- If A, B are independent $P(A \cap B) = P(A)P(B)$.
- **Conditional Probability:** $P(A|B) = \frac{P(A \cap B)}{P(B)}$. $\frac{(A||B)}{P(B)}$.
- **Bayes' Theorem:** $P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A)+P(B)}$ $\frac{P(B|A)P(A)}{P(B|\overline{A})P(\overline{A})+P(B|A)P(A)}$
- Variance: $Var(X) = E[(X E[X])^2] = E[X^2] E[X]^2$. 2
- **Covariance:** $cov(X, Y) = E[(X E[X])(Y E[Y])].$
- **Correlation:** $\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\text{SD}(X)\text{SD}(Y)}$.
- $E(aX + b) = aE(X) + b$.
- $Var(aX + b) = a^2Var(X)$.
- If X, Y are independent then $E(aX + bY) = aE(X) + bE(Y)$ and $Var(aX + bY) = a^2Var(X) + b^2Var(Y).$
- If $N \sim G(\mu, \sigma)$ then $\text{pnorm}(x, \mu, \sigma) = P(N \leq x)$ and $\text{qnorm}(x, \mu, \sigma) = a$ where $P(N \le a) = x$.
- **Central Limit Theorem:** If X_1, \ldots, X_n independent with $E(X_i) = \mu$ $\sum_{i=1}^{n} X_i - n\mu$

and
$$
\text{Var}(X_i) = \sigma^2
$$
 then $\frac{i=1}{\sigma\sqrt{n}} \sim G(0,1)$ and $\frac{X-\mu}{\sigma/\sqrt{n}} \sim G(0,1)$.

1 Statistical Sciences

- **Unit:** Individual person, place, or thing we take measurements about.
- **Population:** Collection of units.
- **Process:** Ongoing system by which units are produced.
- **Variate:** Characteristics of unit that can be measured. One of discrete (countably many values), continuous (infinite precision), categorical (categories), ordinal (categories with ordering), complex (e.g., text).
- **Attribute:** Function of of a variate defined for all units.
- **Sample Survey:** Study of finite population by taking a representative sample.
- **Observational Study:** Study of population or process collected routinely over time without attempting to change any variates.
- **Experimental Study:** Study of population where specific variates are changed or fixed.
- Sample Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i \overline{y})^2 = \frac{1}{n-1} (\sum_{i=1}^n (y_i^2) n\overline{y}^2)$ • **Sample Range:** range = $\max_i(y_i) - \min_i(y_i) = y_{(n)} - y_{(1)}$
- **Sample Quantile:** pth quantile or 100pth percentile is the value q where $q(p) = P(X \leq q) = p$.
- **Inter-Quartile Range (IQR):** $IQR = q(0.75) q(0.25)$. 1

$$
\sum_{i=1}^{n} (y_i - \overline{y})^3
$$

• Sample Skewness:
$$
\frac{n}{\left[\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y})^2\right]^{3/2}}
$$
Skewness

tail, skewness > 0 implies right tail, skewness ≈ 0 implies symmetric.

• **Sample Kurtosis:** $\frac{1}{n}$ $\sum_{i=1}^{n} (y_i - \overline{y})^4$ $\frac{i=1}{\left[\frac{1}{n}\sum\limits_{i=1}^{n}(y_i-\overline{y})^2\right]^2}$. Kurtosis < 3 implies light tails,

kurtosis > 3 implies heavy tails, kurtosis ≈ 3 implies normal tails.

- **Normality:** Normal distribution should have: (1) mean and median approximately equal, (2) skewness ≈ 0 , (3) kurtosis ≈ 3 , (4) approximately 95% of observations should be in $[\overline{y} - 2s, \overline{y} + 2s]$ (5) histogram or e.c.d.f. should agree with theoretical c.d.f., (6) Q-Q plot should be approximately a straight line.
- **Five Number Summary:** $(y_{(1)}, q(0.25), q(0.5), q(0.75), y_{(n)})$.
- **Relative Risk:** $R = \frac{A_1/(A_0+A_1)}{B_1/(B_0+B_1)}$. Likelihood of presenting variate based on membership. X_0 not presenting, X_1 presenting.
- **Estimation Problem:** Estimating attributes of a population/process.
- **Hypothesis Testing Problem:** Assessing the truth of a question.
- **Prediction Problems:** Predicting future value of variate of a unit.

