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0 STAT 230 review
• If A,B are independent P (A ∩B) = P (A)P (B).
• Conditional Probability: P (A|B) =

P (A∩B)
P (B)

.

• Bayes’ Theorem: P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)

P (B|A)P (A)+P (B|A)P (A)
.

• Variance: Var(X) = E[(X − E[X])2] = E[X2]− E[X]2.
• Covariance: cov(X,Y ) = E[(X − E[X])(Y − E[Y ])].
• Correlation: ρX,Y =

cov(X,Y )
SD(X) SD(Y )

.
• E(aX + b) = aE(X) + b.
• V ar(aX + b) = a2V ar(X).
• If X,Y are independent then E(aX + bY ) = aE(X) + bE(Y ) and

V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ).
• If N ∼ G(µ, σ) then pnorm(x, µ, σ) = P (N ≤ x) and qnorm(x, µ, σ) = a

where P (N ≤ a) = x.
• Central Limit Theorem: If X1, . . . , Xn independent with E(Xi) = µ

and Var(Xi) = σ2 then

n∑
i=1

Xi − nµ

σ
√
n

∼ G(0, 1) and
X − µ

σ/
√
n

∼ G(0, 1).

1 Statistical Sciences
• Unit: Individual person, place, or thing we take measurements about.
• Population: Collection of units.
• Process: Ongoing system by which units are produced.
• Variate: Characteristics of unit that can be measured. One of dis-

crete (countably many values), continuous (infinite precision), categori-
cal (categories), ordinal (categories with ordering), complex (e.g., text).

• Attribute: Function of of a variate defined for all units.
• Sample Survey: Study of finite population by taking a representative

sample.
• Observational Study: Study of population or process collected rou-

tinely over time without attempting to change any variates.
• Experimental Study: Study of population where specific variates are

changed or fixed.
• Sample Variance: s2 = 1

n−1

∑n
i=1(yi−y)2 = 1

n−1

(∑n
i=1(y

2
i )− ny2

)
• Sample Range: range = maxi(yi)−mini(yi) = y(n) − y(1)
• Sample Quantile: pth quantile or 100pth percentile is the value q

where q(p) = P (X ≤ q) = p.
• Inter-Quartile Range (IQR): IQR = q(0.75)− q(0.25).

• Sample Skewness:

1
n

n∑
i=1

(yi − y)3[
1
n

n∑
i=1

(yi − y)2
]3/2 . Skewness < 0 implies left

tail, skewness > 0 implies right tail, skewness ≈ 0 implies symmetric.

• Sample Kurtosis:
1
n

n∑
i=1

(yi−y)4[
1
n

n∑
i=1

(yi−y)2

]2 . Kurtosis < 3 implies light tails,

kurtosis > 3 implies heavy tails, kurtosis ≈ 3 implies normal tails.
• Normality: Normal distribution should have: (1) mean and median

approximately equal, (2) skewness ≈ 0, (3) kurtosis ≈ 3, (4) approxi-
mately 95% of observations should be in [y − 2s, y + 2s] (5) histogram
or e.c.d.f. should agree with theoretical c.d.f., (6) Q-Q plot should be
approximately a straight line.

• Five Number Summary: (y(1), q(0.25), q(0.5), q(0.75), y(n)).
• Relative Risk: R =

A1/(A0+A1)
B1/(B0+B1)

. Likelihood of presenting variate
based on membership. X0 not presenting, X1 presenting.

• Estimation Problem: Estimating attributes of a population/process.
• Hypothesis Testing Problem: Assessing the truth of a question.
• Prediction Problems: Predicting future value of variate of a unit.

2 Models and MLE
• Likelihood Function: L(θ) = L(θ; y) = P (Y = y; θ) where θ ∈ Ω.
• Maximum Likelihood Estimate: θ̂MLE = arg maxθ∈Ω L(θ).
• Relative Likelihood Function: R(θ) =

L(θ)

L(θ̂MLE)
where θ ∈ Ω.

• Log Likelihood Function: `(θ) = logL(θ) where θ ∈ Ω.
• Log Relative Likelihood Function: r(θ) = logR(θ) where θ ∈ Ω.
• Note that θ̂MLE is the value that maximizes L(θ), R(θ), and `(θ).
• Likelihood of Continuous Variables: If we have i.i.d. observations

Y1, . . . , Yn then L(θ) =
n∏

i=1
f(yi; θ) where f is the p.d.f.

