, xm) < ε for all n,m ≥ N .

Proposition: Let (X, d) be a metric space. If (xn) ⊆ X converges to x ∈ X, then (xn) is
Cauchy.

Proof. Suppose (xn) ⊆ X is such that xn → x. Let ε > 0. Then there is an N ∈ N such
that d(xn, x) < ε

2
for all n ≥ N . Let n,m ≥ N . Then

d(xn, xm) ≤ d(xn, x) + d(x, xm) = d(xn, x) + d(xm, x) ≤
ε

2
+
ε

2
= ε

So (xn) is Cauchy.

Example: Consider (xn) ⊆ R given by xn = 1
n
. Notice (xn) converges in (R, | · |), and so

(xn) is Cauchy in (R, | · |), and so (xn) is Cauchy in ((0, 1], | · |), but (xn) is divergent in
((0, 1], | · |) since 0 /∈ (0, 1].

Definition. Bounded Sequence: Let (X, d) be a metric space. We say A ⊆ X is bounded
if

sup{d(x, y) : x, y ∈ A} <∞

We say (xn) is bouned if
{x1, x2, . . .}

is bounded.

Definition. Ball: Let (X, d), let x ∈ X, and let r > 0. Then

• The open ball centred at x of radius r is

Br(x) = {a ∈ X : d(a, x) < r}

• The closed ball centred at x of radius r is

Br[x] = {a ∈ X : d(a, x) ≤ r}

Proposition: Let (X, d) be a metric space. A set A ⊆ X is bounded if and only if there is
an x ∈ X and r > 0 such that A ⊆ Br[x].

Proof. ( =⇒ ) Let r = sup{d(x, y) : x, y ∈ A} <∞ and let x ∈ A be arbitrary. Then for all
a ∈ A, we necessarily have d(a, x) ≤ r, so a ∈ Br[x]. Therefore A ⊆ Br[x].

( ⇐= ) Let A ⊆ Br[x] for some r > 0 and x ∈ A. Let a, b ∈ A be arbitrary. Notice

d(a, b) ≤ d(a, x) + d(b, x) ≤ r + r = 2r

So necessarily sup{d(x, y) : x, y ∈ A} ≤ 2r <∞.

Proposition: Let (X, d) be a metric space. If (xn) ⊆ X is Cauchy, then (xn) is bounded.
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Proof. Since (xn) is Cauchy, there is an N ∈ N such that d(xn, dm) ≤ 1 for all n,m ≥ N and
so d(xn, xN) ≤ 1 for all n ≥ N . Let

R = max{1, d(x1, xN), . . . , d(xN−1, xN)}

then (xn) ⊆ BR[xN ]. By our above proposition (xn) is bounded.

3.4 Examples in Convergence

Example: Consider the metric space (Q, | · |2) where |2a n
m
|2 = 1

2a
. Let xn = 1−(−2)n

3
. Notice

then ∣∣∣∣xn − 1

3

∣∣∣∣
2

=

∣∣∣∣−(−2)n

3

∣∣∣∣
2

=

∣∣∣∣2n−(−1)n

3

∣∣∣∣
2

=
1

2n
→ 0

so xn → 1
3
. Notice that in (Q, | · |) where | · | is the absolute value, xn is clearly very divergent

since it is unbounded and oscillating.

Example: Consider the Cantor Space (2N, d) where d((xi), (yi)) =
∞∑
i=1

|xi−yi|
2i

. Let

xn = (1, 1, · · · , 1︸ ︷︷ ︸
n times

, 0, 0, . . .)

and let x = (1, 1, 1, . . .). Notice then

d(xn, x) =
∞∑

k=n+1

1

2k
=

1

2n+1

(
1

1− 1
2

)
=

1

2n
→ 0

so xn → x.

Example: Consider the metric space (ℓp, ∥ · ∥p) for 1 ≤ p <∞. Let

xn = (1, 1, · · · , 1︸ ︷︷ ︸
n times

, 0, 0, . . .)

and let x = (1, 1, 1, . . .). Notice then

∥xn − x∥p =
∞∑
i=1

(1− 1)n +
∞∑

i=n+1

(1− 0)p =
∞∑

i=n+1

1 = ∞

and so clearly |xn − x| ̸→ 0, therefore xn ̸→ x. Suppose p = ∞, then

∥xn − x∥∞ = 1

so that ∥xn − x∥∞ ̸→ 0, therefore xn ̸→ x. Moreover, ∥xn − xm∥∞ = 1 for all n ̸= m, so (xn)
is not Cauchy. Hence (xn) diverges.

2 Topology 19 3, Metric Spaces



PMATH 351 Winter 2022: Notes Jacob Schnell

3.5 Completeness

Remark: It is often easier to prove a sequence is Cauchy than convergent. For instance, to
prove convergence, we usually already need to have a pretty good idea of a candidate for the
limit. So when are Cauchy sequences convergent?

Definition. Complete: Let (X, d) be a metric space. A subset A ⊆ X is complete if every
Cauchy sequence (an) ⊆ A converges to a point in A. If X is complete in itself, we call
(X, d) a complete metric space.

Definition. Banach Space: A complete normed vector space is called a Banach space.

Example: From MATH 247 we know (Rn, ∥ · ∥2) is a Banach space.

Example: (0, 1] is not a complete subset of R. For instance xn = 1
n

is Cauchy but not
convergent.

Example: If X is a set and d is the discrete metric on X, then (X, d) is complete.

Proof. Suppose (xn) ⊆ X is a Cauchy sequence in X. Then let ε = 1 and pick an N ∈ N
such that d(xn, xm) < ε = 1 for all n,m ≥ N . Note that the d(a, b) < 1 if and only if a = b,
in which case d(a, b) = 0. So, we have that xn = xm = xN for all n,m ≥ N . Then clearly
for all ε > 0 we have d(xn, x) = 0 < ε for all n ≥ N . So xn → xN as desired.

Example: ℓp is a Banach space for all 1 ≤ p ≤ ∞.

Proof. Suppose p < ∞. Let (ak) ⊆ ℓp be a Cauchy sequence. Say ak = (a
(1)
k , a

(2)
k , . . .) for

each k ∈ N. Let ε > 0 be given, then there is an N ∈ N such that ∥ak − am∥ < ε for all
k,m ≥ N . Fix i ∈ N. Since |a(i)k − a

(i)
m | ≤ ∥ak − am∥p < ε, we see that (a

(i)
k )∞k=1 is a Cauchy

sequence of real numbers. Since R is complete, we have that a(i)k → bi for some bi ∈ R. We
claim then that ak → b = (b1, b2, . . .).

For k,m ≥ N , we see that

M∑
i=1

|a(i)k − a(i)m |p ≤ ∥ak − am∥pp < εp

for every M ∈ N. Taking m→ ∞ we have that

M∑
i=1

|a(i)k − bi|p ≤ εp

for every M ∈ N. Moreover, taking M → ∞ we see that
∞∑
i=1

|a(i)k − bi|p ≤ εp

which means that we exactly have ∥ak − b∥p ≤ ε for all k ≥ N . Notice that aN , aN − b ∈ ℓp

guarantees b ∈ ℓp.
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Suppose p = ∞. Let (an) ⊆ ℓ∞ be Cauchy. Say ak = (a
(1)
k , a

(2)
k , . . .) for each k ∈ N. Let

ε > 0 be given, then there is an N ∈ N such that ∥an − am∥∞ < ε for all k,m ≥ N . Fix
i ∈ N. Then

|a(i)n − a(i)m | ≤ sup{a(i)n − a(i)m : i ∈ N} = ∥an − am∥∞ < ε

We see that (a
(i)
k )∞k=1 is a Cauchy sequence of real numbers. Since R is complete, we have

that a(i)k → bi for some bi ∈ R. We claim then that ak → b = (b1, b2, . . .). Let ε > 0 be given
and N ∈ N such that ∥an − am∥ < ε

2
for all n,m ≥ N . Then for all i ∈ N and n,m ≥ N , we

have
|a(i)n − a(i)m | ≤ ∥an − am∥∞ <

ε

2

So
lim

m→∞
|a(i)n − a(i)m | ≤ ε

2
=⇒ |a(i)n − bi| ≤

ε

2

Since i was arbitrary, we have
∥an − b∥∞ ≤ ε

2
< ε

and
|a(i)k − bi| < ε

for all i ∈ N. Since this holds for all i ∈ N, we have

∥ak − b∥∞ ≤ ε

2
< ε

as desired. Notice that aN , aN − b ∈ ℓ∞ guarantees b ∈ ℓ∞.

Example: Let
C00 := {(xn) ∈ ℓ∞ : ∃N,∀n ≥ N, xn = 0}

be the set of all zero terminated sequences in ℓ∞. Then (C00, ∥ · ∥∞) is not a Banach space.

Proof. Consider (xn) ⊆ C00 given by

xn =

(
1,

1

2
,
1

3
, . . . ,

1

n
, 0, 0, 0, . . .

)
In (ℓ∞, ∥ · ∥∞), we can show that xn → x := (1, 1

2
, 1
3
, . . .). In particular, let ε > 0 and let

N = ⌈1
ε
⌉ ∈ N so that N ≥ 1

ε
. Then for all n ≥ N we have

x− xn =

(
0, 0, 0, . . . , 0,

1

n+ 1
,

1

n+ 2
. . .

)
and so ∥x − xn∥∞ = ∥xn − x∥∞ = sup{ 1

n+i
: i ∈ N} = 1

n+1
. But n + 1 ≥ N ≥ 1

ε
, so

∥x− xn∥∞ = 1
n+1

≤ ε, as desired.

Since xn → x /∈ C00, we have that (xn) is Cauchy (since it is convergent in ℓ∞) but not
convergent in (C00, ∥ · ∥∞) by the uniqueness of limits.
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Example: If p <∞, then

fn(x) =


0 x ∈

[
0, 1− 1

n

]
1 + n(x− 1) x ∈

[
1− 1

n
, 1
]

1 x ∈ [1, 2]

is a Cauchy sequence in (C([0, 2]), ∥ · ∥p) which does not converge. Each function looks like
the constant zero function, then a linear portion (whose slope gets steeper as n → ∞) and
then the constant 1 function.

Week 4 Topology I

4.1 Topological Spaces

Remark. MATH 247 Topology: Let V,W be normed vector spaces. Then

• Open set: A subset U ⊆ V is said to be open if for all x ∈ U , there is an r > 0 such
that Br(x) ⊆ U .

• Closed set: A subset C ⊆ V is said to be open if V \ C is open.

• Union of Open Sets: If {Uα}α∈I are open sets in V , then
⋃
α∈I

Uα is open (note this union

is of any size, including countable and uncountable unions).

• Intersection of Closed Sets: If {Cα}α∈I are closed sets in V , then
⋂
α∈I

Cα is closed (note

this union is of any size, including countable and uncountable unions).

• Finite Intersection of Open Sets: If U1, . . . , Un ⊆ V are open, then U1 ∩ · · · ∩ Un is
open.

• Finite Union of Closed Sets: If C1, . . . , Cn ⊆ V are closed, then C1 ∪ · · · ∪Cn is closed.

• The following are equivalent for f : A → W where A ⊆ V : (1) f is continuous, (2) f
preserves convergence, (3) for all open U ⊆ W , we have f−1(U) is relatively open in
A.

• The following are equivalent for C ⊆ V : (1) C is compact, (2) every sequence (an) ⊆ C
has a convergent subsequence ank

→ a ∈ C, (3) every open cover of C has a finite
subcover. (Recall a cover of C is a collection open sets {Uα}α∈I such that C ⊆

⋃
α∈I

Uα.

A finite subcover is a subset of {Uα}α∈I .)

Notice all of the above common tools in topology can be discussed in terms of open sets.

Definition. Topology: Let X be a set. A topology on X is a collection T ⊆ P(X) such
that
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1. ∅, X ∈ T ,

2. If {Uα}α∈I ⊆ T then
⋃
α∈I

Uα ∈ T ,

3. If U, V ∈ T then U ∩ V ∈ T .

We call (X,T ) a topological space and we call the elements of T the open (sub)sets of X.

Example: Let X = {a, b, c}. Then

T1 = {∅, X}
T2 = P(X)

T3 = {∅, X, {a}, {b}, {a, b}}
T4 = {∅, X, {a, b}}

...

are all topologies on X.

Example. Discrete Topology: Let X be a set. Then T = P(X) is a topology, called the
discrete topology.

Example. Trivial Topology: Let X be a set. Then T = {∅, X} is a topology, called the
trivial or indiscrete topology.

Example. Finite-complement Topology: Let X be a set. Then

T = {A ⊆ X : X \ A = X or X \ A is finite}

is a topology, called the finite-complement topology.

Example. Countable-complement Topology: Let X be a set. Then

T = {A ⊆ X : X \ A = X or X \ A is countable}

is a topology, called the countable-complement topology.

Example. Subspace Topology: Let (X,T ) be a topological space. Let Y ⊆ X. Then
TY = {U ∩ Y : U ∈ T} is a topology, called the subspace topology on Y , relative to (X,T ).

4.2 Metric Topology

Definition. Open Set: Let (X, d) be a metric space. A set U ⊆ X is said to be open if
for all x ∈ U there is an r > 0 such that Br(x) ⊆ U .

Proposition: Let (X, d) be a metric space. The collection Td = {U ⊆ X : U open} is a
topology on X.

Proof. Clearly ∅, X ∈ Td. Let {Uα}α∈I be a collection of open sets in X. Let x ∈
⋃
α∈I

Uα so

that x ∈ Uα for some α ∈ I. Since Uα is open, there is an r > 0 such that Br(x) ⊆ Uα ⊆
⋃
α∈I

,
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so
⋃
α∈I

Uα is open. Let U, V ⊆ X be open and let x ∈ U ∩ V . Then there are r1, r2 > 0 such

that Br1(x) ⊆ U and Br2(x) ⊆ V . Then r = min{r1, r2} is such that Br(x) ⊆ U ∩ V . So
U ∩ V is open.

Definition. Metric Topology: Let (X, d) be a metric space. We call Td (as in the
proposition above) the metric topology induced/generated by d.

Proposition: Let (X, d) be a metric space and let Y ⊆ X. Consider the subspace (Y, d′)
where d′ = d|Y×Y (restriction of d to Y × Y ). Then Td′ is exactly the subspace topology of
Y relative to (X,Td).

Proof. Let U ∈ Td′ . Since U is open, this is equivalent to saying that for all x ∈ U there is
an r(x) > 0 such that {a ∈ Y : d′(x, a) < r(x)} ⊆ U which is further equivalent to saying
Y ∩ {a ∈ X : d(x, a) < r(x)} ⊆ U . This is true if and only if U = Y ∩ (

⋃
x∈U

Br(x)(x)).