2 Models and MLE

- **Likelihood Function:** $L(\theta) = L(\theta; y) = P(Y = y; \theta)$ where $\theta \in \Omega$.
- **Maximum Likelihood Estimate:** $\hat{\theta}_{MLE} = \arg \max_{\theta \in \Omega} L(\theta)$.
- **Relative Likelihood Function:** $R(\theta) = \frac{L(\theta)}{L(\hat{\theta}_{MLE})}$ where $\theta \in \Omega$.
- Log Likelihood Function: $\ell(\theta) = \log L(\theta)$ where $\theta \in \Omega$.
- Log Relative Likelihood Function: $r(\theta) = \log R(\theta)$ where $\theta \in \Omega$.
- Note that $\hat{\theta}_{MLE}$ is the value that maximizes $L(\theta)$, $R(\theta)$, and $\ell(\theta)$.
- **Likelihood of Continuous Variables:** If we have i.i.d. observations Y_1, \ldots, Y_n then $L(\theta) = \prod_{i=1}^n f(y_i; \theta)$ where f is the p.d.f.
- **Invariance of MLE:** $g(\hat{\theta}_{MLE})$ is the MLE of $g(\theta)$.
- **Q-Q Plot:** A plot of the points $(\phi^{-1}\left(\frac{i}{n+1}\right), y_{(i)})$ where ϕ^{-1} is the inverse of the c.d.f. of $G(0,1)$. If the data is approximately Gaussian this should be a straight line.

- kth Moment: $\mu_k = E(Y^k)$. Sample kth moment: $m_k = \frac{1}{n} \sum_{i=1}^n y_i^k$.
- **Method of Moments Estimate:** Estimate parameters by:
- 1. Compute the first p sample moments where p is the number of unknown parameters.
- 2. Relate the population moments to the true parameter values.
- 3. Use the sample moments to solve the resulting system of equations to estimate the parameters.

3 Conducting Studies

• **PPDAC:**

 < 0 implies left

- **–** Problem: A clear statement of the study's objectives.
- **–** Plan: The procedures used to carry out the study including how the data will be collected.
- **–** Data: The physical collection of the data, as described in the plan. **–** Analysis: The analysis of the data collected in light of the problem
- and the plan. **–** Conclusion: The conclusions that are drawn about the problem and their limitations.
- **Target Population:** The population (or process respectively) to which we want the conclusions to apply.
- **Study Population:** The population of units available to be included in the study. Hopefully subset of target population.
- **Study Error:** The difference in attributes between the target and study populations.
- Sample Error: The difference in attributes between the study population and the sample. Random samples have no sample error.
- **Measurement Error:** The difference between true values of variates and measured values of variates for units in the sample.