• Invariance of MLE: g(θ̂MLE) is the MLE of g(θ).
• Q-Q Plot: A plot of the points

(
φ−1

(
i

n+1

)
, y(i)

)
where φ−1 is the

inverse of the c.d.f. of G(0, 1). If the data is approximately Gaussian
this should be a straight line.

• kth Moment: µk = E(Y k). Sample kth moment: mk = 1
n

∑n
i=1 y

k
i .

• Method of Moments Estimate: Estimate parameters by:
1. Compute the first p sample moments where p is the number of

unknown parameters.
2. Relate the population moments to the true parameter values.
3. Use the sample moments to solve the resulting system of equations

to estimate the parameters.

3 Conducting Studies
• PPDAC:

– Problem: A clear statement of the study’s objectives.
– Plan: The procedures used to carry out the study including how

the data will be collected.
– Data: The physical collection of the data, as described in the plan.
– Analysis: The analysis of the data collected in light of the problem

and the plan.
– Conclusion: The conclusions that are drawn about the problem and

their limitations.

• Target Population: The population (or process respectively) to which
we want the conclusions to apply.

• Study Population: The population of units available to be included
in the study. Hopefully subset of target population.

• Study Error: The difference in attributes between the target and study
populations.

• Sample Error: The difference in attributes between the study popu-
lation and the sample. Random samples have no sample error.

• Measurement Error: The difference between true values of variates
and measured values of variates for units in the sample.

4 Estimation
• Point Estimator: Function θ̃ = g(Y1, . . . , Yn) of observations

Y1, . . . , Yn. Gives point estimate θ̂ = g(y1, . . . , yn). Distribution of
θ̃ is called the sampling distribution of the estimator.

• Bias: How much we expect an estimator to be off by. Bias(θ̃) = E[θ̃]−θ.
• Mean Squared Error (MSE): Trade off between bias and variance

of estimator. MSE(θ̃) = E[(θ̃ − θ2)] = Var(θ̃) + Bias(θ̃)2.
• Score Function: U(θ;Y ) = ∂

∂θ
`(θ;Y ) = 1

L(θ;Y )
∂
∂θ

L(θ;Y ), i.e., the
slope of `(θ) at the true θ. U(θ;Y ) is a random variable with E[U |θ] = 0.

• Fisher Information: The variance of the score function given by

I(θ) = E

{[
∂
∂θ

`(θ;Y )
]2 ∣∣∣∣θ} = −E

[
∂2

∂θ2
logL(θ;Y )

∣∣∣θ]. Low infor-

mation means blunt log-likelihood, high information means sharp log-
likelihood. Low information means lots of values of θ̂ are similarly
good to the MLE. If Y1, . . . , Yn are i.i.d. then I(θ) = nI1(θ) where
I1(θ) = −E

[
∂2

∂θ2
logL(θ;Y1)

∣∣∣θ].

• Cramér-Rao Lower Bound: For any unbiased estimator θ̃ of θ we
have Var(θ̃) ≥ 1

I(θ)
.

• Efficiency: e(θ̃) =
1/I(θ)

V ar(θ̃)
where θ̃ is an unbiased estimator of θ. Note

0 < e(θ̃) ≤ 1 and if e(θ̃) = 1 then θ̃ is said to be efficient or be the
minimum-variance unbiased estimator of θ.

• 100p% Likelihood Interval: The set {θ : R(θ) ≥ p} = {θ : r(θ) ≥
log p}. These are the values of θ which makes the data at least 100p%
as likely as if θ = θ̂MLE .

• Coverage Probability: Probability P (θ ∈ [L(Y ), U(Y )]) = P (L(Y ) ≤
θ ≤ U(Y )) where [L(Y ), U(Y )] is an interval estimator for θ.
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• 100p% Confidence Interval: The smallest (usually symmetric) inter-
val estimate [L(Y ), U(Y )] with coverage P (L(Y ) ≤ θ ≤ U(Y )) = p.

• Pivotal Quantity: Q = Q(Y ; θ) function of the data and unknown
parameter θ such that the distribution is known.

• Approximate Pivotal Quantity: Qn = Qn(Y1, . . . , Yn; θ) such that
as n → ∞, Qn is a known distribution (which doesn’t rely on unknowns).

