0 STAT 230 review

- If A, B are independent $P(A \cap B) = P(A)P(B)$.
- Conditional Probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$.
- •
- Bayes' Theorem: $P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|\overline{A})P(\overline{A}) + P(B|A)P(A)}$ Variance: $Var(X) = E[(X E[X])^2] = E[X^2] E[X]^2$. •
- Covariance: $\operatorname{cov}(X, Y) = E[(X E[X])(Y E[Y])].$
- Correlation: $\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\operatorname{SD}(X)\operatorname{SD}(Y)}$. •
- E(aX+b) = aE(X) + b.
- $Var(aX+b) = a^2 Var(X).$
- If X, Y are independent then E(aX + bY) = aE(X) + bE(Y) and $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y).$
- If $N \sim G(\mu, \sigma)$ then $\operatorname{pnorm}(x, \mu, \sigma) = P(N \le x)$ and $\operatorname{qnorm}(x, \mu, \sigma) = a$ where $P(N \leq a) = x$.
- **Central Limit Theorem:** If X_1, \ldots, X_n independent with $E(X_i) = \mu$ $\sum_{i=1}^{n} X_i - n\mu$

and
$$\operatorname{Var}(X_i) = \sigma^2$$
 then $\frac{\sum_{i=1}^{M_i} n\mu}{\sigma\sqrt{n}} \sim G(0,1)$ and $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim G(0,1)$.

Statistical Sciences 1

- Unit: Individual person, place, or thing we take measurements about.
- Population: Collection of units.
- **Process:** Ongoing system by which units are produced.
- Variate: Characteristics of unit that can be measured. One of discrete (countably many values), continuous (infinite precision), categorical (categories), ordinal (categories with ordering), complex (e.g., text).
- Attribute: Function of of a variate defined for all units.
- Sample Survey: Study of finite population by taking a representative sample.
- Observational Study: Study of population or process collected routinely over time without attempting to change any variates.
- Experimental Study: Study of population where specific variates are changed or fixed.
- Sample Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i \overline{y})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n (y_i^2) n \overline{y}^2 \right)$ Sample Range: range $= \max_i (y_i) \min_i (y_i) = y_{(n)} y_{(1)}$
- Sample Quantile: pth quantile or 100pth percentile is the value qwhere $q(p) = P(X \le q) = p$.
- Inter-Quartile Range (IQR): IQR = q(0.75) q(0.25).

$$\sum_{i=1}^{n} (y_i - \overline{y})^3$$

• Sample Skewness:
$$\frac{n}{\left[1-\frac{n}{2}\right]^{3/2}}$$
. Skewness < 0 implies left

 $\left\lfloor \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2 \right\rfloor$ tail, skewness > 0 implies right tail, skewness ≈ 0 implies symmetric.

• Sample Kurtosis:
$$\frac{\frac{1}{n}\sum\limits_{i=1}^{n}(y_i-\overline{y})^4}{\left[\frac{1}{n}\sum\limits_{i=1}^{n}(y_i-\overline{y})^2\right]^2}.$$
 Kurtosis < 3 implies light tails,

kurtosis > 3 implies heavy tails, kurtosis ≈ 3 implies normal tails.

- Normality: Normal distribution should have: (1) mean and median approximately equal, (2) skewness ≈ 0 , (3) kurtosis ≈ 3 , (4) approximately 95% of observations should be in $[\overline{y} - 2s, \overline{y} + 2s]$ (5) histogram or e.c.d.f. should agree with theoretical c.d.f., (6) Q-Q plot should be approximately a straight line.
- Five Number Summary: $(y_{(1)}, q(0.25), q(0.5), q(0.75), y_{(n)})$.
- Relative Risk: $R = \frac{A_1/(A_0 + A_1)}{B_1/(B_0 + B_1)}$. Likelihood of presenting variate based on membership. X_0 not presenting, X_1 presenting.
- Estimation Problem: Estimating attributes of a population/process.
- Hypothesis Testing Problem: Assessing the truth of a question.
 - Prediction Problems: Predicting future value of variate of a unit.

2 Models and MLE

- Likelihood Function: $L(\theta) = L(\theta; y) = P(Y = y; \theta)$ where $\theta \in \Omega$.
- Maximum Likelihood Estimate: θ̂_{MLE} = arg max_{θ∈Ω} L(θ).
 Relative Likelihood Function: R(θ) = L(θ)/L(θ̂_{MLE}) where θ ∈ Ω.
- Log Likelihood Function: $\ell(\theta) = \log L(\theta)$ where $\theta \in \Omega$.
- Log Relative Likelihood Function: $r(\theta) = \log R(\theta)$ where $\theta \in \Omega$.
- Note that $\hat{\theta}_{MLE}$ is the value that maximizes $L(\theta)$, $R(\theta)$, and $\ell(\theta)$.
- Likelihood of Continuous Variables: If we have i.i.d. observations Y_1, \ldots, Y_n then $L(\theta) = \prod_{i=1}^{n} f(y_i; \theta)$ where f is the p.d.f.
- Invariance of MLE: g(θ̂_{MLE}) is the MLE of g(θ).
 Q-Q Plot: A plot of the points (φ⁻¹(ⁱ/_{n+1}), y_(i)) where φ⁻¹ is the inverse of the c.d.f. of G(0,1). If the data is approximately Gaussian this should be a straight line.