4 Estimation

- **Point Estimator:** Function $\tilde{\theta} = g(Y_1, \ldots, Y_n)$ of observations Y_1, \ldots, Y_n . Gives point estimate $\hat{\theta} = g(y_1, \ldots, y_n)$. Distribution of $\tilde{\theta}$ is called the sampling distribution of the estimator.
- **Bias:** How much we expect an estimator to be off by. Bias $(\tilde{\theta}) = E[\tilde{\theta}] \theta$.
- **Mean Squared Error (MSE):** Trade off between bias and variance of estimator. $MSE(\tilde{\theta}) = E[(\tilde{\theta} - \theta^2)] = Var(\tilde{\theta}) + Bias(\tilde{\theta})^2$.
- **Score Function:** $U(\theta;Y) = \frac{\partial}{\partial \theta} \ell(\theta;Y) = \frac{1}{L(\theta;Y)} \frac{\partial}{\partial \theta} L(\theta;Y)$, i.e., the slope of $\ell(\theta)$ at the true θ . $U(\theta; Y)$ is a random variable with $E[U|\theta] = 0$. • **Fisher Information:** The variance of the score function given by
- $\mathcal{I}(\theta) = E \left\{ \left[\frac{\partial}{\partial \theta} \ell(\theta; Y) \right]^2 \right\}$ $\theta \Big\} = -E \left[\frac{\partial^2}{\partial \theta^2} \log L(\theta;Y) \Big| \theta \right].$ Low information means blunt log-likelihood, high information means sharp loglikelihood. Low information means lots of values of $\ddot{\theta}$ are similarly good to the MLE. If Y_1, \ldots, Y_n are i.i.d. then $\mathcal{I}(\theta) = n\mathcal{I}_1(\theta)$ where $\mathcal{I}_1(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} \log L(\theta; Y_1) \Big| \theta \right].$
- **Cramér-Rao Lower Bound:** For any unbiased estimator $\tilde{\theta}$ of θ we have $\text{Var}(\tilde{\theta}) \ge \frac{1}{\mathcal{I}(\theta)}$.
- **Efficiency:** $e(\tilde{\theta}) = \frac{1/\mathcal{I}(\theta)}{Var(\tilde{\theta})}$ where $\tilde{\theta}$ is an unbiased estimator of θ . Note $0 < e(\tilde{\theta}) \leq 1$ and if $e(\tilde{\theta}) = 1$ then $\tilde{\theta}$ is said to be efficient or be the minimum-variance unbiased estimator of θ .
- 100p**% Likelihood Interval:** The set $\{\theta : R(\theta) \ge p\} = \{\theta : r(\theta) \ge$ log p}. These are the values of θ which makes the data at least $100p\%$ as likely as if $\theta = \hat{\theta}_{MLE}.$
- **Coverage Probability:** Probability $P(\theta \in [L(Y), U(Y)]) = P(L(Y) \leq$ $\theta \leq U(Y)$) where $[L(Y), U(Y)]$ is an interval estimator for θ .
- 100p**% Confidence Interval:** The smallest (usually symmetric) interval estimate $[L(Y), U(Y)]$ with coverage $P(L(Y) \leq \theta \leq U(Y)) = p$.
- **Pivotal Quantity:** $Q = Q(Y; \theta)$ function of the data and unknown parameter θ such that the distribution is known.
- **Approximate Pivotal Quantity:** $Q_n = Q_n(Y_1, \ldots, Y_n; \theta)$ such that as $n \to \infty$, Q_n is a known distribution (which doesn't rely on unknowns).
- Likelihood Ratio Statistic: $\Lambda(\theta) = -2 \log \left(\frac{L(\theta;Y)}{L(\hat{\theta}_{MLE};Y)} \right) = -2r(\theta)$ is a random variable. For large $n, \Lambda(\theta) \sim \chi_1^2$ approximately.
- Gaussian *μ* CI: A 100*p*% confidence interval for *μ* given data $Y_1, \ldots, Y_n \sim G(\mu, \sigma)$ is given by $\overline{y} \pm a \frac{s}{\sqrt{n}}$ where $a = \text{qt}(\frac{1+p}{2}, n-1)$.
- **Gaussian** σ **CI:** A 100p% confidence interval for σ given data $Y_1, \ldots, Y_n \sim G(\mu, \sigma)$ is given by $\left[\sqrt{\frac{(n-1)s^2}{b}}, \sqrt{\frac{(n-1)s^2}{a}}\right]$ where $a =$

qchisq $\left(\frac{1-p}{2}, n-1\right)$ and $b =$ qchisq $\left(\frac{1+p}{2}, n-1\right)$.

- A 100 $q\%$ confidence interval is approximately equivalent to a 100 $p\%$ likelihood interval where $p = e^{-c/2}$ and $c = \text{qchisq}(q, 1) = \text{qnorm}(\frac{q+1}{2})^2$.
- A 100p% likelihood interval is approximately equivalent to a $100q\%$ confidence interval where $q = \text{pchisq}(d, 1) = 2 \cdot \text{pnorm}(\sqrt{d}) - 1$ and $d = -2 \log p$. Note q is the coverage of the likelihood interval.
- Important pivotal quantities:
	- $-\frac{Y-\mu}{1/\sqrt{n}} \sim G(0,1)$ (exact).
	- $-\Lambda(\theta) = -2 \log \left(\frac{L(\theta;Y)}{L(\hat{\theta}_{MLE};Y)} \right) \sim \chi_1^2$ (approx). $-\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ where $Y_1, \ldots, Y_n \sim G(\mu, \sigma)$ (exact). 2 $-\frac{Y-\mu}{S/\sqrt{n}} \sim t_{n-1}$ where $Y_1, \ldots, Y_n \sim G(\mu, \sigma)$ (exact).
	- $-\frac{\overset{\cdot}{\theta}-\theta}{\sqrt{\frac{\theta(1-\theta)}{n}}}$ $\sim G(0, 1)$ where $Y \sim Bin(n, \theta)$ (approx).
- Building a $100p\%$ confidence interval for θ :
	- 1. Find a pivotal quantity $Q(Y; \theta)$.
		- 2. Find a, b such that $P(a \leq Q(Y;\theta) \leq b) = p$. I.e. find a, b so that $P(Q \le a) = 1 - P(Q \le b) = \frac{1-p}{2}$ $\frac{-p}{2}$.
		- 3. Re-express the inequality as $P(L(Y) \leq \theta \leq U(Y)) = p$.
		- 4. $[L(y), U(y)]$ is a 100p% confidence interval for θ given the observed data y.