• Likelihood Ratio Statistic: Λ(θ) = −2 log
(

L(θ;Y )

L(θ̂MLE ;Y )

)
= −2r(θ)

is a random variable. For large n, Λ(θ) ∼ χ2
1 approximately.

• Gaussian µ CI: A 100p% confidence interval for µ given data
Y1, . . . , Yn ∼ G(µ, σ) is given by y ± a s√

n
where a = qt( 1+p

2
, n− 1).

• Gaussian σ CI: A 100p% confidence interval for σ given data

Y1, . . . , Yn ∼ G(µ, σ) is given by
[√

(n−1)s2

b
,

√
(n−1)s2

a

]
where a =

qchisq( 1−p
2

, n− 1) and b = qchisq( 1+p
2

, n− 1).
• A 100q% confidence interval is approximately equivalent to a 100p% like-

lihood interval where p = e−c/2 and c = qchisq(q, 1) = qnorm( q+1
2

)2.
• A 100p% likelihood interval is approximately equivalent to a 100q%

confidence interval where q = pchisq(d, 1) = 2 · pnorm(
√
d) − 1 and

d = −2 log p. Note q is the coverage of the likelihood interval.
• Important pivotal quantities:

– Y −µ
1/

√
n

∼ G(0, 1) (exact).

– Λ(θ) = −2 log
(

L(θ;Y )

L(θ̂MLE ;Y )

)
∼ χ2

1 (approx).

– (n−1)S2

σ2 ∼ χ2
n−1 where Y1, . . . , Yn ∼ G(µ, σ) (exact).

– Y −µ
S/

√
n

∼ tn−1 where Y1, . . . , Yn ∼ G(µ, σ) (exact).

– θ̃−θ√
θ(1−θ)

n

∼ G(0, 1) where Y ∼ Bin(n, θ) (approx).

• Building a 100p% confidence interval for θ:
1. Find a pivotal quantity Q(Y ; θ).
2. Find a, b such that P (a ≤ Q(Y ; θ) ≤ b) = p. I.e. find a, b so that

P (Q ≤ a) = 1− P (Q ≤ b) = 1−p
2

.
3. Re-express the inequality as P (L(Y ) ≤ θ ≤ U(Y )) = p.
4. [L(y), U(y)] is a 100p% confidence interval for θ given the observed

data y.

5 Hypothesis Testing
• Null Hypothesis: Default hypothesis; H0.
• Alternate Hypothesis: Hypothesis to be tested; HA.
• Discrepancy Measure: Function of the data D = g(Y ) which mea-

sures agreement between data and H0. d = g(y) ≈ 0: high agreement
with H0; d >> 0: high disagreement. Commonly D = |Y − E[Y ]|.

• p-value: The value P (D ≥ d;H0). I.e., the probability that data as-
suming H0 are at least as surprising as our observed data. If p ≈ 0 we
are surprised if H0 is true.

• p−value ≥ 1− q iff θ0 is in the 100q% confidence interval of θ.
• Type 1 error: Rejecting H0 when H0 is actually true. (False positive

rejection.) Type 1 error rate is P (p < α) = α.
• Type 2 error: Accepting H0 when H0 is actually false. (False negative

rejection.) Type 2 error rate is denoted β.
• Power: Probability to reject H0 when H0 is actually false (True positive

rejection.): power = 1−β. This is the ability to recognize a signal (weird
data).

• Testing a Hypothesis (general):
1. Specify the null hypothesis H0 and propose a model.
2. Specify a discrepancy measure D(Y ) where D >> 0 corresponds to

data inconsistent with H0. Compute d = D(y).
3. Calculate p− value = P (D ≥ d;H0).
4. Draw conclusions.

• Testing H0 : µ = µ0 given data Y1, . . . , Yn ∼ G(µ, σ).
1. Use D =

|Y −µ0|
S/

√
n

to compute d = D(y).
2. Calculate p− value = 2[1− P (T ≤ d)] where T ∼ tn−1.
3. Draw conclusions.

• Testing H0 : σ = σ0 given data Y1, . . . , Yn ∼ G(µ, σ).
1. Use U =

(n−1)s2

σ2
0

to compute u = U(y).
2. Compute P (U ≤ u) for U ∼ χ2

n−1.
3a. If P (U ≤ u) < 0.5 then p− value = 2P (U ≤ u).
3b. If P (U ≤ u) < 0.5 then p− value = 2(1− P (U ≤ u)).