However,
⋃
x∈U

Br(x)(x) ∈ Td, so this is true if and only if U is in the subspace topology on Y

relative to (X,T ).

Definition. Hausdorff Topological Spaces: A topological space (X,T ) is said to be
Hausdorff if for all x, y ∈ X with x ̸= y there is a U, V ∈ T such that x ∈ U and y ∈ V but
U ∩ V = ∅.

Definition. Metrizable Topological Space: A topological space (X,T ) is said to be
metrizable if there is a metric d on X such that T = Td.

Proposition: If (X,T ) is metrizable then (X,T ) is Hausdorff.

Proof. Suppose T = Td for some metric d. Let x, y ∈ X with x ̸= y. Let r = d(x, y) > 0
(since x ̸= y). Then let U = Br/2(x) and V = Br/2(y). Clearly x ∈ U and y ∈ V . Suppose
z ∈ U ∩ V . Then d(x, z), d(y, z) < r

2
. But by the triangle inequality

d(x, y) ≤ d(x, z) + d(z, y) <
r

2
+
r

2
= r

a contradiction since d(x, y) = r.

Example: Consider X = {a, b, c} and T = {∅, X, {a}, {b}, {a, b}}. Then T is not metrizable
since T is not Hausdorff. To see this pick c and (for instance) b.

4.3 Closed Sets

Definition. Closed Set: Let (X,T ) be a topological space. We say C ⊆ X is closed if
X \ C is open (i.e., X \ C ∈ T ).

Remark: This also means U ⊆ X is open if and only if X \ U is closed.

Proposition: Let (X,T ) be a topological space.
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1. ∅, X are closed.

2. If {Cα}α∈I are closed then
⋂
α∈I

Cα is closed.

3. If C,D ⊆ X are closed, then C ∪D is closed.

Proof. The proof of all of these statements are immediate from De Morgan’s laws and taking
complements in the definition of a topology.

Proposition: Let (X,T ) be a topological space and let Y ⊆ X. Consider Y with the
subspace topology TY . Then C ⊆ Y is closed if and only if C = Y ∩ D for some closed
D ⊆ X.

Proof. Note
C ⊆ Y is closed

⇐⇒ Y \ C ∈ TY
⇐⇒ Y \ C = Y ∩ U, U ∈ T
⇐⇒ C = Y ∩ (X \ U)︸ ︷︷ ︸

D

where X \ U = D is closed since U ∈ T .

Definition. Limit Point: Let (X,T ) be a topological space and let A ⊆ X. We say x ∈ X
is a limit point of A if for all U ∈ T with x ∈ U , we have U ∩ A ̸= ∅.

Remark: If x ∈ A and x ∈ U ∈ T , then A ∩ U ̸= ∅ since necessarily x ∈ A ∩ U . Therefore
x is a limit point in every set which contains it.

Example: Let X = (R, | · |) and consider its standard metric topology. Let A = {1}∪ (2, 3).
Show 2 and 3 are limit points of A.

Proof. Let U ⊆ X be an open set with 2 ∈ U . Since U is open, there is an r > 0 such
that Br(2) ⊆ X. Then necessarily 2 + r

2
∈ U , but for sufficiently small r we also have

2 + r
2
∈ (2, 3), thus U ∩ (2, 3) ̸= ∅. Since U was an arbitrary open set, 2 is a limit point of

(2, 3) ⊆ A. A similar argument shows 3 is a limit point of A. We may in fact show that all
the limit points of A are {1} ∪ [2, 3].

Proposition: Let (X, d) be a metric space and let A ⊆ X. Then x ∈ X is a limit point of
A if and only if there is a sequence (an) ⊆ A such that an → x.

Proof. ( =⇒ ) Suppose x is a limit point of A. Then B1/n(x) ∩ A ̸= ∅ for all in n ∈ N. In
particular, for every n ∈ N let an ∈ B1/n(x) ∩ A ̸= ∅. Then d(an, x) <

1
n
→ 0 so necessarily

an → x.

( ⇐= ) Suppose there is a sequence (an) ⊆ A with an → x. Let U ⊆ X be an open set with
x ∈ U . Then there is an r > 0 such that Br(x) ⊆ U . Since an → x, there is an aN such that
d(aN , x) < r meaning aN ∈ Br(x) and necessarily aN ∈ A, thus ∅ ≠ Br(x)∩A ⊆ U ∩A.
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Proposition: Let (X,T ) be a topological space and let A ⊆ X. Then A ⊆ X is closed if
and only if A contains all of its limit points.

Proof. ( =⇒ ) Suppose A ⊆ X is closed, then X \ A is open. Then there can be no limit
point x of A such that x ∈ X \ A (i.e., x /∈ A) since (X \ A) ∩ A = ∅.

( ⇐= ) Suppose A ⊆ X contains all its limit points. We claim X \ A is open. To see this,
let x ∈ X \A be arbitrary. Since x /∈ A then x is not a limit point of A, in particular, there
is an open Ux ⊆ X such that x ∈ Ux and Ux ∩A = ∅. Note then that Ux ⊆ X \A. Then by
definition

X \ A ⊆
⋃

x∈X\A

Ux ⊆ X \ A =⇒ X \ A =
⋃

x∈X\A

Ux

is open since arbitrary unions of open sets are open.

Corollary: Let (X, d) be a metric space and let A ⊆ X. Then A is closed if and only if
whenever (an) ⊆ A is such that an → x ∈ X, then x ∈ A.

4.4 Closure and Interior

Definition. Closure: Let (X,T ) be a topological space and let A ⊆ X. Then the closure
of A is

A :=
⋂
A⊆C

C is closed

C

Definition. Interior: Let (X,T ) be a topological space and let A ⊆ X. Then the interior
of A is

Int(A) :=
⋃
U⊆A

U is open

U

Remark: Note that it is obvious that the closure of A is closed and the interior of A is
open. This follows immediately from the fact that intersections of closed sets are closed and
unions of open sets are open.

Remark:

1. A is the smallest closed set containing A.

2. Int(A) is the largest open sets contained in A.

3. Int(A) ⊆ A ⊆ A.

4. A is closed if and only if A = A and A is open if and only if A = Int(A).

Proposition: Let (X,T ) be a topological space and let Y ⊆ X. If A ⊆ Y then A with
respect to (Y, TY ) is Y ∩ A with respect to (X,T ). (Note the definition of closure/interior
depends on the topology in which we are working.)
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Proof.

A =
⋂

{C : A ⊆ C,C is closed w.r.t. TY }

=
⋂

{Y ∩ C : A ⊆ C,C is closed w.r.t. T}

= Y ∩
(⋂

{C : A ⊆ C,C is closed w.r.t. T}
)

= Y ∩ A

Proposition: Let (X,T ) be a topological space and let Y ⊆ X. If A ⊆ Y then Int(A) with
respect to (Y, TY ) is Y ∩ Int(A) with respect to (X,T ).

Proof.

Int(A) =
⋃

{U : U ⊆ A,U is open w.r.t. TY }

=
⋃

{Y ∩ U : U ⊆ A,U is open w.r.t. T}

= Y ∩
(⋃

{U : U ⊆ A,U is open w.r.t. T}
)

= Y ∩ Int(A)

Proposition: Let (X,T ) be a topological space and let A ⊆ X. Then

A = {x ∈ X : x is a limit point of A}

Proof. Let L = {x ∈ X : x is a limit point of A}.

(⊆) Let x ∈ A. Let U ∈ T (U is open) such that x ∈ U . By way of contradiction, suppose
A ∩ U = ∅, so that A ⊆ X \ U . Then necessarily since X \ U is closed, x ∈ A ⊆ X \ U .
However, this is a contradiction since by construction x ∈ U . Therefore, A ∩ U ̸= ∅ and so
x is a limit point of A (i.e., x ∈ L).

(⊇) Suppose x ∈ L. Let C be closed, such that A ⊆ C. By way of contradiction, suppose
x /∈ C, then x ∈ X \ C which is open. Then (X \ C) ∩ A ̸= ∅, however, A ⊆ C and so
(X \ C) ∩ A = ∅, a contradiction. So x ∈ C for any arbitrary closed C such that A ⊆ C.
I.e.,

x ∈
⋂
A⊆C

C is closed

C = C

Definition. Interior Point: Let (X,T ) be a topological space and let A ⊆ X. Then we
say x ∈ A is an interior point of A if there is an open U ∈ T such that x ∈ U ⊆ A.
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Remark: If (X, d) is a metric space, then x ∈ A is an interior point if and only if there is
an r > 0 such that Br(x) ⊆ A.

Proposition: Let (X,T ) be a topological space and let A ⊆ X. Then

Int(A) = {x ∈ A : x is an interior point of A}

Proof. Let I = {x ∈ A : x is an interior point of A}

(⊆) Let x ∈ Int(A) so that there is an open U ∈ T such that x ∈ U ⊆ A. Then by definition
x ∈ I.

(⊇) Let x ∈ I so that there is an open U ∈ T such that x ∈ U ⊆ A. Then necessarily

x ∈ U ⊆
⋃
U⊆A

U is open

U = Int(A)

Example: Let (N, | · |) be the metric space of discussion. Notice B1(1) = {1} is closed.
Further, note that

B1(1) = {1} = {1} = B1(1) ̸= B1[1] = {1, 2}

Similarly, note that B1[1] = {1, 2} = B1/2(1) ∪B1/2)(2) is open and so

Int(B1[1]) = {1, 2} = B1[1] ̸= B1(1) = {1}

Remark: It is relatively easy to show, however, that in an NVS (V, ∥ · ∥) we do in fact have

Br(a) = Br[a] and Int(Br[a]) = Br(a)

Week 5 Continuity

5.1 Continuity

Definition. Continuous: Let (X,T1) and (Y, T2) be topological spaces. We say f : X → Y
is continuous if

f−1(U) := {x ∈ X : f(x) ∈ U} ∈ T1

for all U ∈ T2.

Proposition: Let (X,T1) and (Y, T2) be topological spaces and let f : X → Y . The
following are equivalent

1. f is continuous.

2. f(A) ⊆ f(A) for all A ⊆ X.

3. If C ⊆ Y is closed, then f−1(C) ⊆ X is closed.
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Proof. (1 =⇒ 2) Suppose f is continuous. Let A ⊆ X. We want to show f(A) ⊆ f(A). Let
y ∈ f(A) so that y = f(x) for some x ∈ A. Let U ⊆ Y be open with y ∈ U . Then x ∈ f−1(U)
is open, and since x is a limit point of A there is an a ∈ A with a ∈ f−1(U)∩A ̸= ∅. Therefore
f(a) ∈ f(A) ∩ U ̸= ∅. Since y was arbitrary, y is a limit point of f(A) and so y ∈ f(A).

(2 =⇒ 3) Suppose f(A) ⊆ f(A) for all A ⊆ X. Let C ⊆ Y be closed. Let A = f−1(C).
We want to show A = A (that A is closed). Let x ∈ A. Then

f(x) ∈ f(A) ⊆ f(A) ⊆ C = C

Then clearly x ∈ f−1(C) = A. Since A ∈ A was arbitrary, A = A.

(3 =⇒ 1) Assume f−1(C) for all closed C ⊆ Y . Let U ⊆ Y be open. Then C = Y \ U is
closed and

f−1(C) = f−1(Y ) \ f−1(U) = X \ f−1(U)

is closed. Therefore f−1(U) is open.

Proposition: Let (X, d) and (Y, d′) be metric spaces. Then f : X → Y is continuous if and
only if f(xn) → f(x) whenever (xn) ⊆ X with xn → x.

Proof. ( =⇒ ) Suppose f is continuous. Let (xn) ⊆ X with xn → x ∈ X. Let ε > 0 be
given and consider U = Bε(f(x)). Since x ∈ f−1(U) is open, there is an r > 0 such that
Br(x) ⊆ f−1(U). Since xn → x, there is an N ∈ N such that d(xn, x) < r for all n ≥ N .
Then for all n ≥ N clearly

xn ∈ Br(x) ⊆ f−1(U) =⇒ f(xn) ∈ U = Bε(f(x))

That is for all n ≥ N we have d(f(xn), f(x)) < ε so f(xn) → f(x).

( ⇐= ) Suppose f(xn) → f(x) whenever xn → x. Let A ⊆ X. If x ∈ A then there is a
sequence (an) ⊆ A with an → x. Therefore f(an) → f(x) an so f(x) ∈ f(A). Since x ∈ A
was arbitrary, we have f(A) ⊆ f(A), and therefore f is continuous.

5.2 Bounded Linear Maps

Definition. Bounded: Let V,W be normed vector spaces. Let T : V → W be a linear
transformation. We say T is bounded if

∥T∥op := sup{∥T (x)∥ : ∥x∥ = 1} <∞

Definition. Operator Norm: ∥ · ∥op (as defined above) is a norm on the vector space of
bounded linear maps B(V,W ). We call this norm the operator norm.

Proposition: Let V,W be normed vector spaces, and let T : V → W be linear. Then, T is
continuous if and only if T is bounded.
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Proof. ( =⇒ ) We prove by contrapositive. Suppose T is not bounded. Then for all n ∈ N
there is an xn ∈ V with ∥xn∥ = 1 such that ∥T (xn)∥ ≥ n. Then∥∥∥xn

n

∥∥∥ =
1

n
∥xn∥ =

1

n
→ 0

but ∥∥∥T (xn
n

)∥∥∥ =
1

n
∥T (xn)∥ ≥ 1

n
· n = 1

So T (xn

n
) ̸→ T (0) = 0, and therefore T is not continuous since it is not convergence preserv-

ing.

( ⇐= ) Suppose T is bounded. Let (xn) ⊆ V be such that xn → x ∈ V . If xn − x ̸= 0, then∥∥∥∥ xn − x

∥xn − x∥

∥∥∥∥ = 1

and therefore
1

∥xn − x∥
∥T (xn)− T (x)∥ =

∥∥∥∥T ( xn − x

∥xn − x∥

)∥∥∥∥ ≤ ∥T∥op

this means
∥T (xn)− T (x)∥ ≤ ∥T∥op∥xn − x∥ → 0

by the squeeze theorem since ∥T∥op < ∞ is constant and ∥xn − x∥ → 0 since xn → x.
Therefore T is continuous since T is convergence preserving.

5.3 More Continuity

Definition. Uniform Continuity: Let (X, d) and (Y, d′) be metric spaces. We say f :
X → Y is uniformly continuous if for all ε > 0, there is a δ > 0 such that d′(f(a), f(b)) < ε
whenever a, b ∈ X are such that d(a, b) < δ.

Remark: Notice uniform continuity means that for all choices of ε > 0 we can simultane-
ously show that f is continuous at every point a ∈ X with the same δ for all points.

Definition. Lipschitz: Let (X, d) and (Y, d′) be metric spaces. We say f : X → Y is
Lipschitz if there is an M > 0 with d(f(x), f(y)) ≤Md(x, y) for all x, y ∈ X.