5 Hypothesis Testing

- **Null Hypothesis:** Default hypothesis; H_0 .
- **Alternate Hypothesis:** Hypothesis to be tested; H_A .
- **Discrepancy Measure:** Function of the data $D = g(Y)$ which measures agreement between data and H_0 . $d = g(y) \approx 0$: high agreement with H_0 ; $d >> 0$: high disagreement. Commonly $D = |Y - E[Y]|$.
- **p-value:** The value $P(D \geq d; H_0)$. I.e., the probability that data assuming H_0 are at least as surprising as our observed data. If $p \approx 0$ we are surprised if H_0 is true.
- p -value $\geq 1 q$ iff θ_0 is in the 100q% confidence interval of θ .
- **Type 1 error:** Rejecting H_0 when H_0 is actually true. (False positive rejection.) Type 1 error rate is $P(p < \alpha) = \alpha$.
- **Type 2 error:** Accepting H_0 when H_0 is actually false. (False negative rejection.) Type 2 error rate is denoted β .
- **Power:** Probability to reject H_0 when H_0 is actually false (True positive rejection.): power = $1-\beta$. This is the ability to recognize a signal (weird data).
- Testing a Hypothesis (general):
	- 1. Specify the null hypothesis H_0 and propose a model.
2. Specify a discrepancy measure $D(Y)$ where $D >> 0$ c
	- Specify a discrepancy measure $D(Y)$ where $D >> 0$ corresponds to data inconsistent with H_0 . Compute $d = D(y)$.
	- 3. Calculate $p value = P(D \ge d; H_0)$.
	- 4. Draw conclusions.

• Testing
$$
H_0: \mu = \mu_0
$$
 given data $Y_1, \ldots, Y_n \sim G(\mu, \sigma)$.

- 1. Use $D = \frac{|Y \mu_0|}{S/\sqrt{n}}$ to compute $d = D(y)$.
- 2. Calculate $p value = 2[1 P(T \le d)]$ where $T \sim t_{n-1}$. 3. Draw conclusions.
- Testing $H_0: \sigma = \sigma_0$ given data $Y_1, \ldots, Y_n \sim G(\mu, \sigma)$.
	- 1. Use $U = \frac{(n-1)s^2}{r^2}$ $\frac{\sigma_0^{-1}S}{\sigma_0^2}$ to compute $u = U(y)$.
	- 2. Compute $P(\tilde{U} \leq u)$ for $U \sim \chi^2_{n-1}$.
	- 3a. If $P(U \le u) < 0.5$ then p value = $2P(U \le u)$.

3b. If
$$
P(U \le u) < 0.5
$$
 then $p - \text{value} = 2(1 - \overline{P}(U \le u)).$

- Testing H_0 : $\theta = \theta_0$ using likelihood ratio statistic:
	- 1. Find $L(\theta)$ and the MLE $\hat{\theta}$.
	- 2. Compute $\lambda(\theta_0) = -2\log(\frac{L(\theta_0)}{L(\hat{\theta})}).$
	- 3. Then p-value = $1 P(W \leq \lambda(\theta_0))$ for $W \sim \chi_1^2$ approximately.

6 Gaussian Response Models

• **Residual:** The vertical distance between a point and a fitted line.

• $S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = n \operatorname{Cov}(x, y)$. In particular $SS = S_{yy}$.