- kth Moment: $\mu_k = E(Y^k)$. Sample kth moment: $m_k = \frac{1}{n} \sum_{i=1}^n y_i^k$.
- Method of Moments Estimate: Estimate parameters by:
- 1. Compute the first p sample moments where p is the number of unknown parameters.
 - 2. Relate the population moments to the true parameter values.
 - 3. Use the sample moments to solve the resulting system of equations to estimate the parameters.

3 Conducting Studies

• PPDAC:

- Problem: A clear statement of the study's objectives.
- Plan: The procedures used to carry out the study including how the data will be collected.
- Data: The physical collection of the data, as described in the plan. - Analysis: The analysis of the data collected in light of the problem
- and the plan. Conclusion: The conclusions that are drawn about the problem and their limitations.
- Target Population: The population (or process respectively) to which we want the conclusions to apply.
- Study Population: The population of units available to be included in the study. Hopefully subset of target population.
- Study Error: The difference in attributes between the target and study populations.
- Sample Error: The difference in attributes between the study population and the sample. Random samples have no sample error.
- Measurement Error: The difference between true values of variates and measured values of variates for units in the sample.

4 Estimation

- Point Estimator: Function $\tilde{\theta} = g(Y_1, \ldots, Y_n)$ of observations Y_1, \ldots, Y_n . Gives point estimate $\hat{\theta} = g(y_1, \ldots, y_n)$. Distribution of $\tilde{\theta}$ is called the sampling distribution of the estimator.
- **Bias:** How much we expect an estimator to be off by. $\operatorname{Bias}(\tilde{\theta}) = E[\tilde{\theta}] \theta$.
- Mean Squared Error (MSE): Trade off between bias and variance
- of estimator. $\text{MSE}(\tilde{\theta}) = E[(\tilde{\theta} \theta^2)] = \text{Var}(\tilde{\theta}) + \text{Bias}(\tilde{\theta})^2$. Score Function: $U(\theta; Y) = \frac{\partial}{\partial \theta} \ell(\theta; Y) = \frac{1}{L(\theta; Y)} \frac{\partial}{\partial \theta} L(\theta; Y)$, i.e., the slope of $\ell(\theta)$ at the true θ . $U(\theta; Y)$ is a random variable with $E[U|\theta] = 0$. • Fisher Information: The variance of the score function given by
- $\mathcal{I}(\theta) = E\left\{ \left[\frac{\partial}{\partial \theta} \ell(\theta; Y) \right]^2 \middle| \theta \right\} = -E\left[\frac{\partial^2}{\partial \theta^2} \log L(\theta; Y) \middle| \theta \right]. \text{ Low information}$ mation means blunt log-likelihood, high information means sharp loglikelihood. Low information means lots of values of $\hat{\theta}$ are similarly good to the MLE. If Y_1, \ldots, Y_n are i.i.d. then $\mathcal{I}(\theta) = n\mathcal{I}_1(\theta)$ where $\mathcal{I}_1(\theta) = -E\left[\frac{\partial^2}{\partial \theta^2} \log L(\theta; Y_1) \middle| \theta\right].$
- Cramér-Rao Lower Bound: For any unbiased estimator $\tilde{\theta}$ of θ we have $\operatorname{Var}(\tilde{\theta}) \geq \frac{1}{\mathcal{I}(\theta)}$.
- Efficiency: $e(\tilde{\theta}) = \frac{1/\mathcal{I}(\theta)}{Var(\tilde{\theta})}$ where $\tilde{\theta}$ is an unbiased estimator of θ . Note $0 < e(\tilde{\theta}) \leq 1$ and if $e(\tilde{\tilde{\theta}}) = 1$ then $\tilde{\theta}$ is said to be efficient or be the minimum-variance unbiased estimator of θ .
- 100p% Likelihood Interval: The set $\{\theta : R(\theta) \ge p\} = \{\theta : r(\theta) \ge p\}$ $\log p\}.$ These are the values of θ which makes the data at least 100p%as likely as if $\theta = \hat{\theta}_{MLE}$.
- **Coverage Probability:** Probability $P(\theta \in [L(Y), U(Y)]) = P(L(Y) \leq$ $\theta \leq U(Y)$ where [L(Y), U(Y)] is an interval estimator for θ .