Proposition: Let (X, d) and (Y, d′) be metric spaces. If f : X → Y is Lipschitz then f is
uniformly continuous.

Proof. Let f be such that d(f(x), f(y)) ≤ Md(x, y) for all x, y ∈ X. Let ε > 0. Set δ = ε
M

.
Then whenever x, y ∈ X are such that d(x, y) < δ, we have

d(f(x), f(y)) ≤Md(x, y) < M · ε
M

= ε

Example: Let f : [0, 1] → R given by f(x) =
√
x. Show f is uniformly continuous but not

Lipschitz.
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Proof. Let ε > 0. Let x, y ∈ [0, 1] with |x− y| < δ := ε2. Then

|
√
x−√

y|2 = |
√
x−√

y| · |
√
x−√

y| ≤ |
√
x−√

y| · |
√
x+

√
y| = |x− y| < ε2

so |
√
x−√

y| < ε2, proving f is uniformly continuous.

By way of contradiction, suppose f is Lipschitz so that there is an M > 0 with |
√
a−

√
b| ≤

M |a− b| for all a, b ∈ [0, 1]. Without loss of generality, suppose M > 1 (if it holds for M ≤ 1
it will also hold for M ′ > 1 ≥M). Then since 0, 1

M4 ∈ [0, 1] we have∣∣∣∣ 1√
M4

− 0

∣∣∣∣ ≤M

∣∣∣∣ 1

M4
− 0

∣∣∣∣
1

M2
≤ 1

M3

M2 ≥M3

Since M > 1, this is a contradiction.

5.4 Isomorphisms

Remark: In a very broad sense, in mathematics we say two “objects” are isomorphic if they
are the same “object” where one is just a relabelling of the other. These objects can include
vector spaces, groups, rings, metric spaces, topological spaces, etc. Recall from MATH 146
that vector spaces are isomorphic if there exists an isomorphism (bijection) between them.

Remark. Motivation of Homeomorphisms: Let (X,T1) and (Y, T2) be topological
spaces and let f : X → Y . What does it mean for (X,T1) to be isomorphic to or “the same”
as (Y, T2)? We clearly want f to bijective so that the set Y is a relabelling of the set X.
We also want the open sets to be the same up to relabelling. In particular, whenever U is
open we should have f(U) is open. It is sufficient to impose then that f and f−1 both be
continuous.

To see that having f and f−1 be continuous, notice that if U ⊆ X is open then note that
f(U) = (f−1)−1(U) is open by the continuity of f−1. If V ⊆ Y is open then note that
U = f−1(V ) is open by the continuity of f and V = f(U) since f is bijective.

Definition. Homeomorphism: Let (X,T1) and (Y, T2) be topological spaces. We say
f : X → Y is homeomorphism is f is bijective, f is continuous, and f−1 is continuous. If
such an f exists, we say (X,T1) and (Y, T2) are homeomorphic. Homeomorphisms are the
isomorphisms on the category of topological spaces.

Example: The topological space ({0, 1}, {∅, {0, 1}, {1}}) is homeomorphic to the topological
space ({a, b}, {∅, {a, b}, {b, }}).

Example: Consider f : [0, 2π) → {(x, y) : x2 + y2 = 1} where each is equipped with the
usual norm to induce a topology given by f(θ) = (cos θ, sin θ). Then clearly f is a continuous
bijection, however, these two spaces are not homeomorphic. To see this notice that [0, 2π)
is not compact, while {(x, y) : x2 + y2 = 1} is (more on compactness in week 7).
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Remark. Motivation of Isometric Isomorphisms: Let (X, d) and (Y, d′) be metric
spaces and let f : X → Y . What does it mean for (X, d) to be isomorphic to or “the same”
as (Y, d′)? We again want f to be bijective so that Y is a relabelling of X. But we also want
the metrics to be “the same”. That is we want d′(f(x), f(y)) = d(x, y) for all x, y ∈ X.

Definition. Isometry: Let (X, d) and (Y, d′) be metric spaces. We say f : X → Y is an
isometry if d′(f(x), f(y)) = d(x, y) for all x, y ∈ X.

Definition. Isometric Isomorphism: Let (X, d) and (Y, d′) be metric spaces. We say
f : X → Y is an isometric isomorphism if it is both an isometry and a bijection. In this
case we say (X, d) and (Y, d′) are isometrically isomorphic. Isometric isomorphisms are
isomorphisms on the category of metric spaces.

Proposition: Let (X, d) and (Y, d′) be metric spaces and let f : X → Y be an isometry.
Then f is continuous and injective.

Proof. Since f is an isometry, we can clearly see f is Lipschitz with M = 1. We also see
that f is injective since if f(x) = f(y), then d′(f(x), f(y)) = 0 = d(x, y) and so x = y since
d is a metric.

Proposition: Let (X, d) and (Y, d′) be metric spaces and let f : X → Y . If f is an isometric
isomorphism then f−1 is an isometric isomorphism.

Proof. Let x1, x2 ∈ X and let y1 = f(x1), y2 = f(x2). Then notice that d′(f(x1), f(x2)) =
d(x1, x2) and so d′(y1, y2) = d(f−1(y1), f

−1(y2)). Notice also inverses of bijections are bijec-
tive. Therefore f−1 is an isometric isomorphism.

Proposition: Let (X, d) and (Y, d′) be metric spaces and let f : X → Y . If f is an isometric
isomorphism then f is a homeomorphism between (X,Td) and (Y, Td′).

Proof. By the above propositions, we know both f and f−1 are isometric isomorphisms and
thus are both continuous. So since f is a bijection and f and f−1 are continuous, f is a
homeomorphism.

Example: Consider f : R → R with f(x) = x3. Then f is a homeomorphism but not an
isometric isomorphism. To see this, note for instance that |0 − 2| = 2 but |f(0) − f(2)| =
|0− 8| = 8.

Example: Let B1 = {(a, b) : a, b ∈ R} and B2 = {(a, b] : a, b ∈ R}. Then (R, TB1) and
(R, TB2) are not homeomorphic since (R, TB1) is second-countable, whereas (R, TB2) is not
second-countable.

Example: Notice that ℓ1 and ℓ∞ are not isometrically isomorphic since ℓ1 is separable but
ℓ∞ is not.
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5.5 Urysohn’s Lemma

Definition. Normal Topological Space: Let (X,T ) be a topological space. We say
(X,T ) is normal if for all closed C,D ⊆ X with C ∩D = ∅, there exists U, V ∈ T such that
U ∩ V = ∅ and C ⊆ U and D ⊆ V .

Proposition: Let (X,T ) be a topological space. If (X,T ) is metrizable, then (X,T ) is
normal.

Proof. See A3Q4.

Theorem. Urysohn’s Lemma: Let (X, d) be a metric space and let A,B ⊆ X be closed
with A ∩ B = ∅. Then there exists a continuous f : X → [0, 1] such that f |A = 0 and
f |B = 1.

Proof. Let (X, d) be a metric space. Let A ⊆ X be closed. Define

dA(x) := inf{d(x, a) : a ∈ A}

Remark that if dA(x) = 0, then for all n ∈ N there is a an ∈ A with d(x, an) <
1
n
. Then

an → x and so x ∈ A. That is, dA(x) = 0 if and only if x ∈ A.

Remark that for all x, y ∈ X and any a ∈ A we have

dA(x) ≤ d(x, a) ≤ d(x, y) + d(y, a)
=⇒ dA(x)− d(x, y) ≤ d(y, a)
=⇒ dA(x)− d(x, y) ≤ dA(y)
=⇒ dA(x)− dA(y) ≤ d(x, y)
=⇒ |dA(x)− dA(y)| ≤ d(x, y)

Where the third inequality holds since dA(x) − d(x, y) formed a lower bound on d(y, a) for
an arbitrary a ∈ A and so dA(y) being the greatest lower bound (infimum) must be greater.
We have then that dA : X → R is Lipschitz.

Now let A,B ⊆ X be closed with A ∩B = ∅ as above. We claim that

f(x) =
dA(x)

dA(x) + dB(x)

is as above. It is obvious that if a ∈ A then dA(x) = 0 so f(a) = 0, and so since a was
arbitrary f |A = 0. Conversely if b ∈ B then dB(b) = 0 and so f(b) = dA(b)

dA(b)
= 1, since b was

arbitrary f |B = 1.

5.6 Completions

Definition. Dense: Let (X,T ) be a topological space. We say A ⊆ X is dense in X if
A = X.
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Definition. Completion: Let (X, d) be a metric space. A completion of (X, d) is a
complete metric space (Y, d′) such that X is isometrically isomorphic to a dense subset of Y .

Example: Show R is a completion of Q.

Proof. It is known that Q is dense in R and clearly Q is a dense subset of R which is
isometrically isomorphic to Q. (Under the standard metric.)

Lemma: Let (X, d) be complete. Then A ⊆ X is complete if and only if A is closed.

Proof. ( =⇒ ) Let A ⊆ X be complete. If an → x where (an) ⊆ A and x ∈ X, then (an) is
Cauchy. Since A is complete and limits are unique, x ∈ A. Since A contains its limit points,
A is closed.

( ⇐= ) Let A be closed. If (an) ⊆ A is Cauchy, then (an) ⊆ X is Cauchy. Since X is
complete, an → x ∈ X. Since A is closed and limits are unique, x ∈ A. Since every Cauchy
sequence in A is convergent, A is closed.

Proposition: Let (X, d) be a metric space. Denote

Cb(x) := {f : X → R | f is continuous and bounded}

Define ∥f∥∞ = sup{|f(x)| : x ∈ X}. Then (Cb(X), ∥ · ∥∞) is a Banach space.

Proof. We will prove this fact in a few weeks.

Theorem. Completion Theorem: Every metric space has a completion.

Proof. Let (X, d) be a metric space. Fix a0 ∈ X. Consider φ : X → Cb(x) where φ(a) = fa
where fa(x) = d(x, a) − d(x, a0). Notice fa ∈ Cb(X). To see this, let a ∈ X then for all
x ∈ X

fa(x) = d(x, a)− d(x, a0) ≤ d(x, a0) + d(a0, a)− d(x, a0) = d(a, a0) <∞

Since x was arbitrary sup{f(x) : x ∈ X} <∞, so fa is bounded. To see that fa is continuous,
let a ∈ X and let (xn) ⊆ X be such that xn → x for some x ∈ X. Then

|fa(xn)− fa(x)| = |d(xn, a)− d(xn, a0)− d(x, a) + d(x, a0)|
≤ |d(xn, a)− d(x, a)|+ |d(xn, a0)− d(x, a0)|
≤ |d(xn, x)|+ |d(xn, x)| (*)
= 2d(xn, x) → 0

where (*) holds by the reverse triangle inequality: d(x, y)− d(y, z) ≤ d(x, z) (this is a result
immediate from the triangle inequality). Since fa is convergence preserving, f is continuous.
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Notice for all a, b ∈ X

∥φ(a)− φ(b)∥∞ = sup{|fa(x)− fb(x)| : x ∈ X}
= sup{|d(x, a)− d(x, a0)− d(x, b) + d(x, a0)| : x ∈ X}
= sup{|d(x, a)− d(x, b)| : x ∈ X}

However,
d(x, a) ≤ d(x, b) + d(a, b)

=⇒ d(x, a)− d(x, b) ≤ d(a, b)
=⇒ |d(x, a)− d(x, b)| ≤ d(a, b)
=⇒ ∥φ(a)− φ(b)∥∞ ≤ d(a, b)

Where the third inequality holds since if d(x, a) ≤ d(x, b), swapping a and b would result in
d(x, a) ≥ d(x, b) (and d(a, b) = d(b, a)). Note further that |fa(b)− fb(b)| = d(a, b) and so

∥φ(a)− φ(b)∥ = sup{|fa(x)− fb(x)| : x ∈ X} = d(a, b)

So φ is an isometry. Therefore, X is isometrically isomorphic to φ(X) since isometries are
injective and φ : X → φ(X) is necessarily surjective. Since φ(X) ⊆ Cb(X) is closed and
Cb(X) is a Banach space, φ(X) is complete. Note also that necessarily φ(X) is dense in
φ(X), so (φ(X), ∥ · ∥∞) is a completion for X.

Week 6 Connectedness

6.1 Connectedness

Definition. Connected: Let (X,T ) be a topological space. We say (X,T ) (or X for
short) is connected if there does not exist open, disjoint, non-empty sets U, V ⊆ X such that
X = U ∪ V .

Remark: That is X is connected if you cannot break apart X into two open, disjoint sets.

Notation: Let (X,T ) be a topological space and let A ⊆ X. If we say A is connected, we
meant A is connected with respect to the subspace topology.

Example: Consider the standard topology on Q. We will show Q is not connected. To see
this, consider ((−∞,

√
2) ∩ Q) ∪ ((

√
2,∞) ∩ Q). Each of these sets is open with respect to

the subspace topology.

Example: Let X = R and let T = TB where B = {[a, b) : a < b}. Since we saw that all
open sets in TB are closed, we can separate R = [0, 1) ∪ (R \ [0, 1)). So R is not connected
with respect to TB.

Notation: Many books will say a simultaneously open and closed set is clopen.

Proposition: Let (X,T ) be a topological space. Then X is connected if and only if the
only subsets of X which are both open and closed are X and ∅.
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Proof. ( =⇒ ) Let A ⊆ X be open and closed and also A ̸= X and A ̸= ∅. Then X =
A ∪ (X \ A) which are disjoint, non-empty, and since A is both open and closed, both are
open. Therefore X is not connected. Then by contrapositive the result holds.

( ⇐= ) Let X be not connected. Then there are open, disjoint, non-empty sets U, V such
that X = U ∪ V . Then X \ U = V , so since U open, V is open and closed.

Proposition: Let a < b. Then I = [a, b] ⊆ R is connected. In fact, we may generalize that
every interval in R is connected.

Proof. By way of contradiction, suppose I is not connected, so that there exists open U, V ⊆
R such that I = (U∩I)∪(V ∩I), such that (U∩I)∩(V ∩I) = ∅, and such that U∩I, V ∩I ̸= ∅.
Without loss of generality, suppose a ∈ U ∩ I. Let x = sup{t : [a, t] ⊆ U ∩ I}. We consider
two cases.

Case 1: Suppose x ∈ U . Since U is open, there is an r > 0 such that (x−r, x+r)∩I ⊆ U ∩I.
This contradicts the definition of x, unless x = b in which case V ∩ I = ∅, which is a
contradiction since V ∩ I is non-empty.

Case 2: Suppose x ∈ V . Since V is open, there is an r > 0 such that (x−r, x+r)∩I ⊆ V ∩I.
Then since x− r

2
< x, by definition of x we have [a, x− r

2
] ⊆ U∩I and therefore x− r

2
∈ U∩I.