- **Least-Square Estimate:** The predictions $\hat{y}_i = \mu(x_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}$ $\cdots + \beta_k x_{ik}$ which minimizes the sum of square residuals. Assumes $Y_i \sim$ $G(\mu(x_i), \sigma)$ (homoscedasticity). Where $k = 1$, we have $Y \sim G(\alpha + \beta x, \sigma)$ and $\hat{\beta} = \frac{S_{xy}}{S_{xx}}$ and $\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$, these are also the MLEs. $\hat{\beta}_j$ represents the increase in the mean of the response variate for a one unit increase in the explanatory variate x_j when the other variates are fixed.
- Sum of Square Errors/Residuals: $SSE = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$.
- Sum of Square Regressions: $SSR = \sum_{i=1}^{n} (\hat{y}_i \overline{y})^2 = S_{yy} SSE$.
- **Mean Squared Error** $s_e^2 = \frac{1}{n-k-1} \sum_{i=1}^n$ $(y_i - \beta_0 - \sum_{j=1}^k \beta_j x_{ij})^2$. If $k = 1$ then $s_e^2 = \frac{1}{n-k-1} (S_{yy} - \hat{\beta} S_{xy})$. Note: $E[S_e^2] = \sigma^2$ and $\frac{(n-2)S_e^2}{\sigma^2} \sim \chi^2_{n-2}$.
- $\tilde{\beta}$ **Distribution**: If $Y_i \sim G(\alpha + \beta x_i, \sigma)$, then $\tilde{\beta} = \frac{1}{S_{xx}} \sum_{i=1}^{n} (x_i \overline{x}) Y_i$ So $\tilde{\beta} \sim G(\beta, \frac{\sigma}{\sqrt{S_{xx}}})$ and $\frac{\tilde{\beta} - \beta}{S_e/\sqrt{S_{xx}}} \sim t_{n-2}$.

- **Simple Linear Regression Tests and Intervals:**
	- $H_0: \beta = \beta_0$ has p-value $= 2 \left[1 P\left(T \le \frac{|\hat{\beta} \beta_0|}{s_e / \sqrt{S_{xx}}}\right) \right]$ for $T \sim t_{n-2}$.

$$
-\beta \text{ has a } (100p\%) \text{ CI of } \hat{\beta} \pm a \frac{s_e}{\sqrt{S_x}x} \text{ for } a = \text{qt}(\frac{1+p}{2}, n-2).
$$

- α has a CI of $\hat{\alpha} \pm as_e \sqrt{\frac{1}{n} + \frac{(\overline{x})^2}{S_{xx}}}$ $\frac{(\overline{x})^2}{S_{xx}}$ for $a = \text{qt}(\frac{1+p}{2}, n-2)$.
- $\mu(x)$ has a CI of $\hat{\mu}(x) \pm as_e \sqrt{\frac{1}{n} + \frac{(\overline{x-x})^2}{S_{xx}}}$ $\frac{(x-x)^2}{S_{xx}}$ for $a = \text{qt} \frac{1+p}{2}, n-2$.

$$
-\mu(x) \text{ has a PI of } \hat{\mu}(x) \pm a s_e \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}} \text{ for } a = \mathbf{qt} \frac{1 + p}{2}, n - 2).
$$

- R^2 **Statistic:** $R^2 = 1 \frac{SSE}{S_{yy}} = \frac{SSR}{SS} = \frac{\text{Variation explained by regression}}{\text{Total variation}}$. We want R^2 close to 1, as this explains more variation.
- **Adjusted** R^2 : Adjusted $R^2 = 1 \frac{SSE/(n-k-1)}{S_{yy}/(n-1)}$. Compensates for the fact that adding more variables can artificially improve R^2 .
- **Model Checking:** Need Y_i to have Gaussian distribution with constant variance (homoscedasticity) and $E[Y_i] = \mu(x_i)$ to be linear in x_i . Can check using graphics: should be linear and evenly spread. Using residual plots: residual $\hat{r}_i = y_i - \hat{y}_i$ should be drawn from $G(0, \sigma)$ and standardized residual $\hat{r}_i^* = \frac{\hat{r}_i}{s_e}$ should be drawn from $G(0, 1)$. Plotting standardized residual plot $(x_i, \hat{r_i})$, 99.7% of points should be in $(-3, 3)$ and should be evenly spread out around 0. Plot $(\hat{\mu_i}(x_i), \hat{r_i^*})$ for multiple linear regression. Can also check normality of residuals using Q-Q plots.
- **Regression Pitfalls:** (1) Multicolinearity: when 2 or more variates are highly correlated, can lead to incorrect conclusions. (2) Predicting beyond covariate range: model assumption may not hold, lack of data.
- **Generalized Linear Model (GLM):** (1) Probability distribution for response variate, (2) linear model $\eta = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$, (3) link function from linear model to parameters of outcome distribution.
- **Odds:** The odds of event A are odds(A) = $\frac{P(A)}{1-P(A)}$. Prefer odds at times since $\text{odds}(A) \in \mathbb{R}$, not just [0, 1].
- **Logit** $g : [0,1] \to \mathbb{R}$ with $g(p) = \text{logit}(p) = \text{log}(\text{odds}(p)) = \text{log}(\frac{p}{1-p}),$ also called log odds. Has inverse $g^{-1}(x) = \frac{1}{1+e^{-x}}$.
- Log Odds Ratio: If O_1 , O_2 are the odds of events, then the log odds ratio $log(\frac{O_1}{O_2})$ is positive if event 1 is more probable than event 2.
- **Logistic Regression:** GLM with logit as the link function. If we consider outcomes as $Y_i \sim Bin(1, p_i)$, we can fit logit $(p_i) = \eta_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$ and then recover $p_i = \frac{1}{1 + e^{-\eta_i}}$. We can interpret $\hat{\beta}_j$ as the increase in log odds or equivalently as the log odds ratio. So $\hat{\beta}_j > 0$ if and only if p_i increases as x_{ij} increases. Assumes events are independent (i.e., Y_1, \ldots, Y_n), linear regression if appropriate for the log odds.
- Logistic Regression Model Checking: Split the events y_i by quantiles along a covariate with $p = \frac{\text{successes}}{\text{events}}$ for each quantile. Plot the log odds against the median of the covariate in each quantile. If the relationship is linear, logistic regression seems appropriate.
- **Two Sample Gaussian (Equal)** Testing H_0 : $\mu_1 \mu_2 = 0$ given $Y_{1,1}, \ldots, Y_{1n_1} \sim G(\mu_1, \sigma)$ and independently $Y_{2,1}, \ldots, Y_{2n_2} \sim G(\mu_2, \sigma)$.