• Testing H0 : θ = θ0 using likelihood ratio statistic:
1. Find L(θ) and the MLE θ̂.
2. Compute λ(θ0) = −2 log(

L(θ0)

L(θ̂)
).

3. Then p-value = 1− P (W ≤ λ(θ0)) for W ∼ χ2
1 approximately.

6 Gaussian Response Models
• Residual: The vertical distance between a point and a fitted line.

• Sxy =
n∑

i=1
(xi − x)(yi − y) = nCov(x, y). In particular SS = Syy .

• Least-Square Estimate: The predictions ŷi = µ(xi) = β0 + β1xi1 +
· · ·+βkxik which minimizes the sum of square residuals. Assumes Yi ∼
G(µ(xi), σ) (homoscedasticity). Where k = 1, we have Y ∼ G(α+βx, σ)

and β̂ =
Sxy

Sxx
and α̂ = y − β̂x, these are also the MLEs. β̂j represents

the increase in the mean of the response variate for a one unit increase
in the explanatory variate xj when the other variates are fixed.

• Sum of Square Errors/Residuals: SSE =
∑n

i=1(yi − ŷi)
2.

• Sum of Square Regressions: SSR =
∑n

i=1(ŷi − y)2 = Syy − SSE.

• Mean Squared Error s2e = 1
n−k−1

n∑
i=1

(
yi−β0−

k∑
j=1

βjxij

)2
. If k = 1

then s2e = 1
n−k−1

(Syy−β̂Sxy). Note: E[S2
e ] = σ2 and (n−2)S2

e
σ2 ∼ χ2

n−2.

• β̃ Distribution: If Yi ∼ G(α+ βxi, σ), then β̃ = 1
Sxx

n∑
i=1

(xi − x)Yi So

β̃ ∼ G(β, σ√
Sxx

) and β̃−β
Se/

√
Sxx

∼ tn−2.
• Simple Linear Regression Tests and Intervals:

– H0 : β = β0 has p-value = 2
[
1− P

(
T ≤ |β̂−β0|

se/
√
Sxx

)]
for T ∼ tn−2.

– β has a (100p%) CI of β̂ ± a se√
Sxx

for a = qt( 1+p
2

, n− 2).

– α has a CI of α̂± ase

√
1
n
+

(x)2

Sxx
for a = qt( 1+p

2
, n− 2).

– µ(x) has a CI of µ̂(x)± ase

√
1
n
+

(x−x)2

Sxx
for a = qt 1+p

2
, n− 2).

– µ(x) has a PI of µ̂(x)±ase

√
1 + 1

n
+

(x−x)2

Sxx
for a = qt 1+p

2
, n−2).

• R2 Statistic: R2 = 1 − SSE
Syy

= SSR
SS

= Variation explained by regression
Total variation .

We want R2 close to 1, as this explains more variation.
• Adjusted R2: Adjusted R2 = 1− SSE/(n−k−1)

Syy/(n−1)
. Compensates for the

fact that adding more variables can artificially improve R2.
• Model Checking: Need Yi to have Gaussian distribution with con-

stant variance (homoscedasticity) and E[Yi] = µ(xi) to be linear in xi.
Can check using graphics: should be linear and evenly spread. Using
residual plots: residual r̂i = yi − ŷi should be drawn from G(0, σ) and
standardized residual r̂∗i = r̂i

se
should be drawn from G(0, 1). Plotting

standardized residual plot (xi, r̂
∗
i ), 99.7% of points should be in (−3, 3)

and should be evenly spread out around 0. Plot (µ̂i(xi), r̂
∗
i ) for multiple

linear regression. Can also check normality of residuals using Q-Q plots.
• Regression Pitfalls: (1) Multicolinearity: when 2 or more variates

are highly correlated, can lead to incorrect conclusions. (2) Predicting
beyond covariate range: model assumption may not hold, lack of data.

• Generalized Linear Model (GLM): (1) Probability distribution for
response variate, (2) linear model η = β0 + β1x1 + · · · + βpxp, (3) link
function from linear model to parameters of outcome distribution.

• Odds: The odds of event A are odds(A) =
P (A)

1−P (A)
. Prefer odds at

times since odds(A) ∈ R, not just [0, 1].
• Logit g : [0, 1] → R with g(p) = logit(p) = log(odds(p)) = log( p

1−p
),

also called log odds. Has inverse g−1(x) = 1
1+e−x .