However, we also clearly have x− r
2
∈ V ∩ I, therefore U ∩ V ̸= ∅, a contradiction.

We conclude I must be connected. Similar proofs extend this result to all intervals in R.

Proposition: If A ⊆ R is connected, then A is an interval.

Proof. We may assume A ̸= ∅. Let a = inf A and b = supA (note a, b ∈ R). By way of
contradiction, suppose there is a a < c < b with c /∈ A. Then picking U = (∞, c) ∩ A and
V = (c,∞)∩A we have U, V are open, disjoint, and non-empty, so that A is not connected.
This is since for all x ∈ A we have x ∈ U = (∞, c) ∩ A or x ∈ V = (c,∞) ∩ A but never
x = c since c /∈ A. This is a contradiction since A is connected.

Proposition: Let (X,T1) and (Y, T2) be topological space and let f : X → Y . If f is
continuous and X is connected, then f(X) is connected. (Note we could also consider the
subspace topology for any A ⊆ X).

Proof. Suppose there are U, V ⊆ Y which are open such that f(X) = (f(X) ∩ U) ∪ (f(x) ∩
V ) where each of f(X) ∩ U and f(X) ∩ V is disjoint. Note this means that X = (X ∩
f−1(U)) ∪ (X ∩ f−1(V )) where f−1(U), f−1(V ) ⊆ X. But then this means we have X =
f−1(U) ∪ f−1(V ). By the continuity of f and the openness of U and V , we have f−1(U)
and f−1(V ) are open. Further, we know f−1(U) and f−1(V ) are disjoint since we can’t have
x ∈ f−1(U) ∩ f−1(V ) which maps to f(x) ∈ U ∩ V = ∅. Since X is connected, assume
without loss of generality that f−1(U) = ∅. Then f(X) ∩ U = ∅ since if u ∈ U then
f−1(u) ∈ f−1(U) = ∅. So f(X) ∩ U = ∅.

2 Topology 36 6, Connectedness



PMATH 351 Winter 2022: Notes Jacob Schnell

Corollary. Intermediate Value Theorem: abbr. IVT. If a, b ∈ R with a ≤ b and
f : [a, b] → R is continuous, then f([a, b]) is an interval.

Corollary. General Intermediate Value Theorem: If (X,T ) is connected and f : X →
R is continuous, then f(X) is an interval.

Proposition: Let (X,T ) be a topological space and let A ⊆ X. If A is connected then A
is connected.

Proof. Let A = (A∩U)∪(A∩V ) where (A∩U) and (A∩V ) are disjoint and where U, V ⊆ X
are open. Then A = (A∩U)∪ (A∩V ). Since (A∩U) and (A∩V ) are disjoint, then (A∩U)
and (A ∩ V ) are disjoint. Since A is connected, suppose without loss of generality, suppose
that A ∩ V = ∅ so that A = A ∩ U .

This means, however, that

A = A ∩ U ⊆ A ∩ U = A ∩ (X \ V )

However, since V is open, A ∩ (X \ V ) is closed. By the smallness of closures, we have
A ⊆ A ∩ (X \ V ). Therefore, A ∩ V = ∅, and so A is connected.

6.2 Path Connectedness

Definition. Path: Let (X,T ) be a topological space and let a, b ∈ X. A path from a to b
is a continuous function f : [0, 1] → X with f(0) = a and f(1) = b.

Example: Intuitively in a space such as R2 this makes a graph (i.e., line) going from a to b.

Definition. Path Connectedness: Let (X,T ) be a topological space. We say X is path
connected if for all a, b ∈ X there is a path in X from a to b.

Proposition: Let (X,T ) be a topological space. IfX is path connected thenX is connected.

Proof. By way of contradiction, suppose X is path connected, but not connected. In partic-
ular, suppose X = U ∪ V where U and V are non-empty, disjoint, open sets. Since U, V are
non-empty, let a ∈ U and b ∈ V so that there is a continuous function f : [0, 1] → X such
that f(0) = a and f(1) = b. Then [0, 1] = f−1(U) ∪ f−1)(V ). By the continuity of f , we
have f−1(U) and f−1(V ) are non-empty, open, and disjoint. However, [0, 1] is connected so
we have a contradiction.

Proposition: Every normed vector space is connected.

Proof. Let V be a normed vector space. Let u, v ∈ V be arbitrary. Then there is a path in
V from u to v given by f(t) : [0, 1] → V where f(t) = tu+ (1− t)v.
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6.3 Connected Components

Remark: The idea is that if a topological space X is not connected, we should be able to
write it as a union of connected pieces, called X’s components. That is, we can partition X
is connected pieces.

Definition. Connected Components: Let (X,T ) be a topological space and let x ∈ X.
Define Cx :=

⋃
{A ⊆ X : x ∈ A and A is connected}. We call Cx the connected component

of x.

Lemma: Let (X,T ) be a topological space. Let Cα ⊆ X be connected where α ∈ I for
some index set I. If

⋂
α∈I

Cα ̸= ∅ then C =
⋃
α∈I

Cα is connected.

Proof. Suppose C = (C ∩ U) ∪ (C ∩ V ) where C ∩ U and C ∩ V are disjoint and U, V ⊆ X
are open. For α ∈ I we have then that Cα = (Cα ∩ U) ∪ (Cα ∩ V ). By the connectedness of
Cα, suppose without loss off generality that Cα∩V = ∅ so that Cα = Cα∩U . Let β ∈ I. We
can’t have then Cβ = Cβ∩V . Because we have

⋂
α∈I

Cα ̸= ∅ but this would imply Cα∩Cβ = ∅.

So we must be able to conclude that C ∩ V = ∅, and therefore that C is connected.

Corollary: Let (X,T ) be a topological space and let x ∈ X. The connected component Cx

is connected.

Proposition: Let (X,T ) be a topological space and let x ∈ X. The connected component
Cx is closed.

Proof. Since Cx is connected, Cx is connected and since x ∈ Cx, we have that Cx ⊆ Cx.
Therefore Cx is closed.

Proposition: Let (X,T ) be a topological space. The connected components of X partition
X.

Proof. Let x, y ∈ X and let Cx, Cy be the corresponding connected components. Suppose
Cx∩Cy ̸= ∅. Then Cx∪Cy is connected. Further, by the largeness of connected components
Cx ⊆ Cx ∪ Cy ⊆ Cy and by the same argument Cy ⊆ Cx.

Remark: Let (X,T ) be a topological space and let x ∈ X. Define

Px =
⋃

{A : x ∈ A ⊆ X A is path connected}

to be the path connected component of x. Let y, z ∈ Px, then we know there is a path from y
to x and a path from x to z, so Px is path connected. Notice the path connected components
partition X. Finally note that for all x ∈ X, we have Px ⊆ Cx since path connected implies
connected.

Example. Topologist’s Sine Curve: Let A = {(x, sin( 1
x
)) : 0 < x ≤ 1} and further let

X = A∪{(0, 0)} ⊆ R2. We claim X is connected. To see this, note that A is path connected
and therefore connected, but since lim

x→0
sin( 1

x
) = 0, we have A = X and so X is connected.
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We also claim X is not path connected. By way of contradiction, suppose there is a continu-
ous f : [0, 1] → X with f(0) = (0, 0) and f(1) = ( 1

π
, 0). Then we can write f(t) = (a(t), b(t)),

where a, b : [0, 1] → R is continuous. By the continuity of a and the Intermediate Value The-
orem there is a 0 < t1 < 1 such that a(t1) = 2

3π
. By a second application of IVT there

is a t2 < t1 such that a(t2) = 2
5π

. By continuing this way we get a decreasing sequence
(tn) ⊆ [0, 1] such that a(tn) = 2

(2n+1)π
. Note since (tn) ⊆ [0, 1] is decreasing, by the mono-

tone convergence theorem we know tn → t ∈ [0, 1]. By continuity we know b(tn) → b(t),
however b(tn) = (−1)n for all n ∈ N which does not converge. Hence we have a contradiction,
the only assumption we made that X is path connected.

Note this also shows that path connected components are not necessarily closed. For instance
we know that (0, 0) is a limit point of A which is not in A and we know A is path connected.

Week 7 Compactness I

7.1 Compactness in Topological Spaces

Remark: Recall some results of compactness

1. (Heine-Borel) A ⊆ Rn is compact if and only if A is closed and bounded.

2. A ⊆ Rn is compact if and only if every open cover of A has a finite sub-cover.

3. A ⊆ Rn is compact if and only if every (an) ⊆ A has a subsequence (ank
) ⊆ (an) with

ank
→ a ∈ A.

4. (Extreme Value Theorem) Let K ⊆ Rn and f : K → R be continuous, then f attains
its maximum and minimum.

5. Continuous functions on compact domains are uniformly continuous.

6. Images of compact sets on continuous functions are compact.

7. If K ⊆ Rn is compact, then C(K) is a Banach space with ∥ · ∥∞.

Definition. Open Cover: Let (X,T ) be a topological space. An open cover of X is a
collection {Uα : α ∈ I} ⊆ T where I is an index set such that X =

⋃
α∈I

Uα.

Definition. Subcover: Let (X,T ) be a topological space. A subcover of a cover {Uα : α ∈
I} ⊆ T is a collection {Uα : α ∈ J} where J ⊆ I and where X =

⋃
α∈J

Uα. If J is finite, we

call this a finite subcover.

Definition. Compactness: Let (X,T ) be a topological space. We say X is compact if
every open cover of X has a finite subcover.

Example: Consider (0, 1] ⊆ with the standard subspace topology. Then (0, 1] =
∞⋃
n=1

( 1
n
, 1]

is an open cover (0, 1] with no finite subcover.
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Example: Consider R with the standard topology. Then notice R =
∞⋃
n=1

(−n, n) is an open

cover of R with no finite subcover.

Example: Let A = {x ∈ ℓ∞ : ∃n ∈ N, x = en} where ei = (0, 0, . . . , 0, 1, 0, 0, . . .) is the

sequence with a 1 in the ith component and 0’s elsewhere. Then A =
∞⋃
n=1

B1(en) is an open

cover of A. Notice for all i, j ∈ N we have ∥ei − ej∥∞ = 1, so no finite subcover contains all
ei.

Lemma. Shortcut Lemma: Note shortcut lemma is not a commonly used name. Let
(X,T ) be a topological space and let Y ⊆ X. Then Y is compact (with respect to TY ) if
and only if whenever Y ⊆

⋃
α∈I

Uα where Uα ⊆ X is open in X then there are α1, . . . , αn ∈ I

such that Y ⊆ Uα1 ∪ · · · ∪Uαn . That is, if every open cover of Y in X has a finite sub-cover.

Proof. Let Y ⊆
⋃
α∈I

Uα this is true if and only if Y =
⋃
α∈I

(Y ∩ Uα). Then if we have that one

can be finitely covered clearly the other can be finitely covered.

Proposition: Let (X,T ) be a compact topological space. If Y ⊆ X is closed then Y is
compact.

Proof. Let Y ⊆
⋃
α∈I

Uα where Uα ∈ X is open. Therefore X = (
⋃
α∈I

Uα)∪ (X \Y ) since X \Y

is open. Since X is compact there is a finite sub-cover for X, i.e., there is α1, . . . , αn such that
X = Uα1 ∪ · · ·∪Uαn ∪ (X \Y ) (note X \Y might not be necessary for this cover). Therefore,
we also have that Y ⊆ Uα1 ∪ · · · ∪ Uαn . So by the shortcut lemma Y is compact.

Proposition: Let (X,T ) be a Hausdorff topological space. If Y ⊆ X is compact, then Y is
closed.

Proof. We will show X \Y is open. Fix x ∈ X \Y . Since X is Hausdorff, for all y ∈ Y there
are open sets x ∈ Uy and y ∈ Vy such that Uy ∩ Vy = ∅. Then clearly Y ⊆

⋃
y∈Y

Vy. And so,

there are y1, . . . , yn such that Y ⊆ Vy1 ∪ · · · ∪ Vyn . Then we know x ∈ Ux := Uy1 ∩ · · · ∩ Uyn

and that Ux is open. We know that Ux ⊆ X \ Y because for all y ∈ Ux ∩ Y we must have
that y ∈ Vyi for some i and also that y ∈ Uyi , a contradiction by our Hausdorff assumption.
Then X \ Y =

⋃
x∈X\Y

Ux, and so X \ Y is open.

Example: Consider X = R and let T = {A ⊆ R : R \ Ais finite} ∪ {∅}. Note the closed
sets are R and all finite sets. Let x, y ∈ X. Let A ⊆ R. Suppose A ⊆

⋃
α∈I

Uα (without loss

of generality suppose Uα ̸= ∅ for all α ∈ I). Take α0 ∈ I. Then R \ α0 is finite. Notice then
we have A \Uα0 is finite. In particular suppose A \Uα0 = {a1, . . . , an}. Then find αi so that
for all 1 ≤ i ≤ n we have ai ∈ Uαi

. So A ⊆ Uα0 ∪ Uα1 ∪ · · · ∪ Uαn .

Proposition: Let (X,T1) and (Y, T2) be topological spaces. Let f : X → Y be continuous.
If X is compact then f(X) is compact.
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Proof. Let f(X) ⊆
⋃
α∈I

Vα. Since f is compact, X ⊆
⋃
α∈I

f−1(Vα) where each f−1(Vα) is open.

Since X is continuous X ⊆ f−1(Vα1)∪ · · · ∪ f−1(Vαn). Therefore f(X) ⊆ Vα1 ∪ · · · ∪Vαn .

Proposition: Let (X,T1) be a compact topological space. Let (Y, T2) be a Hausdorff
topological space. Let f : X → Y be bijective and continuous. Then f is a homeomorphism.
(I.e. f−1 is continuous.)

Proof. We want to show f−1 is continuous. Let C ⊆ X be closed. Since C is closed, it
is compact. Then (f−1)−1(C) = f(C) is compact. Since f(C) ⊆ Y is compact and Y is
Hausdorff, we know f(C) is closed.

Proposition. Generalized Nested Intervals: Let (X,T ) be a compact topological space.
Let C1 ⊇ C2 ⊇ · · · be closed and non-empty. Then C =

⋂
n∈N

Cn ̸= ∅.

Proof. By way of contradiction, suppose C = ∅ so that X \C = X. However, X = X \C =⋃
n∈N

(X \ Cn) where each X \ Cn is open. Then there are n1 < n2 < · · · < nm so that

X = (X \ Cn1) ∪ · · · ∪ (X \ Cnm) = X \ Cnm

So Cnm = ∅, a contradiction since we assumed each Cn was non-empty.

7.2 Compactness in Metric Spaces

Definition. Totally Bounded: Let (X, d) be a metric space. We say X is totally bounded
if for all ε > 0 there are finitely a1, . . . , an ∈ X such that X = Bε(a1) ∪ · · · ∪Bε(an).