1. Note
$$
\tilde{\mu_1} - \tilde{\mu_2} = \overline{Y_1} - \overline{Y_2} \sim G(\mu_1 - \mu_2, \sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}})
$$

2. Compute $S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2}$ so that $E[S^2] = \sigma$

2. Compute
$$
S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}
$$
 so that $E[S_p^2] = \sigma^2$.

3. Then
$$
\frac{Y_1 - Y_2 - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}.
$$

4a. CI for $\mu_1 - \mu_2$ is $\overline{y_1} - \overline{y_2} \pm a s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ for $a = \text{qt}(\frac{1+p}{2}, n_1 + n_2 - 2)$.

Two Sample Gaussian (Unequal) Testing $H_0: \mu_1 - \mu_2 = 0$ given $Y_{1,1}, \ldots, Y_{1n_1} \sim G(\mu_1, \sigma_1)$ and independently $Y_{2,1}, \ldots, Y_{2n_2} \sim G(\mu_2, \sigma_2)$. 1. $\frac{\overline{Y_1} - \overline{Y_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ $\sim G(0, 1)$ approximately for $n_1, n_2 \geq 30$.

$$
\sqrt[n_1 \cdot n_2]
$$

2a. CI for $\mu_1 - \mu_2$ is $\overline{y_1} - \overline{y_2} \pm a \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ for $a = \text{quorm}(p)$.
2b. *p*-value = 2[1 - $P(Z \le d)$] for $d = \frac{|\overline{y_1} - \overline{y_2} - 0|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ and $Z \sim G(0, 1)$.

Two Sample Gaussian (Paired) Testing H_0 : $\mu_1 - \mu_2 = 0$ given $Y_{1,1}, \ldots, Y_{1n_1} \sim G(\mu_1, \sigma)$ and $Y_{2,1}, \ldots, Y_{2n_2} \sim G(\mu_2, \sigma)$. 1. Set $Y_i = Y_{1i} - Y_{2i} \sim G(\mu_1 - \mu_2, \sigma)$. Check $y_1, ..., y_n$ is Gaussian.
2a. CI for $\mu = \mu_1 - \mu_2$ is $\overline{y} \pm a \frac{s}{\sqrt{n}}$ for $a = \text{qt}(\frac{1+p}{2}, n-1)$. 2b. *p*-value = 2[1 – $P(T \le d)$] for $d = \frac{|\overline{y}-0|}{s/\sqrt{n}}$ and $T \sim t_{n-1}$.