• Log Odds Ratio: If O1, O2 are the odds of events, then the log odds
ratio log(O1

O2
) is positive if event 1 is more probable than event 2.

• Logistic Regression: GLM with logit as the link function. If we
consider outcomes as Yi ∼ Bin(1, pi), we can fit logit(pi) = ηi = β0 +
β1xi1 + · · · + βpxip and then recover pi = 1

1+e−ηi
. We can interpret

β̂j as the increase in log odds or equivalently as the log odds ratio. So
β̂j > 0 if and only if pi increases as xij increases. Assumes events are
independent (i.e., Y1, . . . , Yn), linear regression if appropriate for the log
odds.

• Logistic Regression Model Checking: Split the events yi by quan-
tiles along a covariate with p = successes

events for each quantile. Plot the
log odds against the median of the covariate in each quantile. If the
relationship is linear, logistic regression seems appropriate.

• Two Sample Gaussian (Equal) Testing H0 : µ1 − µ2 = 0 given
Y1,1, . . . , Y1n1 ∼ G(µ1, σ) and independently Y2,1, . . . , Y2n2 ∼ G(µ2, σ).

1. Note µ̃1 − µ̃2 = Y1 − Y2 ∼ G(µ1 − µ2, σ
√

1
n1

+ 1
n2

)

2. Compute S2
p =

(n1−1)S2
1+(n2−1)S2

2
n1+n2−2

so that E[S2
p ] = σ2.

3. Then Y1−Y2−(µ1−µ2)

Sp

√
1
n1

+ 1
n2

∼ tn1+n2−2.

4a. CI for µ1−µ2 is y1−y2±asp
√

1
n1

+ 1
n2

for a = qt( 1+p
2

, n1+n2−2).
2
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4b. p-value = 2[1− P (T ≤ d)] for d =
|y1−y2−0|

sp
√

1
n1

+ 1
n2

and T ∼ tn1+n2−2.

• Two Sample Gaussian (Unequal) Testing H0 : µ1 − µ2 = 0 given
Y1,1, . . . , Y1n1 ∼ G(µ1, σ1) and independently Y2,1, . . . , Y2n2 ∼ G(µ2, σ2).

1. Y1−Y2−(µ1−µ2)√
S2
1

n1
+

S2
2

n2

∼ G(0, 1) approximately for n1, n2 ' 30.

2a. CI for µ1 − µ2 is y1 − y2 ± a

√
s21
n1

+
s22
n2

for a = qnorm(p).

2b. p-value = 2[1− P (Z ≤ d)] for d =
|y1−y2−0|√

s21
n1

+
s22
n2

and Z ∼ G(0, 1).

• Two Sample Gaussian (Paired) Testing H0 : µ1 − µ2 = 0 given
Y1,1, . . . , Y1n1 ∼ G(µ1, σ) and Y2,1, . . . , Y2n2 ∼ G(µ2, σ).

1. Set Yi = Y1i − Y2i ∼ G(µ1 − µ2, σ). Check y1, . . . , yn is Gaussian.
2a. CI for µ = µ1 − µ2 is y ± a s√

n
for a = qt( 1+p

2
, n− 1).

2b. p-value = 2[1− P (T ≤ d)] for d =
|y−0|
s/

√
n

and T ∼ tn−1.

7 Multinomial Models and Goodness of Fit Tests
• Multinomial MLE: Multinomial has L(θ) ∝ θy11 · · · θykk and θ̂j =

yj
n

.

• Pearson’s Goodness of Fit Statistic: D =
∑k

j=1
(Yj−Ej)

2

Ej
.

• Degrees of Freedom: Number of values which are free to move.
• Testing H0 : θj =

Ej

n
where ej ≥ 5:

1. Compute either λ = 2
k∑

j=1
yj log(

yj
ej

) or d =
∑k

j=1
(yj−ej)

2

ej
.

2. p-value ≈ 1− P (W ≤ λ) ≈ P (W ≤ d) for W ∼ χ2
k−1−p where k =

# of categories and p = # of estimated parameters.

• Testing independence in two-way table: assume categories are
A1, . . . , Aa and B1, . . . , Bb.