Example: Let X = {x ∈ ℓ∞ : ∥x∥∞ = 1}. Then X is clearly bounded, but is not totally
bounded. In particular, let ε = 1. Then any Bε(ai) can only contain a single ei and therefore
there cannot be a finite union of balls which covers X.

Definition. Subsequence: A subsequence of a sequence (an) ⊆ A is a sequence of the
form (ank

)∞k=1 where n1 < n2 < · · · .

Lemma: Let (X, d) be a metric space. Then X is totally bounded if and only if every
sequence in X has a Cauchy subsequence.

Proof. ( =⇒ ) Suppose X is totally bounded. Let (xn) ⊆ X. Since X is totally bounded,
there is a b1 ∈ X such that T1 := {n : xn ∈ B1(b1)} is infinite. Since (xn) is infinite and by
the total boundedness of X there are finitely many sets which cover X, so such a set must
exist. Similarly, there is a b2 ∈ X such that T2 := {n ∈ T1 : xn ∈ B1/2(b2)}, this is again
since T1 is infinite. Continuing, we may pick n1 < n2 < · · · such that xnk

∈ B1/k(bk). For
k > ℓ we have that xnk

, xnℓ
∈ B1/ℓ(Bℓ) since Tk ⊆ Tℓ. Then

d(xnk
, xnℓ

) ≤ d(xnk
, bℓ) + d(bℓ, xnℓ

) ≤ 1

ℓ
+

1

ℓ
=

2

ℓ
→ 0
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( ⇐= ) Suppose by way of contrapositive X is not totally bounded. Then ∃ε > 0 such
that X =

⋃
x∈X

Bε(x) has no finite subcover (since otherwise X would be totally bounded

by definition). Fix x1 ∈ X. Then there is an x2 /∈ Bε(x1), as otherwise Bε(x1) is a finite
subcover. There is again an x3 /∈ Bε(x1) ∪ Bε(x2) as otherwise Bε(x1) ∪ Bε(x2) is a finite
subcover. Continuing infinitely we have (xn) ⊆ X such that d(xn, xm) ≥ ε for all n ̸= m.
Then (xn) cannot have any Cauchy subsequence.

Remark: Recall from MATH 247 we proved that a NVS V is compact if and only if every
sequence has a convergent subsequence.

Example: Show that if X is totally bounded then X separable. For all n ∈ N we may write
X = B1/n(a

(n)
1 ) ∪ · · · ∪B1/n(a

(n)
kn

). Then D := {a(j)i } is a countable dense subset of X.

Definition. Sequentially Compact: Let (X, d) be a metric space. We say X is sequen-
tially compact if and only if every sequence in X has a convergent subsequence.

Lemma. Lebesgue Number Lemma: Let (X, d) be a sequentially compact metric space.
Let X =

⋃
α∈I

Uα be an open cover. Then there is an R > 0 (called the Lebesgue number)

such that for all x ∈ X, BR(x) ⊆ Uα for some α ∈ I.

Proof. By way of contradiction, suppose no such R exists. In particular, for all n ∈ N, there
is an an ∈ X such that for all α ∈ I then B1/n(an) ̸⊆ Uα. By the sequential compactness
of X there is a subsequence with ank

→ a ∈ X. Say a ∈ Uα0 . Then for a sufficiently large
N , B1/N(a) ⊆ Uα0 (since Uα0 is open). Then for sufficiently large k, we have B1/nk

(ank
) ⊆

B1/N(a) ⊆ Uα0 by the convergence of ank
. This is a contradiction by our assumption.

Theorem. Characterization Theorem of Compactness: Let (X, d) be a metric space.
The following are equivalent:

1. X is sequentially compact,

2. X is complete and totally bounded,

3. X is compact.

Proof. (1 ⇐⇒ 2) Note X is totally bounded if and only if every sequence has a Cauchy
subsequence and X is sequentially compact if and only if every subsequence has a convergent
subsequence. These are equivalent where X is complete.

(1 =⇒ 3) Let X =
⋃
α∈I

Uα be an open cover. Let R be the Lebesgue number for this open

cover. Since X is totally bounded (by 2), we may say X = BR(x1) ∪ · · · ∪ BR(xn). But for
all xi, there is an αi ∈ I such that BR(xi) ⊆ Uαi

, so we may write X ⊆ Uα1 ∪ · · · ∪ Uαn .

(3 =⇒ 1) Let (xn) ⊆ X. For all n ∈ N, define Cn := {xk : k ≥ n}. Since we know Cn

is closed, we know it is compact. By the generalized nested intervals, we know
⋂
n∈N

Cn ̸= ∅.

Take x ∈
⋂
n∈N

Cn. We may then find n1 such that d(xn1 , x) < 1. We may also find n2 > n1
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such that d(xn2 , x) <
1
2
. We can repeatedly do this to get a subsequence (xnk

)∞k=1 where
xnk

→ x. Note that we know this is the case because x is as close as we may want to all tail
ends our sequence.

Proposition: Let (X, d) and (Y, d′) be metric spaces. Let f : X → Y . If X is compact and
f is continuous, then f is uniformly continuous.

Proof. By way of contradiction, suppose f is not uniformly continuous. In particular, there
is an ε > 0 and sequences (an), (bn) ⊆ X such that d(an, bn) < 1

n
but d′(f(an), f(bn)) ≥ ε

since no 1
n

for n ∈ N is a valid choice of δ. Since X is compact, say ank
→ a ∈ X. Then by

the triangle inequality
d(bnk

, a) ≤ d(bnk
, ank

) + d(ank
, a) → 0

so bnk
→ a. But by the continuity of f we have f(ank

) → f(a) and f(bnk
) → f(a). But by

our assumption we said that d′(f(an), f(bn)) ≥ ε for all n ∈ N, a contradiction.

Week 8 Compactness II

8.1 Compactness in Rn

Lemma: Let a < b ∈ R. Then [a, b] is totally bounded.

Proof. Let ε > 0. Let n be such that b−a
n
< ε. Then let xi = a+ b−a

n
· i for 0 ≤ i ≤ n. Then

[a, b] ⊆
n⋃

i=0

Bε(xi).

Note technically we need [a, b] =
n⋃

i=0

Bε(xi), but we can just intersect each Bε(xi) with [a, b]

to get the desired result. In general Y ⊆
n⋃

i=0

Bε(xi) if and only if Y =
n⋃

i=0

(Y ∩Bε(xi)).

Remark: We may similarly show [a, b]n ⊆ Rn is totally bounded.

Remark: Note that A ⊆ Rn is bounded if and only if A ⊆ [−R,R]n if and only if A is
totally bounded.

Theorem. Heine-Borel Theorem: A ⊆ Rn is compact if and only if A is closed and
bounded.

Proof. Since Rn is complete, A is closed if and only if A is complete (since closed subsets of
complete spaces are complete). By our remark we also have that A is bounded if and only
if it is totally bounded. But we know A is complete and totally bounded if and only if it is
compact.

Theorem. Extreme Value Theorem: Abbr. EVT. If (X, d) is a compact metric space
and f : X → R is continuous, Then f attains its max and minimum on X.
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Proof. Since f is continuous, f(X) is compact, and so f(X) is closed and bounded. Let
m = inf f(x) and M = sup f(x). Then for all ε > 0 there is an f(x1) < m+ ε (since m+ ε is
not a greatest lower bound) and an f(x2) > M − ε (since M − ε is not a least upper bound).
Then for any ε > 0 with |f(x1) −m| < ε and |f(x2) −M | < ε. We could form sequences
(an), (bn) such that an → x1 and bn → x2. So we know that m,M ∈ f(X) = f(X), as
desired.

8.2 Finite Dimensional Normed Vector Spaces

Remark: Let V be a normed vector space. Recall from A%, two norms ∥ · ∥a and ∥ · ∥b on
V are strongly-equivalent if and only if there are C,D > 0 such that

C∥x∥a ≤ ∥x∥b ≤ D∥x∥a

for all x ∈ V .

Theorem: Let V be a finite dimensional normed vector space. Any two norms on V are
strongly-equivalent.

Proof. Assume V is a vector space over R. Let {b1, b2, . . . , bn} be a basis for V . Note since V
is n-dimensional, it is isomorphic to Rn (i.e., there is an invertible linear map T : V → Rn).

Recall any v ∈ V may be uniquely written in the form v =
n∑

i=1

cibi for some c1, . . . , cn ∈ R.

Define

∥v∥2 :=

(
n∑

i=1

|ci|2
)1/2

= ∥T (v)∥2

is a norm on V for some T : V → Rn such that T (bi)ei for all 1 ≤ i ≤ n. Moreover, we have
that (V, ∥ · ∥2) is isometrically isomorphic to (Rn, ∥ · ∥2). Let ∥ · ∥ be an arbitrary norm on
V . We have then

∥v∥
TI

≤
n∑

i=1

|ci| · ∥bi∥
CS

≤

(
n∑

i=1

|ci|2
)1/2

·

(
n∑

i=1

∥bi∥2
)1/2

︸ ︷︷ ︸
D

= D∥v∥2

by the triangle inequality and the Cauchy-Schwartz inequality (note we can view (|c1|, . . . , |cn|)
and (∥b1∥, . . . , ∥bn∥) as vectors in Rn, hence why we can view the sum as a dot product).
Consider f : (V, ∥ · ∥2) → R where f(x) = ∥x∥. Notice f is defined on V equipped with ∥ · ∥2
but is giving ∥x∥ (different norms). Then

|f(x)− f(y)| =
∣∣∥x∥ − ∥y∥

∣∣ ≤ ∥x− y∥ ≤ D∥x− y∥2

by the reverse triangle inequality. So f is Lipschitz and therefore continuous. Let S = {v ∈
V : ∥v∥2 = 1} be the unit circle. Then we know S is closed and bounded in (V, ∥ · ∥2). But
since V is isometrically isomorphic to Rn, we have by Heine-Borel that S is compact. Then
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by the extreme value theorem, f |S : S → R achieves its minimum. In particular, there is a
v0 ∈ S (e.g., ∥v0∥2 = 1) such that

∥v0∥ = min f(S) = min{∥x∥ : ∥x∥2 = 1} =: C

(Note we know v0 ̸= 0 since ∥v0∥2 = 1.) For any 0 ̸= v ∈ V ,∥∥∥∥ v

∥v∥2

∥∥∥∥ ≥ C

since v
∥v∥2 is a vector with norm 1 and we found above that ∥u∥ ≥ C for all vectors with

∥u∥2 = 1. Then ∥v∥ ≥ C∥v∥2, as desired.

Remark: Suppose V is a finite dimensional normed vector space over R with norm ∥ · ∥.
We know that

C∥v∥2 ≤ ∥v∥ ≤ D∥v∥2
Now consider

f : (V, ∥ · ∥2) → (V, ∥ · ∥) v 7→ v

Clearly f is invertible and therefore a bijection. We also have

∥f(v)− f(w)∥ = ∥v − w∥ ≤ D∥v − w∥2

so f is Lipschitz. We can similarly show f−1 is Lipschitz. So (V, ∥ · ∥) is homeomorphic to
(V, ∥ · ∥2). We also saw in the above proof that (V, ∥ · ∥) is homeomorphic to Rn. That is,
every finite dimensional normed vector space over R is homeomorphic to Rn.

8.3 The Cantor Set

Definition. Cantor Set: Let C0 = [0, 1]. Let C1 = [0, 1
3
] ∪ [2

3
, 1]. Let C2 = [0, 1

9
] ∪ [2

9
, 1
3
] ∪

[2
3
, 7
9
] ∪ [8

9
, 1]. In general, for each Ci we remove the open middle third of each set in the

union.

Let C =
∞⋂
n=1

Cn be the Cantor set.

Remark: Note that each Ci is closed because its the finite union of closed sets. Since C is
the infinite intersection of these sets, C is closed. We also know that C is non-empty, as for
instance 0, 1 ∈ C. Since C ⊆ R is closed and bounded, C is compact.

Remark: The Cantor set contains no non-empty open intervals. In particular, no matter
what open interval U we pick, we can find a Cn such that U ̸⊆ Cn. This means Int(C) = ∅,
or otherwise we say C is nowhere dense.

Remark: For all x ∈ C, the connected component Cx = {x}. We say that C is totally
disconnected.

Notation: Think of the number 0 as left, the number 2 as right. We can also write C1 as

C1 = [0, 1
3
]︸︷︷︸

I0

∪ [2
3
, 1]︸︷︷︸
I2

= I0 ∪ I2
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we can do this also for C2:

C2 = [0, 1
9
]︸︷︷︸

I00

∪ [2
9
, 1
3
]︸ ︷︷ ︸

I02

∪ [2
3
, 7
9
]︸ ︷︷ ︸

I20

∪ [8
9
, 1]︸︷︷︸
I22

In general, when constructing Cn+1 from Cn, for each set

Ia1a2···an ⊆ Cn

we use the set
Ia1a2···an0 ∪ Ia1a2···an2 ⊆ Cn+1

Remark: We can show that Ia1···an = [[0.a1a2 · · · an]3, [0.a1a2 · · · an]3+ 1
3n
] where [0.a1a2 · · · an]

is base three number with decimals points a1a2 · · · an. Then

C =
⋂
n∈N

[
[0.a1a2 · · · an]3, [0.a1a2 · · · an]3 +

1

3n

]
= {[0.a1a2 · · · ]3 : ai ∈ {0, 2}}

So there is a bijection between C and the set of sequences of 0’s and 2’s. In particular, there
is a bijection between C and the sequence of 0’s and 1’s. Therefore |C| = |2N| = c. So as a
topological space the Cantor set is small but as a set it is large.

Theorem: If (X, d) is compact, then there is a continuous surjection φ : C → X, where C
is the Cantor set.

Week 9 Arzela-Ascoli Theorem

9.1 Uniform Convergence

Definition. Function Convergence: Let (X, d) and (Y, d′) be metric spaces. Let fn :
X → Y be a sequences of functions.

1. We say (fn) converges to f : X → Y pointwise if fn(x) → f(x) for all x ∈ X.

2. We say (fn) converges to f : X → Y uniformly if for all ε > 0 there is an N ∈ N such
that for all n ≥ N we have that ∥fn − f∥∞ := sup{d′(fn(x), f(x)) : x ∈ X} < ε.

Remark. Uniform Norm: The function ∥f∥∞ = sup{|f(x)| : x ∈ X} is called the
uniform norm, but note this is not necessarily an actual norm. E.g., there is no guarantee
that ∥f∥∞ <∞.