7 Multinomial Models and Goodness of Fit Tests

- **Multinomial MLE:** Multinomial has $L(\theta) \propto \theta_1^{y_1} \cdots \theta_k^{y_k}$ and $\hat{\theta_j} = \frac{y_j}{n}$.
- Pearson's Goodness of Fit Statistic: $D = \sum_{j=1}^{k} \frac{(Y_j E_j)^2}{E_j}$ $\frac{-E_j}{E_j}$.
- **Degrees of Freedom:** Number of values which are free to move. • Testing $H_0: \theta_j = \frac{E_j}{n}$ where $e_j \geq 5$:
	- 1. Compute either $\lambda = 2 \sum_{j=1}^{k} y_j \log(\frac{y_j}{e_j})$ or $d = \sum_{j=1}^{k} \frac{(y_j e_j)^2}{e_j}$ $\frac{-e_j}{e_j}$.
	- 2. *p*-value $\approx 1 P(W \le \lambda) \approx P(W \le d)$ for $W \sim \chi^2_{k-1-p}$ where $k=$ $#$ of categories and $p = #$ of estimated parameters.
- Testing independence in two-way table: assume categories are A_1, \ldots, A_a and B_1, \ldots, B_b .
	- 1. Let r_i be the sum of row i, c_i be the sum of column j.
	- 2. Let $\alpha_i = P(A_i)$ and $\beta_j = P(B_j)$ with MLE $\hat{\alpha_i} = \frac{r_i}{n}$ and $\hat{\beta_j} = \frac{c_j}{n}$.
	- 3. $Y_{11}, Y_{12}, \ldots, Y_{ab} \sim Multinomial(n; \theta_{11}, \theta_{12}, \ldots, \theta_{ab}).$ Independence iff $H_0: \theta_{ij} = \alpha_i \beta_j$ is true.

4. Expected count for
$$
A_i \cap B_j
$$
 is $E_{ij} = n\alpha_i \beta_j$ so $e_{ij} = \frac{r_i c_j}{n}$.

5. Compute
$$
\lambda = 2 \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij} \log(\frac{y_{ij}}{e_{ij}})
$$
.

6. If $e_{ij} \geq 5$, then p-value $\approx 1 - P(W \leq \lambda)$ for $W \sim \chi^2_{(a-1)(b-1)}$.

8 Causality

• **Possible Relations Between Variates:**

- 1. Explanatory variate is the direct cause of the response variate.
- 2. Response variate is the direct cause of the explanatory variate.
- 3. Explanatory variate is a contributing cause of the response variate.
- 4. Both variates are changing with time.
5. The association is due to coincidence. The association is due to coincidence.
- 6. Both variates have a common cause.
- **Confounding Variate:** When two variates have a common cause, the cause is called a confounding variate or confounder.

• **Dealing with Confounders:**

- **–** Twin studies: place one identical twin in each group.
- **–** Matching: find similar units from each group.
- **–** Randomization: randomly associate each unit with a group. This could lead to disproportionate groups, or be unethical.

• **Establishing Causation in Observational Studies:**

- 1. The association between variates must be observed in many studies of different types among different groups.
- 2. The association must hold when the effects of plausible confounders are taken into account.
- 3. There must be a plausible scientific explanation for the direct influence of one variate on the other.
- 4. There must be a consistent response.
- **Counterfactual:** The effect that would have happened in the other case. E.g., $Y(0)$ for didn't take drug, $Y(1)$ for did take drug.
- **Average Causal Effect:** $\tau = E[Y(1) Y(0)] = \frac{1}{n} \sum_{i=1}^{n} (Y(1) Y(0)).$
- **Propensity Score:** $\pi(x) = P(A = 1 | X = x)$ where A is group, X is a variate. Often we estimate this by logistic regression.
- Inverse Probability Weighting (IPW): $\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^{n}$ $\frac{y_i \cdot 1_{(A_i=1)}}{\hat{\pi}(x_i)}$ and

 $\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n$ $y_i \cdot 1_{(A_i=0)}$ are such that $E[\tilde{\mu_0}] = E[Y(0)]$ and $E[\tilde{\mu_1}] =$ $E[Y(1)]$. Assumptions:

- 1. Consistency: $Y_i = Y_i(0)1_{(A_i=0)} + Y_i(1)1_{(A_i=1)}$.
- 2. Stable Unit Treatment Value Assumption (SUTVA): one patient receiving a treatment doesn't affect other patients' treatment.
- 3. No Unmeasured Confounder (NUC): every confounding variate is accounted for in the model.
- 4. Positivity: $0 < \pi(x) < 1$ for all x. Every subject has a non-zero chance of assignment to each treatment.