1. Let ri be the sum of row i, cj be the sum of column j.

2. Let αi = P (Ai) and βj = P (Bj) with MLE α̂i =
ri
n

and β̂j =
cj
n

.
3. Y11, Y12, . . . , Yab ∼ Multinomial(n; θ11, θ12, . . . , θab). Indepen-

dence iff H0 : θij = αiβj is true.

4. Expected count for Ai ∩Bj is Eij = nαiβj so eij =
ricj
n

.

5. Compute λ = 2
a∑

i=1

b∑
j=1

yij log(
yij
eij

).

6. If eij ≥ 5, then p-value ≈ 1− P (W ≤ λ) for W ∼ χ2
(a−1)(b−1)

.

8 Causality
• Possible Relations Between Variates:

1. Explanatory variate is the direct cause of the response variate.
2. Response variate is the direct cause of the explanatory variate.
3. Explanatory variate is a contributing cause of the response variate.
4. Both variates are changing with time.
5. The association is due to coincidence.
6. Both variates have a common cause.

• Confounding Variate: When two variates have a common cause, the
cause is called a confounding variate or confounder.

• Dealing with Confounders:
– Twin studies: place one identical twin in each group.
– Matching: find similar units from each group.
– Randomization: randomly associate each unit with a group. This

could lead to disproportionate groups, or be unethical.

• Establishing Causation in Observational Studies:
1. The association between variates must be observed in many studies

of different types among different groups.
2. The association must hold when the effects of plausible confounders

are taken into account.
3. There must be a plausible scientific explanation for the direct in-

fluence of one variate on the other.
4. There must be a consistent response.

• Counterfactual: The effect that would have happened in the other
case. E.g., Y (0) for didn’t take drug, Y (1) for did take drug.

• Average Causal Effect: τ = E[Y (1)− Y (0)] = 1
n

n∑
i=1

(Y (1)− Y (0)).

• Propensity Score: π(x) = P (A = 1|X = x) where A is group, X is a
variate. Often we estimate this by logistic regression.

• Inverse Probability Weighting (IPW): µ̂1 = 1
n

n∑
i=1

yi·1(Ai=1)

π̂(xi)
and

µ̂1 = 1
n

n∑
i=1

yi·1(Ai=0)

1−π̂(xi)
are such that E[µ̃0] = E[Y (0)] and E[µ̃1] =

E[Y (1)]. Assumptions:

1. Consistency: Yi = Yi(0)1(Ai=0) + Yi(1)1(Ai=1).
2. Stable Unit Treatment Value Assumption (SUTVA): one patient

receiving a treatment doesn’t affect other patients’ treatment.
3. No Unmeasured Confounder (NUC): every confounding variate is

accounted for in the model.
4. Positivity: 0 < π(x) < 1 for all x. Every subject has a non-zero

chance of assignment to each treatment.

• DAGs

• Can close an open (backdoor or direct) path by accounting for it in
the model. Should only do this to backdoor paths. Can open a closed
(blocked) path by accounting for it in the model. Should not do this.

3
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Distributions
• Gaussian: (Continuous) Has p.d.f. 1√

2πσ
e−(x−µ)2/(2σ2). Arises from

central limit theorem.
• χ2

k: (Continuous) k ≥ 1 denotes the degrees of freedom. Has p.d.f.
f(x; k) = 1

2k/2Γ(k/2)
x(k/2)−1e−x/2. Properties:

1. If W1, . . . ,Wn are i.i.d. with Wi ∼ χ2
ki

, then
n∑

i=1
Wi ∼ χ2∑

ki
.

2a. If Z ∼ G(0, 1), then Z2 ∼ χ2
1. So, P (W ≥ w) = 2(1− P (z ≤

√
w))

and P (W ≤ w) = 2P (Z ≤
√
w)− 1.

2b. If Z1, . . . , Zn ∼ G(0, 1), then
n∑

i=1
Z2
i ∼ χ2

n.

3. If W ∼ χ2
2, then W ∼ Exp(2).

• Student tk: (Continuous) k ≥ 1 denotes the degrees of freedom. Has

p.d.f. f(x; k) =
Γ( k+1

2
)

√
kπΓ( k

2
)

(
1 + t2

k

)−(k+1)/2
. Properties:

1. lim
k→∞

tk ∼ G(0, 1).
2. If Z ∼ G(0, 1) and U ∼ χ2

k, then Z√
U/k

∼ tk.