Remark:

1. Suppose fn → f uniformly. Then for all ε > 0 there is an N ∈ N such that for all
x ∈ X we have that d′(fn(x), f(x)) ≤ ∥fn − f∥∞ < ε. Therefore, fn → f pointwise
and given ε > 0 we can find an N that proves fn(x) → f(x) for all x (uniformly) at
the same time.
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2. Recall
Cb(X) = {f : X → R | f is bounded and continuous}

where ∥f∥∞ = sup{|f(x)| : x ∈ X}. Then (Cb(X), ∥ · ∥∞) is a normed vector space
where ∥ · ∥∞ is the uniform norm. Note this is a well defined norm due to the bound-
edness of functions in Cb(X). Therefore, we see that fn → f uniformly if and only if
fn → f in (Cb(X), ∥ · ∥∞).

Proposition: Let (X, d) and (Y, d′) be metric spaces. Let fn : X → Y be a sequence of
continuous functions. Then

1. If fn → f uniformly, then f is also continuous.

2. If (fn) ⊆ Cb(X) and fn → f uniformly, then f ∈ Cb(X).

Proof. (1) Let (xn) ⊆ X with xn → x ∈ X. We claim that f(xn) → f(x) and therefore that
f is continuous. Let ε > 0. Since fn → f , there is an N ∈ N such that ∥fN − f∥∞ < ε

3
.

Therefore, since fN is continuous, there is an M ∈ N such that d′(fN(xn), fN(x)) < ε
3

for all
n ≥M . So, by the triangle inequality

d′(f(xn), f(x)) ≤ d′(f(xn), fN(xn)) + d′(fN(xn), fN(x)) + d′(fN(x), f(x))

≤ ∥f − fN∥∞ + d′(fN(xn), fN(x)) + ∥fN − f∥∞
<
ε

3
+
ε

3
+
ε

3
= ε

(2) If (fn) ⊆ Cb(x) and fn → f uniformly, then by (1) f is continuous. Recall since fn → f
uniformly there is an N ∈ N such that ∥fN − f∥∞ < 1. In particular we have that

∥f∥∞ ≤ ∥f − fN∥∞︸ ︷︷ ︸
<1

+ ∥fN∥∞︸ ︷︷ ︸
<∞

<∞

Example: Let fn : [0, 1] → R be given by fn(x) = xn. Let f : [0, 1] → R

f(x) =

{
0 if x ∈ [0, 1)

1 otherwise

Then fn → f pointwise, but each fn is continuous whereas f is not.

Proposition: Let (X, d) be a metric space. Then (Cb(x), ∥ · ∥∞) is a Banach space.

Proof. Let (fn) ⊆ Cb(X) be Cauchy. Let ε > 0. Then there is an N ∈ N such that
∥fn − fm∥∞ < ε for all n,m ≥ N . In particular, for all x ∈ X and n,m ≥ N we have that
|fn(x)− fm(x)| ≤ ∥fn − fm∥∞ < ε. Therefore, (fn(x))∞n=1 is Cauchy, but since R is complete
this implies there is an f(x) ∈ R such that fn(x) → f(x). Therefore, we may construct a
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function f : X → R such that fn → f pointwise (picking the function values to the be limit
point f(x)).

Since limits are unique, we know that if fn → f uniformly, it must be the f given above.
For n ≥ N we have that

|fn(x)− f(x)| ≤ ∥fn − f∥∞ = lim
m→∞

∥fn − fm∥∞ ≤ ε

(since ∥fn− fm∥ < ε for n,m ≥ N). Since x ∈ X was arbitrary, we have that ∥fn− f∥∞ ≤ ε
and so fn → f uniformly. Therefore, by our previous result fn → f ∈ Cb(X).

Remark: Recall this proposition is something we called a fact in the proof for the completion
theorem (module 5.6).

Remark: If (X, d) is a compact metric space, then Cb(X) = C(X) where C(X) is the set
of continuous functions from X to R.

9.2 Compactness in C(X)

Example: Let A = {fn(x) = xn : n ∈ N} ⊆ C([0, 1]). For all n ∈ N, we have that
∥fn∥∞ = 1. Therefore we see that A is bounded. We claim A is closed. To see this, let
(gn) ⊆ A be convergent. We will show gn → g ∈ C([0, 1]). Note we have for all n that
gn = fnk

for some k ∈ N (e.g., gn ∈ A).

Consider two cases. Suppose there is an m ∈ N such that gn = fm for infinitely many gn,
then (gn) has a subsequence (fm, fm, fm, . . .). Since subsequences and sequences must share
limits, and clearly fm → fm then gn → fm ∈ A.

Otherwise, there is a subsequence of (gn) which is a subsequence of (fn) as to have infinitely
many different fm terms in (gn), we need eventually that m→ ∞. Therefore, since

fn → f =

{
0 if x ∈ [0, 1)

1 otherwise

Then again since subsequences share limits with their sequences, every subsequence of (fn)
has fn → f pointwise. Therefore, gn → f pointwise. But recall we mentioned that the
convergence fn → f is pointwise but not uniform, therefore gn → f pointwise but not
uniformly. In particular, this means gn ̸→ f in C([0, 1]).

Note also that A is not compact. To see this, note that (fn) has no convergent subsequence,
since again such a subsequence would need to converge to f which is not possible. So, despite
[0, 1] being compact by Heine-Borel, C([0, 1]) is not.

Remark: Since C(X) is complete, K ⊆ C(X) is compact if and only if K is complete and
totally bounded. Since C(X) is complete, K is compact if and only if it closed and totally
bounded.

Remark. Investigation of Compact Subsets of C(X): We want to try and remove
the condition that K ⊆ C(X) needs to be totally bounded to be compact. In particular, we
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want to find some property such that K is compact if and only if it closed, bounded, and
satisfies our property.

Suppose K is compact. Let ε > 0. Since K is totally bounded then there are f1, . . . , fn ∈ K
such that K ⊆ Bε(f1) ∪ · · · ∪ Bε(fn). Since each fi ∈ C(X), it is uniformly continuous. So
for all 1 ≤ i ≤ n there is a δi > 0 such that if a, b ∈ X are such that d(a, b) < δi then
|fi(a) − fi(b)| < ε. Let δ = min{δ1, . . . , δn}. Let f ∈ K be arbitrary. Let a, b ∈ X with
d(a, b) < δ. Then since f ∈ K and K ⊆ Bε(f1) ∪ · · · ∪ Bε(fn) there is an fi such that
∥f − fi∥∞ < ε and so

|f(a)− f(b)| ≤ |f(a)− fi(a)|+ |fi(a)− fi(b)|︸ ︷︷ ︸
<ε

+|fi(b)− f(b)| ≤ 2∥f − fi∥∞ + ε < 3ε

So for all f ∈ K we have shown f is uniformly continuous. Furthermore, we proved so
uniformly, that is for all ε > 0 there is a δ > 0 which proves that f is uniformly continuous
for all f ∈ K.

Definition. Equicontinuous: Let (X, d) be a compact metric space. We say A ⊆ C(X)
is equicontinuous if for all ε > 0 there is a δ > 0 such that for all f ∈ A we have that

d(a, b) < δ =⇒ |f(a)− f(b)| < ε

Proposition: Let (X, d) be a compact metric space. If K ⊆ C(X) is compact, then K is
equicontinuous.

Proof. See investigation above.

Theorem. Arzela-Ascoli Theorem: If (X, d) is a compact metric space, then K ⊆ C(X)
is compact if and only if K is closed, bounded, and equicontinuous.

Proof. ( =⇒ ) This follows from our above proposition and an earlier remark.

( ⇐= ) Suppose K ⊆ C(X) is closed, bounded, and equicontinuous. Note that since K is
closed and C(X) is complete, K is complete. It remains to show that K is totally bounded.

Let ε > 0 be given. Let δ > 0 be so that

d(a, b) < δ =⇒ |f(a)− f(b)| < ε

4

as per the equicontinuity of K. Since X is compact and therefore totally bounded, there are
x1, . . . , xn ∈ X such that X = Bδ(x1) ∪ · · · ∪Bδ(xn). Consider

T : C(X) → (Rn, ∥ · ∥∞) f 7→ (f(x1), f(x2), . . . , f(xn))

Note then that

∥T (f)∥∞ = max{|f(x1)|, . . . , |f(xn)|} ≤ sup{|f(x)| : x ∈ X} = ∥f∥∞

Since K is bounded, by definition ∥f∥∞ is bounded for all f ∈ K and therefore T (K) is
bounded. This means that T (K) ⊆ Rn is also bounded, and therefore since it is closed,
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it compact by Heine-Borel. Therefore, T (K) is also totally bounded and so there are
f1, f2, . . . , fm ∈ K such that

T (K) ⊆ Bε/4(T (f1)) ∪ · · · ∪Bε/4(T (fm))

Note this follows since for all a ∈ T (K), there is a T (f) ∈ T (K) which is arbitrarily close
to a. Let f ∈ K be arbitrary. Then there is a j such that ∥T (f) − T (fj)∥∞ < ε

4
since

T (f) ∈ T (K) and we saw T (K) is totally bounded. Let y ∈ X be arbitrary. Then since X
is totally bounded there is an i with d(xi, y) < δ.

Notice that since d(xi, y) < δ, we have |f(y) − f(xi)| < ε
4

and |fj(y) − fj(xi)| < ε
4
. Notice

also that

|f(xi)− fj(xi)| ≤ max{|f(x1)− fj(x1)|, . . . , |f(xn)− fj(xn)|}

= ∥T (f)− T (fj)∥∞ <
ε

4

Therefore,

|f(y)− fj(y)| ≤ |f(y)− f(xi)|+ |f(xi)− fj(xi)|+ |fj(xi)− fj(y)|

<
ε

4
+
ε

4
+
ε

4
=

3ε

4

Therefore since y ∈ X was arbitrary

∥f − fj∥∞ = sup{|f(y)− fj(y)| : y ∈ X} ≤ 3ε

4
< ε

Therefore since f ∈ K was arbitrary, we have that K ⊆ Bε(f1) ∪ · · · ∪ Bε(fm). So K is
totally bounded, and as remarked previously K is complete, thereby showing K is compact,
as desired.

Example: Fix M > 0. Let K = {f ∈ C([0, 1]) : ∀x, y|f(x) − f(y)| ≤ M |x − y|}. That is,
K is the set of all C([0, 1]) with the same Lipschitz constant M . Notice, however, K is not
bounded as it is unbounded.

Fix L > 0. Let K ′ = {f ∈ C([0, 1]) : ∀x, y|f(x) − f(y)| ≤ M |x − y|, |f(0)| ≤ L}. We show
K is compact.

(Equicontinuous) Let ε > 0. Let δ = ε
M

. If f ∈ K and x, y ∈ [0, 1] with |x− y| < δ then

|f(x)− f(y)| ≤M |x− y| < M · ε
M

= ε

(Bounded) If x ∈ [0, 1] then by the reverse triangle inequality,

|f(x)| − |f(0)| ≤ |f(x)− f(0)| ≤M |x− 0| ≤M

so |f(x)| ≤ L+M since |f(0)| ≤ L. Therefore, for f ∈ K we have ∥f∥∞ ≤ L+M .
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(Closed) Let (fn) ⊆ K such that fn → f ∈ C([0, 1]) uniformly. So fn(0) → f(0). Then
|fn(0)| ≤ L for all n ∈ N we necessarily also have |f(0)| ≤ L. For x, y ∈ [0, 1] and n ∈ N we
have that

|fn(x)− fn(y)| ≤M |x− y|
|f(x)− f(y)| ≤M |x− y| Taking n→ ∞

Note this follows since limits preserve order. We can see then that f ∈ K, so K is closed.

Week 10 Baire Category Theorem

10.1 First and Second Category

Definition. Fσ Set: Let (X, d) be a metric space. We say A ⊆ X is a Fσ set if A =
∞⋃
n=1

Cn,

where Cn ⊆ X is closed.

Definition. Gδ Set: Let (X, d) be a metric space. We say A ⊆ X is a Gδ set if A =
∞⋂
n=1

Un,

where Un ⊆ X is open.

Note: Notice that we can see a set A ⊆ X is Fσ if and only if its complement X \ A is Gδ

Definition. Nowhere Dense Set: Let (X, d) be a metric space. We say A ⊆ X is nowhere
dense if int(A) = ∅.

Note: Notice this means that a closed A ⊆ X is nowhere dense if and only if its interior is
empty.

Definition. First Category: Let (X, d) be a metric space. We say A ⊆ X is of first

category if A =
∞⋃
n=1

An, where An ⊆ X is nowhere dense.

Definition. Second Category: Let (X, d) be a metric space. If A ⊆ X is not first
category, we say it is of second category in X.

Definition. Residual Set: Let (X, d) be a metric space. We say A ⊆ X is residual if
X \ A is of first category.

Example: Consider A = [0, 1). We may write this as A =
∞⋃
n=1

[0, 1 − 1
n
], therefore A is Fσ.

However, we may also write this as A =
∞⋂
n=1

(− 1
n
, 1), therefore A is Gδ.

Example: Let C ⊆ X be closed. Let Un =
⋃
x∈C

B1/n(x) so that Un is open. Prove that

C =
∞⋂
n=1

Un.

Proof. Clearly, C ⊆
∞⋂
n=1

Un since each x ∈ C is in Un for all n ∈ N. Let x ∈
∞⋂
n=1

Un. So there
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is a cn ∈ C such that d(x, cn) < 1
n
. We see then that cn → x, so x ∈ C.

Example: Let C be the cantor set. Recall C is closed and notice int(C) = ∅.

Example: Clearly Q =
⋃
q∈Q

{q}. Since {q} is nowhere dense for all q ∈ Q, we have that Q is

of first category. Notice then the irrationals R \Q are thus residual.

Remark: Let (X, d) be a metric space and let A ⊆ X. Recall from 247 that X \ A =
X \ Int(A) and Int(X \ A) = X \ A.

Suppose A is nowhere dense in X. Consider X \ A = X \ Int(A) = X \ ∅ = X. So X \ A is
dense in X.

Remark: (Idea around first category sets) First category sets are in a sense “topologically
thin” in that they are the union of nowhere dense sets. Residual sets are therefore “topolog-
ically fat” and very big.

Theorem. Baire Category Theorem: Let (X, d) be a complete metric space. Let
Un ⊆ X be open and dense in X for n ∈ N. Then

⋂
n∈N

Un is dense in X.

Proof. Let x ∈ X. Let ε > 0 be given. We may find x1 ∈ X and 0 < r1 < 1 such that
Br1 [x1] ⊆ Bε(x)∩U1 (since Bε(x)∩U1 is open and since U1 is dense in X we know r1 exists).
Similarly, we may find x2 ∈ X and 0 < r2 <

1
2

such that Br2 [x2] ⊆ Br1(x1)∩U2. Continuing,
we construct a sequence Brk+1

[xk+1] ⊆ Brk(xk) ∩ Uk+1 with 0 < rk+1 <
1

k+1
.