• **DAGs**

• Can close an open (backdoor or direct) path by accounting for it in the model. Should only do this to backdoor paths. Can open a closed (blocked) path by accounting for it in the model. Should not do this.

Distributions

- Gaussian: (Continuous) Has p.d.f. $\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/(2\sigma^2)}$. Arises from central limit theorem.
- χ^2_k : (Continuous) $k \geq 1$ denotes the degrees of freedom. Has p.d.f. $f(x;k) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{(k/2)-1} e^{-x/2}$. Properties:
	- 1. If W_1, \ldots, W_n are i.i.d. with $W_i \sim \chi_{k_i}^2$, then $\sum_{i=1}^n W_i \sim \chi_{\sum k_i}^2$. 2a. If $Z \sim G(0, 1)$, then $Z^2 \sim \chi_1^2$. So, $P(W \ge w) = 2(1 - P(z \le \sqrt{w}))$ 2a. If $Z \sim G(0, 1)$, then $Z \sim \chi_1$. So, $F(W \le$
and $P(W \le w) = 2P(Z \le \sqrt{w}) - 1$.
2b. If $Z_1, ..., Z_n \sim G(0, 1)$, then $\sum_{i=1}^{n} Z_i^2 \sim \chi_n^2$.

3. If $W \sim \chi_2^2$, then $W \sim Exp(2)$.

• Student t_k : (Continuous) $k \geq 1$ denotes the degrees of freedom. Has p.d.f. $f(x;k) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})} \left(1 + \frac{t^2}{k}\right)$ $\left(\frac{k^2}{k}\right)^{-(k+1)/2}$. Properties: 1. $\lim_{k \to \infty} t_k \sim G(0, 1)$.

2. If
$$
Z \sim G(0, 1)
$$
 and $U \sim \chi_k^2$, then $\frac{Z}{\sqrt{U/k}} \sim t_k$.

- Exponential: (Continuous) Assuming Poisson process for events which occur on average θ times per time unit, X denotes the number of time units before the first event occurs. Has c.d.f. $1 - e^{-x/\theta}$.
- Poisson: (Discrete) Number of events which take place in a given period of time, where on average θ events take place. X denotes the number of events. Often we assume a Poisson process:
	- 1. Independence: Events are independent from each other.
	- 2. Individuality: As the time frame Δt goes to zero, the number of events goes to zero.
	- 3. Uniformity: Events occur at a uniform rate over time.
- Binomial: (Discrete) Performing n Bernoulli (success/failure) trials, each with a p chance of success. X denotes the number of successes.
- Bernoulli: (Discrete) Binomial with $n = 1$.
- Negative Binomial: (Discrete) Performing Bernoulli (success/failure) trials, each with a p chance of success, until we get k successes. X denotes the number of failures before getting k successes.
- Geometric: (Discrete) Negative Binomial with $k = 1$.
- Hypergeometric: (Discrete) Drawing n objects (without replacement) from a group of N total objects, r of which are considered a success. X denotes the number of drawn successes.
- Multinomial: (Discrete) Performing n trials with k outcomes, each outcome having probability p_i . X_i denotes the number of events of type *i*.
 $f(x_1, \ldots, x_k) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}; E[X_i] = np_i; Var[X_i] = np_i(1-p_i).$
- Uniform: (Continuous) Drawing randomly and uniformly from an interval. X denotes the drawn value. Has c.d.f. $\frac{x-a}{b-a}$.

Other suffixes include hyper for hypergeometric, geom for geometric, nbinom for negative binomial, unif for uniform (continuous).

- Estimate is $\hat{\beta}$ for given covariate ($\hat{\alpha}$ for intercept).
- Std. Error is $SD(\tilde{\beta}_i) = \frac{s_e}{\sqrt{S_e}}$ $\sqrt{s_{x_ix_i}}$ $=$ for given *i*.
-
- t value is test statistic $t = \frac{\text{Estimate}}{\text{Std. Error}}$.
• Pr(>|t|) is 2 * (1 − pt(|t value|, df)) is *p*-value for $H_0: \beta_i = 0$.
- Residual standard error is s_e .
- Multiple R-squared and Adjusted R-squared is R^2 and adjusted R^2 .

 $predict(mod, data-frame(x1=x_1,...,xn=x_n), interval-type, level=p)$ where type \in {"confidence", "prediction"} and $\alpha \in (0,1)$ gives $100p\%$ type interval for covariates x_1, \ldots, x_n .