• Exponential: (Continuous) Assuming Poisson process for events which
occur on average θ times per time unit, X denotes the number of time
units before the first event occurs. Has c.d.f. 1− e−x/θ.

• Poisson: (Discrete) Number of events which take place in a given period
of time, where on average θ events take place. X denotes the number of
events. Often we assume a Poisson process:

1. Independence: Events are independent from each other.
2. Individuality: As the time frame ∆t goes to zero, the number of

events goes to zero.
3. Uniformity: Events occur at a uniform rate over time.

• Binomial: (Discrete) Performing n Bernoulli (success/failure) trials,
each with a p chance of success. X denotes the number of successes.

• Bernoulli: (Discrete) Binomial with n = 1.
• Negative Binomial: (Discrete) Performing Bernoulli (success/failure) tri-

als, each with a p chance of success, until we get k successes. X denotes
the number of failures before getting k successes.

• Geometric: (Discrete) Negative Binomial with k = 1.
• Hypergeometric: (Discrete) Drawing n objects (without replacement)

from a group of N total objects, r of which are considered a success. X
denotes the number of drawn successes.

• Multinomial: (Discrete) Performing n trials with k outcomes, each out-
come having probability pi. Xi denotes the number of events of type i.
f(x1, . . . , xk) =

n!
x1!···xk!

px1
1 · · · pxk

k ; E[Xi] = npi; Var[Xi] = npi(1−pi).
• Uniform: (Continuous) Drawing randomly and uniformly from an inter-

val. X denotes the drawn value. Has c.d.f. x−a
b−a

.
Distribution p.d.f. E[X] Var[X]

Gaussian(µ, σ) See above µ σ2

χ2
k See above k 2k

tk See above 0 if k ≥ 2 k
k−2

if k ≥ 3

Exponential(θ) 1
θ
e−x/θ θ θ2

Poisson(θ) e−θθx

x!
θ θ

Binomial(n, p)
(
n
x

)
px(1 − p)n−x np np(1 − p)

Bernoulli(p) px(1 − p)1−x p p(1 − p)

NegativeBinomial(k, p)
(
x+k−1

x

)
pk(1 − p)x

k(1−p)
p

k(1−p)

p2

Geometric(p) p(1 − p)x 1−p
p

1−p

p2

Hypergeometric(N, r, n)

(r
x

)(N−r
n−x

)(N
n

) nr
N

nr
n

(1 − r
N

)N−n
N−1

Uniform(a, b) 1
b−a

a+b
2

(b−a)2
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R Commands
Distribution p.d.f. c.d.f. Quantiles

Z P (Z = z) or f(z) P (Z ≤ z) P (Z ≤ a) = z
G(µ, σ) dnorm(z, µ, σ) pnorm(z, µ, σ) qnorm(z, µ, σ)

χ2
k dchisq(z, k) pchisq(z, k) qchisq(z, k)

tk dt(z, k) pt(z, k) qt(z, k)
Exponential(θ) dexp(z, θ) pexp(z, θ) qexp(z, θ)

Poisson(θ) dpois(z, θ) ppois(z, θ) qpois(z, θ)
Binomial(n, θ) dbinom(z, n, θ) pbinom(z, n, θ) qbinom(z, nθ)

Other suffixes include hyper for hypergeometric, geom for geometric, nbinom
for negative binomial, unif for uniform (continuous).

> mod <- lm(y ~ x1 + x2)
> summary(mod)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.01375 5.01527 -0.202 0.84133
x1 0.73142 0.07664 9.544 3.83e-10 ***
x2 0.28225 0.09850 2.866 0.00797 **
---

Residual standard error: 4.608 on 27 degrees of freedom
Multiple R-squared: 0.9244, Adjusted R-squared: 0.9188

• Estimate is β̂ for given covariate (α̂ for intercept).
• Std. Error is SD(β̃i) =

se√
Sxixi

for given i.

• t value is test statistic t = Estimate
Std. Errror .

• Pr(>|t|) is 2 ∗ (1− pt(|t value|, df)) is p-value for H0 : βi = 0.
• Residual standard error is se.
• Multiple R-squared and Adjusted R-squared is R2 and adjusted R2.

predict(mod, data.frame(x1=x1,. . .,xn=xn), interval=type, level=p)
where type ∈ {"confidence", "prediction"} and α ∈ (0, 1) gives 100p%
type interval for covariates x1, . . . , xn.
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