By an assignment, we know there is an x0 ∈
∞⋂
k=1

Brk [xk] ̸= ∅. Then we see that x0 ∈
∞⋂
n=1

Un

since each Brk [xk] ⊆ Uk. Recall also that x0 ∈ Br1 [x1] ⊆ Bε(x). That is, for all x ∈ X

and ε > 0, we may find an x0 ∈
∞⋂
n=1

Un with d(x0, x) < ε, thereby showing x0 ∈
∞⋂
n=1

Un is

dense.

Corollary: A complete metric space (X, d) is of second category in itself.

Proof. By way of contradiction, suppose X =
∞⋃
n=1

An where Int(An) = ∅ for all n ∈ N. Then

X =
∞⋃
n=1

An

=
∞⋃
n=1

An

∅ =
∞⋂
n=1

X \ An

Recall from our remark that X \ A is dense in X if A is nowhere dense in X and clearly
X \ A is open. Therefore by the Baire Category Theorem ∅ is dense in X, which is a
contradiction.
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10.2 Applications

Proposition: Q ⊆ R is not a Gδ set.

Proof. By way of contradiction, suppose Q =
∞⋂
n=1

Un where Un ⊆ R is open. Since Q ⊆ Un

is dense in R, then R ⊆ Q ⊆ Un ⊆ R and so Un is dense in R. Since Q is countable, suppose
Q = {q1, q2, . . .}. Set Vn = Un \ {qn} so that Vn is still open and dense. Therefore we know

that
∞⋂
n=1

Vn = ∅, but by the Baire Category theorem,
∞⋂
n=1

Vn is dense in R, a contradiction.

Definition. Oscillation: Let (X, d) be a metric space and let f : X → R. We define the
oscillation of f at x to be

ωf (x) = inf
δ>0

sup
{
|f(a)− f(b)| : a, b ∈ Bδ

}
Remark: The oscillation measures how much f can bounce around as you get closer and
closer to x.

Note: f is continuous at x if and only if ωf (x) = 0.

Lemma: Let (X, d) be a metric space and let f : X → R. Let ε > 0 be given. Then
U = {x ∈ X : ωf (x) < ε} is open.

Proof. Let x ∈ U . For some δ > 0, we have that sup{|f(a)− f(b)| : a, b ∈ Bδ(x)} < ε. Take
y ∈ X such that r := d(y, x) < δ. Then the Bδ−r(y) ⊆ Bδ(x). To see this, let z ∈ Bδ−r(y),
then

d(z, x) ≤ d(z, y) + d(y, x) < δ − r + r = δ

Therefore,

sup{|f(a)− f(b)| : a, b ∈ Bδ−r(y)} ≤ sup{|f(a)− f(b)| : a, b ∈ Bδ(x)} < ε

Therefore, ωf (y) < ε. And so, for any y ∈ Bδ(x) we have y ∈ U . Therefore, Bδ(x) ⊆ U ,
showing that is U is open.

Proposition: There is no f : R → R which is continuous at every rational but discontinuous
at each irrational.

Proof. By way of contradiction, suppose such a function f exists. Let Cn = {x ∈ R : ωf (x) ≥
1
n
}. We know by our lemma that Cn is closed. Then since f is continuous at the rationals

but discontinuous at the rationals, we know R \Q =
⋃
n∈N

Cn. Therefore, by De Morgan’s law

Q =
⋂
n∈N

R \ Cn where R \ Cn is open. This implies Q is Gδ, a contradiction.
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Example: Consider Thomae’s function

f : R → R x 7→


0 x /∈ Q
1
n

x = m
n
∈ Q

1 x = 0

which is continuous at each irrational but discontinuous at each rational.

Proposition: Let (fn) ⊆ C([a, b]). If fn → f pointwise then f is continuous on a residual
subset of [a, b]

Proof. Let Cn = {x ∈ [a, b] : ωf (x) ≥ 1
n
}. Recall Cn is closed since its complement is open.

Therefore f is discontinuous on
∞⋃
n=1

Cn, therefore if this set is of first category, then f is

continuous on a residual set. We are then required to show Int(Cn) = Int(Cn) = ∅.

By way of contradiction, suppose there is a K ∈ N and an open interval I such that I ⊆ CK .
(Technically we mean open with respect to the [a, b] but open intervals in [a, b] are simply
open intervals.) If there is an open interval contained in CK then CK is not nowhere dense.
Let 0 < ε < 1

3K
.

For all i, j ∈ N, let Xij = {x ∈ I : |fi(x) − fj(x)| ≤ ε}. Also let En =
⋂

i,j≥n

Xij. Fix

x ∈ I. We know that fn(x) → f(x). In particular, we know there is an N ∈ N such that
|fn(x)− f(x)| < ε

2
for n ≥ N . By the triangle inequality, for i, j ≥ N then |fi(x)− fj(x)| ≤

|fi(x)− f(x)|+ |f(x)− fj(x)| < ε. So we have that for any x ∈ I there is a N ∈ N so that

x ∈ EN (since for all i, j ≥ N we have x ∈ Xi,j as shown above). So I =
∞⋃
n=1

En. Note

also that I is complete by Heine-Borel (I is a closed, bounded interval). Note that by the

continuity of fi, fj we have that xij =
−1

|fi − fj|︸ ︷︷ ︸
continuous

([0, ε]) and so xij is closed. Then since En is

an infinite union of the Xij, then En is closed for all n ∈ N.

By the Baire Category Theorem there is an n0 such that Int(En0) ̸= ∅ we may then find an
open interval J ⊆ I (note again this is with respect to I subspace topology, but if there is
an open interval with respect to I) such that J ⊆ En0 . Therefore, for n ≥ n0 and x ∈ J
we have that |fn − fn0| ≤ ε (since x ∈ En0). Take n → ∞, then since limits preserve order
|f(x)− fn0(x)| ≤ ε.

Now fn0 is uniformly continuous since it is continuous on [a, b] which is compact by Heine-
Borel. Then there is a δ0 > 0 such that if |y − z| < δ0 then |fn0(y) − fn0(z)| < ε. Fix
x ∈ J . Let C = [a, b] \ J . Let δx = min{ δ0

2
, dC(X)}. Note that δx ̸= 0 since x ∈ J . Note

if |x − y| < δx then y ∈ J since dC(x) is the minimum distance between points not in J
and x. In particular, Bδx(x) ⊆ J and if y, z ∈ Bδx(x) then |y − z| < 2δx ≤ δ9 and so
|fn0(y)− fn0(z)| < ε.

For y, z ∈ Bδx(x) we have

|f(y)− f(z)| ≤ |f(y)− fn0(y)|+ |fn0(y)− fn0(z)|+ |fn0(z)− f(z)| < 3ε <
1

K
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(Recall that we saw eons ago that |f(x) − fn0(x)| ≤ ε.) Therefore, for x ∈ J we see that
ωf (x) <

1
K

. So J ⊆ [a, b] \ CK . But J ⊆ I ⊆ CK .

Corollary: Let (fn) ⊆ C([a, b]). If fn → f pointwise then f is continuous on a (residual,)
dense, Gδ subset of [a, b].

Proof. Use notation as in the above proof. Then the discontinuities of f are
∞⋃
n=1

Cn where

Cn is closed and Int(Cn) = ∅. So f is continuous on
∞⋂
n=1

[a, b] \ Cn. We see immediately that

f is continuous on a Gδ set. Now notice [a, b] \ Cn = [a, b] \ Int(Cn) = [a, b] is clearly dense
in [a, b]. But then by Baire Category Theorem

⋂
[a, b] \ Cn is dense in [a, b], as desired.

Corollary: Suppose f : [a, b] → R is differentiable. Then f ′ is continuous a residual, dense,
Gδ set of [a, b].

Proof. Consider fn(x) =
f(x+ 1

n
)−f(x)
1
n

→ f ′(x) so that fn → f ′ point wise. This then follows
by our above corollary.

Example: Consider (−1, 1) and R. These are homeomorphic. To see this consider 2
π
arctan(x).

However, R is complete and (−1, 1) is not. In particular homeomorphisms do not preserve
completeness as this is a metric space property. However, isometric isomorphisms will pre-
serve completeness.

10.3 Uniform Boundedness Principle

Remark: Recall if X, Y are normed vector spaces and T : X → Y is linear. Then T is
continuous if and only if T is bounded if and only if

∥T∥op := sup{∥T (x)∥ : ∥x∥ = 1} <∞

Therefore, the space B(X, Y ) of bounded linear transformations from X to Y is a normed
vector space with ∥ · ∥op as the norm. Note this is also the space of all continuous linear
transformations. Also we see then that for T ∈ B(X, Y )∥∥∥∥T ( x

∥x∥

)∥∥∥∥ ≤ ∥T∥op ⇐⇒ ∥T (x)∥ ≤ ∥T∥op · ∥x∥

Theorem. Uniform Boundedness Principle: Abbr. UBP. Let X, Y be normed vector
spaces and suppose X is complete. Let F ⊆ B(X, Y ). If for all x ∈ X we have sup{∥T (x)∥ :
T ∈ F} <∞ then F ⊆ B(X, Y ) is bounded. That is, sup{∥T∥op : T ∈ F} <∞.

Proof. For n ∈ N let Cn = {x ∈ X : ∀T ∈ F, ∥T (x)∥ ≤ n}. Then by our assumption

X =
∞⋃
n=1

Cn. We will show each Cn is closed. Let (xk) ⊆ Cn such that xk → x ∈ X. Then
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for all T ∈ F , we have T (xk) → T (x) (since each T ∈ F is bounded and linear and therefore
continuous). We also have ∥T (xk)∥ ≤ n which implies that ∥T (x)∥ ≤ n since limits preserve
continuity. By Baire Category Theorem, X is of second category, therefore there is an n ∈ N
such that Int(Cn) ̸= ∅ (otherwise X =

∞⋃
n=1

Cn is a union of nowhere dense sets, and so X is of

first category, a contradiction). There is then an x0 ∈ X and ε > 0 such that Bε(x0) ⊆ Cn.
We see then that since Cn is closed that Bε(x0) ⊆ Cn. Let T ∈ F and x ∈ X with ∥x∥ = 1.
Therefore

∥T (x)∥ =
1

ε
∥T ( x0 + εx︸ ︷︷ ︸

∥x0+εx−x0∥=ε

)− T (x0)∥ ≤ 1

ε

(
∥T (x0 + εx︸ ︷︷ ︸

∈Cn

)∥+ ∥T ( x0︸︷︷︸
∈Cn

)∥
)
≤ 2n

ε

Since T and x were arbitrary, we see ∥T∥op ≤ 2n
ε
<∞ for all T ∈ F , and so F is bounded.

Remark: We can also show the contrapositive is true. In particular, if F ⊆ B(X, Y ) is
bounded, then

∥T (x)∥ ≤ ∥T∥op∥x∥ ≤M∥x∥

where M is bound on F .

Example: Let (fn) ⊆ C(R). Suppose for all x ∈ R there is an n ∈ N such that fn(x) ∈ Q.
Prove that for all a < b there are a < c < d < b and an n ∈ N such that fn|(c,d) is constant.
fn|(a,b) bounded by EVT.

Proof. Consider gn : [a, b] → R given by gn = fn|[a,b]. Enumerate Q = {q1, q2, . . .}. Define
Cn,m = g−1

n ({qm}). Since g is continuous and {qm} is closed, Cn,m is closed. So [a, b] =⋃
n,m

Cn,m. Then there are n,m ∈ N so that Int(Cn,m) ̸= ∅. In particular there is (c, d) ⊆ Cn,m.

Then gn((c, d)) = {qm}, as desired.

Week 11 Polynomial Approximation

11.1 Weierstrass Approximation

Remark: A classic result we will see is: “For all ε > 0 and for all f ∈ C([a, b]) there is a
polynomial p such that ∥f − p∥∞ < ε. That is, the polynomials are dense in C([a, b]).”

Remark: These are simplifications we will make throughout this section.

1. Let φ : [a, b] → [0, 1] be given by φ(x) = x−a
b−a

. Then φ is a continuous, increasing
bijection. More over, ψ : C([0, 1]) → C([a, b]) given by ψ(f) = f ◦ φ−1 is an isometric
isomorphism. Thus, to prove a result on C([a, b]), it suffices to prove it on C([0, 1]).

2. Let f ∈ C([0, 1]). Let g(x) = f(x)− [(f(1)− f(0))x + f(0)]. Notice g(0) = g(1) = 0.
Moreover, if we can approximate g by a polynomial, we can do the same for f . This is
since their difference is a polynomial. Thus, we may assume f(0) = f(1) = 0.
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Lemma. Bernoulli’s Inequality: For all n ∈ N and x ∈ [0, 1], then (1− x2)n > 1− nx2.

Proposition. Leibniz’s Rule: Let f : [a × b] → [c, d] → R be continuous. Further,
suppose fy is continuous. Then

d

dy

∫ b

a

f(x, y)dx =

∫ b

a

fy(x, y)dx

Proof. By Fubini’s theorem, for y ∈ [c, d] we have∫ y

c

∫ b

a

fz(x, z)dxdz =

∫ b

a

∫ y

c

fz(x, z)dzdx

d

dy

∫ y

c

∫ b

a

fz(x, z)dxdz =
d

dy

∫ b

a

∫ y

c

fz(x, z)dzdx∫ b

a

fy(x, y)dxd =
d

dy

∫ b

a

f(x, y)− f(x, c)dx∫ b

a

fy(x, y)dxd =
d

dy

∫ b

a

f(x, y)dx− d

dy

∫ b

a

f(x, c)dx∫ b

a

fy(x, y)dxd =
d

dy

∫ b

a

f(x, y)dx

Theorem. Weierstrass Approximation Theorem: The set of polynomials (with domain
[a, b]) is dense in C([a, b]).

Proof. We assume a = 0 and b = 1 by simplification 1. Let f ∈ C([0, 1]) be fixed. Let ε > 0
be given. We may assume f(0) = f(1) = 0 by simplification 2. In particular, f may be
extended to a uniformly continuous function on R by setting f = 0 for (−∞, 0)∪(1,∞) (f is
continuous on compact [0, 1] so f is uniformly continuous on [0, 1], extending by a constant
function preserves uniform continuity).

For n ∈ N let Qn(x) = cn(1 − x2)n where cn > 0 is chosen such that
∫ 1

−1
Qn(x)dx = 1. We

may choose this as
∫ 1

−1
(1 − x2)n = ℓ for ℓ > 0 since (1 − x2)n is non-negative on [−1, 1], so

we may pick cn = 1
ℓ
. Now ∫ 1

−1

(1− x2)ndx = 2

∫ 1

0

(1− x2)ndx

BI

≥ 2

∫ 1

0

1− nx2dx

≥ 2

∫ 1/
√
n

0

1− nx2dx

=
4
√
n

3
>

1√
n
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Then, multiplying both sides by cn we have

1 =

∫ 1

−1

Qn(x)dx >
cn√
n

We see then that cn <
√
n. Define Pn(x) =

∫ 1

−1
f(x + t)Qn(t)dt (notice by our extension of

f this is valid). However, since f is zero outside of [0, 1], we have that

Pn(x) =

∫ 1−x

−x

f(x+ t)Qn(t)dt

Then performing the substitution u = x+ t, we have
∫ 1

0
f(u)Qn(u− x)du.

Pn(x) =

∫ 1

−1

f(x+ t)Qn(t)dt valid by extension of f

=

∫ 1−x

−x

f(x+ t)Qn(t)dt since f = 0 for x /∈ [0, 1]

=

∫ 1

0

f(u)Qn(u− x)du substituion for u = x+ t

Then by Leibniz’s Rule, since Pn is a polynomial of degree 2n

d2n+1

dx2n+1
Pn(x) =

∫ 1

0

∂2n+1

∂x2n+1
Qn(u− x)du =

∫ 1

0

0du = 0

Then by Taylor’s approximation theorem, we have that Pn(x) is a polynomial of degree at
most 2n. Let M = ∥f∥∞. Let 0 < δ < 1 such that |f(x)− f(y)| < ε whenever |x− y| < δ.
We then see

|Pn(x)− f(x)| =
∣∣∣∣∫ 1

−1

f(x+ t)Qn(t)dt−
∫ 1

−1

f(x)Qn(t)dt

∣∣∣∣ since x fixed and
∫ 1

−1

Qn(t)dt = 1

=

∣∣∣∣∫ 1

−1

(f(x+ t)− f(x))Qn(t)dt

∣∣∣∣
≤
∫ 1

−1

|f(x+ t)− f(x)|Qn(t)dt since Qn > 0

=

∫ −δ

−1

|f(x+ t)− f(x)|Qn(t)dt

+

∫ δ

−δ

|f(x+ t)− f(x)|Qn(t)dt

+

∫ 1

δ

|f(x+ t)− f(x)|Qn(t)dt

≤
∫ −δ

−1

2MQn(t)dt

+

∫ δ

−δ

εQn(t)dt
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+

∫ 1

δ

2MQn(t)dt

≤
∫ −δ

−1

2Mcn(1− t2)ndt

+

∫ 1

−1

εQn(t)dt integrating over larger region

+

∫ 1

δ

2Mcn(1− t2)ndt

≤
∫ −δ

−1

2Mcn(1− δ2)ndt

+ ε

∫ 1

−1

Qn(t)dt

+

∫ 1

δ

2Mcn(1− δ2)ndt

≤ 4M
√
n(1− δ)(1− δ2)n + ε

Notice that since δ > 0, as n → ∞ we have 4M
√
n(1 − δ)(1 − δ2)n → 0 and so there is a

polynomial Pn(x) such that |Pn(x)− f(x)| < ε.

Corollary: C([a, b]) is separable.

Proof. This holds since the rationals are dense in R, and so the rational polynomials are
dense in the polynomials and in turn are dense in C([a, b]).

Example: Let f ∈ C([0, 1]) be such that
∫ 1

0
xnf(x) = 0 for all n ≥ 0. Prove f = 0.

Proof. Since the polynomials are dense in C([a, b]), there is a sequence (Pn) ⊆ C([0, 1]) such
that Pn → f uniformly. We obviously see then that Pnf → f 2 uniformly. Now notice for
any polynomial p(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n we have∫ 1

0

p(x)f(x)dx = a0

∫ 1

0

x0f(x)dx+a1

∫ 1

0

x1f(x)dx+· · ·+an
∫ 1

0

xnf(x)dx = 0+0+· · ·+0 = 0

In particular, we see that ∫ 1

0

Pn(x)f(x)dx︸ ︷︷ ︸
=0

→
∫ 1

0

f 2(x)dx

and so since f 2(x) is continuous and f 2(x) ≥ 0, we see that∫ 1

0

f 2(x)dx = 0 =⇒ f 2(x) = 0 =⇒ f(x) = 0

as desired.

2 Topology 59 11, Polynomial Approximation



PMATH 351 Winter 2022: Notes Jacob Schnell

11.2 Stone-Weierstrass-Lattice Version

Remark: Let (X, d) be a compact metric space. Let x, y ∈ X such that x ̸= y. Let
D ⊆ C(X) be dense. Let f ∈ C(X) be given by f(t) = d(t, x) so that f(x) ̸= f(y).
Then there is a sequence (gn) ⊆ D such that gn → f uniformly. In particular, we see that
gn(x) → f(x) and gn(y) → f(y). This means there is an n ∈ N such that gn(x) ̸= gn(y).

Definition. Separating Points: Let (X, d) be a metric space. We say A ⊆ C(X) separates
points if for all x, y ∈ X with x ̸= y we have that there is an f ∈ A such that f(x) ̸= f(y).

Remark: As seen above, whenever (X, d) is a compact metric space and D ⊆ C(X) is dense
(with respect to ∥ · ∥∞), then D separates points. Notice we need (X, d) to be compact so
that Cb(X) = C(X) and therefore so that the uniform norm ∥ · ∥∞ may in fact be a norm
on C(X). Then convergence with respect to ∥ · ∥∞ implies uniform convergence on C(X),
as desired.

Lemma: Let (X, d) be a compact metric space. Let V ⊆ C(X) be a linear subspace which
separates points and such that 1 ∈ V (constant function). Then for all a, b ∈ X with a ̸= b
and α, β ∈ R, there is an f ∈ V such that f(a) = α and f(b) = β.

Proof. Let a, b ∈ X with a ̸= b. Then since V separates points, there is a g ∈ V such that
g(a) ̸= g(b). Then by linearity, consider

f(x) = α + (β − α)
g(x)− g(a)

g(b)− g(a)
∈ V

Then f(a) = α and f(b) = β. Notice if α = β we can use the function f(x) = α·1(x) = α.

Definition. Lattice: Let (X, d) be a metric space. A linear subspace V ⊆ C(X) is a lattice
if for all f, g ∈ V

f ∨ g := max{f, g} ∈ V and f ∧ g := min{f, g} ∈ V

Remark: Notice that C(X) is a lattice since linear combinations preserves continuity and
absolute values preserve continuity and so we see

f ∨ g = f + g + |f − g|
2

∈ C(X)

f ∧ g = f + g − |f − g|
2

∈ C(X)

Remark: Assume V ⊆ C(X) is a linear subspace such that f ∨ g ∈ V whenever f, g ∈ V .
Therefore,

f ∧ g = −((−f) ∨ (−g)) ∈ V

by the linearity of V . So if V is closed under maximums, it is also closed under minimums,
and vice-versa.

Theorem. Stone-Weierstrass-Lattice Version: Let (X, d) be compact. If V ⊆ C(X) is
a lattice such that V separates points and such that 1 ∈ V , then V is dense in C(X).
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Proof. Let f ∈ C(X). Let ε > 0 be given. Fix x ∈ X. By our lemma, for all y ∈ X there
is a φx,y ∈ V such that φx,y(x) = f(x) and φx,y(y) = f(y). Notice this is true even if x = y
as we can use the constant φx,y(z) = f(x) function. Note that φx,y − f is continuous at y
because φx,y and f are both continuous. By continuity, for all y ∈ X there is a δy > 0 such
that

d(t, y) < δy =⇒ |φx,y(t)− f(t)− (φx,y(y)− f(y))| = |φx,y(t)− f(t)| < ε

By the compactness of X, there are y1, . . . , yn ∈ X such that

X = Bδy1
(y1) ∪ · · · ∪Bδyn (yn)

Define
φx = φx,y1 ∨ · · · ∨ φx,yn ∈ V

(we can prove φx ∈ V by induction since f ∨ g ∈ V ). For z ∈ X, there is a δyi such that
z ∈ Bδyi

(yi) so that

−ε < φx,yi(z)− f(z) < ε =⇒ f(z)− ε < φx,yi(z) ≤ φx(z) (1)

Where the latter inequality holds since φx(z) is the maximum over all φx,yi . We see then
that since x was arbitrary (and no terms depend on x), that f − ε < φx. By the continuity
of φx − f , for all x ∈ X, there is a δx > 0 such that

d(t, x) < δx =⇒ |φx(t)− f(t)− φx(x) + f(x)| = |φx(t)− f(t)| < ε (2)

by continuity (note φx(x) = φx,y1(x) ∨ · · · ∨ φx,yn(x) = max{f(x), . . . , f(x)} = f(x)). As
before, by compactness of X we may find x1, . . . , xm ∈ X such

X = Bδx1
(x1) ∪ · · · ∪Bδxm (xm)

Define
φ = φx1 ∧ · · · ∧ φxm ∈ V

For z ∈ X, there is a δxj
such that z ∈ Bδxj

(xj)

f(z)− ε < φ(z) ≤ φxj
(z) < f(z) + ε

Notice the first inequality holds since for all 1 ≤ j ≤ m we have f(z) − ε < φxj
(z), so

since this holds for all j, we have f(z)− ε < φ(z), as desired (taking minimums). The last
inequality holds by (2). We see then that since z ∈ X is arbitrary, ∥f − φ∥∞ < ε.

Example: Let V be the space of piecewise-linear continuous functions such that V ⊆
C([a, b]). That each f ∈ V is a piecewise function defined on finitely many intervals, where
f is linear on each. We can show that V is in fact a lattice and V separates points (with
1 ∈ V ), so that we see from above V is dense in C(X).
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11.3 Stone-Weierstrass-Subalgebra Version

Definition. Subalgebra: Let (X, d) be a metric space. A linear subspace V ⊆ C(X) is a
subalgebra if f · g ∈ V for all f, g ∈ V where (f · g)(x) = f(x) · g(x).

Remark: Let (X, d) be a compact metric space. We can show that if V ⊆ C(X) is a
subalgebra then V is a subalgebra.

Theorem. Stone-Weierstrass-Subalgebra Version: Let (X, d) be a compact metric
space. If V ⊆ C(X) is a subalgebra such that V separates points and 1 ∈ V (this is called
a unital subalgebra) then V is dense in C(X).

Proof. Without loss of generality, assume V is closed. Let f ∈ V . Since f is continuous
and X is compact, we know f(X) is bounded, in particular, there is an M > 0 such that
f(X) ⊆ [−M,M ]. Let ε > 0 be given. By the Weierstrass Approximation Theorem, there is
a polynomial P : R → R such that |P (x)− |x|| < ε for all x ∈ [−M,M ]. Then for all x ∈ X
we have ∥P ◦ f −|f |∥∞ = |P (f(x))︸ ︷︷ ︸

∈V

−|f(x)|| < ε. Since ε > 0 was arbitrary, and V is closed,

we may conclude |f | ∈ V . Then for all f, g ∈ V , we have f ∨ g ∈ V , so V is dense by the
Stone-Weierstrass-Lattice Version.

Remark: Big idea of the proof: Note if V is dense in C(X), then we have that V = V = X
(the double closure) and so V is dense in X. Note also that if p is a polynomial and f ∈ V ,
then p(f) ∈ V since V is a subalgebra (note being closed under powers is equivalent to being
closed under function multiplication). Recall that f ∨ g = f+g+|f−g|

2
, so we will show that

f ∈ V =⇒ |f | ∈ V .

Example: Notice that where V are the polynomials, we see that V is a unital subalgebra,
and so we see this quickly subsumes the Weierstrass Approximation Theorem (though this
theorem still requires the Weierstrass Approximation Theorem).

Example: Let V = span{1, x2, x4, . . .}, we can see then that V is dense in C([0, 1]), but V
is not dense in C([−1, 1]) (it can’t separate a from −a).

Definition. Infinity Norm on Complex Functions: Let (X, d) be compact. Then
C(X,C) = {f : X → C|f is continuous} and we define ∥f∥∞ = sup{|f(x)| : x ∈ X} where
| · | is the complex modulus. Then (C(X,C), ∥ · ∥∞) is a Banach space.

Remark: If f ∈ C(X,C), then f(x) = (f)(x) + i(f)(x) where (x+ yi) = x and (x+ yi) =
y. Notice also if we fn → f in C(X,C), then (fn) → (f) and (fn) → (f). Moreover,
Re(f), Im(f) ∈ C(X). Further, Re(f) = f+f

2
and Im(f) = f−f

2i
where f(x) = f(x) where

x+ yi = x− yi. Notice finally Im(f) = Re(−if).

Theorem. Stone-Weierstrass-Complex Version: Let (X, d) be a compact metric space.
If V ⊆ C(X,C) is a subalgebra such that 1 ∈ V , V separates points, and if for all f ∈ V
then f ∈ V (this is call a self-conjugate unital subalgebra), then V is dense in C(X,C).

Proof. Let V ∈ C(X,C) be a subalgebra as above. Define W = {Re(f) : f ∈ V } ⊆ C(X).
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Notice if f ∈ V , then Im(f) = Re(−if︸︷︷︸
∈V

) ∈ W . Then W is a subalgebra of C(X) such

that 1 ∈ W , and W separates points. By Stone-Weierstrass-Lattice Version, W is dense in
C(X). Take f ∈ C(X,C). We know there are (gn), (hn) ⊆ W such that gn → Re(f) and
hn → Im(f). Then we see that gn+ihn ∈ V is such that gn+ihn → Re(f)+i Im(f) = f .

Remark: If T = {z ∈ C : |z| = 1}, then the polynomials on T are not dense in C(T,C).

Example: Let T = {z ∈ C : |z| = 1} and consider C(T,C). Let

X = {f ∈ C(T,C) : f(−π) = f(π)}

Let φ : X → C(T,C) such that φ(f)(eiθ) = f(θ). We can check that φ is a homeomorphism.
Let

Trig([−π, π]) := spanC{einx : n ∈ Z} ⊆ X

be the trigonometric polynomials. We claim Trig([−π, π]) = X. Since φ is a homeomorphism
it suffices to show φ(Trig([−π, π])) is dense in φ(X) = C(T,C). Notice we know that T is
compact by Heine-Borel Theorem, so C(T,C) is compact. Let fn(x) = einx ∈ X. Then
φ(fn)(e

ix) = fn(x) = einx, or if y = eix, then φ(fn)(y) = yn. In particular {fn}n∈Z can be
viewed as the polynomials (plus negative powers). That is

φ(Trig([−π, π])) = spanC{eix 7→ einx : n ∈ Z}

Easily enough, by this knowledge we know φ(Trig([−π, π])) is a subalgebra of C(T,C) which
contains 1, separates points, and is closed under conjugation. By Stone-Weierstrass-Complex
Version, we see that φ(Trig([−π, π])) = C(T,C). This is the basis of Fourier Analysis, that
(Lebesgue integrable) functions can be approximated by trigonometric polynomials.
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