- 100p% Confidence Interval: The smallest (usually symmetric) interval estimate [L(Y), U(Y)] with coverage $P(L(Y) \le \theta \le U(Y)) = p$.
- **Pivotal Quantity:** $Q = Q(Y; \theta)$ function of the data and unknown parameter θ such that the distribution is known.
- Approximate Pivotal Quantity: $Q_n = Q_n(Y_1, \ldots, Y_n; \theta)$ such that as $n \to \infty$, Q_n is a known distribution (which doesn't rely on unknowns).
- Likelihood Ratio Statistic: $\Lambda(\theta) = -2\log\left(\frac{L(\theta;Y)}{L(\hat{\theta}_{MLE};Y)}\right) = -2r(\theta)$
- is a random variable. For large n, $\Lambda(\theta) \sim \chi_1^2$ approximately. **Gaussian** μ **CI:** A 100p% confidence interval for μ given data $Y_1, \ldots, Y_n \sim G(\mu, \sigma)$ is given by $\overline{y} \pm a \frac{s}{\sqrt{n}}$ where $a = \mathsf{qt}(\frac{1+p}{2}, n-1)$.
- Gaussian σ CI: A 100p% confidence interval for σ given data $Y_1, \ldots, Y_n \sim G(\mu, \sigma)$ is given by $\left[\sqrt{\frac{(n-1)s^2}{b}}, \sqrt{\frac{(n-1)s^2}{a}}\right]$ where a =

 $qchisq(\frac{1-p}{2}, n-1)$ and $b = qchisq(\frac{1+p}{2}, n-1)$

- A 100q% confidence interval is approximately equivalent to a 100p% like-lihood interval where $p = e^{-c/2}$ and $c = \operatorname{qchisq}(q, 1) = \operatorname{qnorm}(\frac{q+1}{2})^2$.
- A 100p% likelihood interval is approximately equivalent to a 100q%confidence interval where $q = \text{pchisq}(d, 1) = 2 \cdot \text{pnorm}(\sqrt{d}) - 1$ and $d = -2\log p$. Note q is the coverage of the likelihood interval.
- Important pivotal quantities:

- $-\frac{\overline{Y}-\mu}{1/\sqrt{n}} \sim G(0,1) \text{ (exact).}$ $-\Lambda(\theta) = -2\log\left(\frac{L(\theta;Y)}{L(\hat{\theta}_{MLE};Y)}\right) \sim \chi_1^2 \text{ (approx).}$ $-\frac{(n-1)S^2}{\overline{Y}-\mu} \sim \chi_{n-1}^2 \text{ where } Y_1, \dots, Y_n \sim G(\mu,\sigma) \text{ (exact).}$ $-\frac{\overline{Y}-\mu}{S/\sqrt{n}} \sim t_{n-1} \text{ where } Y_1, \dots, Y_n \sim G(\mu,\sigma) \text{ (exact).}$ $-\frac{\theta-\theta}{\sqrt{\frac{\theta(1-\theta)}{n}}} \sim G(0,1) \text{ where } Y \sim Bin(n,\theta) \text{ (approx).}$
- Building a 100p% confidence interval for θ :
 - 1. Find a pivotal quantity $Q(Y;\theta)$.
 - 2. Find a, b such that $P(a \leq Q(Y; \theta) \leq b) = p$. I.e. find a, b so that $P(Q \le a) = 1 - P(Q \le b) = \frac{1-p}{2}$
 - Re-express the inequality as $P(L(Y) \le \theta \le U(Y)) = p$. 3.
 - 4. [L(y), U(y)] is a 100p% confidence interval for θ given the observed data u.

5 Hypothesis Testing

- Null Hypothesis: Default hypothesis; H₀.
- Alternate Hypothesis: Hypothesis to be tested; H_A .
- **Discrepancy Measure:** Function of the data D = g(Y) which measures agreement between data and H_0 . $d = g(y) \approx 0$: high agreement with H_0 ; d >> 0: high disagreement. Commonly D = |Y - E[Y]|.
- *p*-value: The value $P(D \ge d; H_0)$. I.e., the probability that data assuming H_0 are at least as surprising as our observed data. If $p \approx 0$ we are surprised if H_0 is true.
- $p-\text{value} \ge 1-q$ iff θ_0 is in the 100q% confidence interval of θ .
- **Type 1 error:** Rejecting H_0 when H_0 is actually true. (False positive rejection.) Type 1 error rate is $P(p < \alpha) = \alpha$.
- **Type 2 error:** Accepting H_0 when H_0 is actually false. (False negative rejection.) Type 2 error rate is denoted β .
- **Power:** Probability to reject H_0 when H_0 is actually false (True positive rejection.): power = $1-\beta$. This is the ability to recognize a signal (weird data).
- Testing a Hypothesis (general):
 - 1. Specify the null hypothesis H_0 and propose a model.
 - Specify a discrepancy measure D(Y) where D >> 0 corresponds to 2. data inconsistent with H_0 . Compute d = D(y). 3. Calculate p - value = $P(D \ge d; H_0)$.

 - 4. Draw conclusions.
- Testing $H_0: \mu = \mu_0$ given data $Y_1, \ldots, Y_n \sim G(\mu, \sigma)$.

 - 1. Use $D = \frac{|\overline{Y} \mu_0|}{S/\sqrt{n}}$ to compute d = D(y). 2. Calculate p value = $2[1 P(T \le d)]$ where $T \sim t_{n-1}$. 3. Draw conclusions.
- Testing $H_0: \sigma = \sigma_0$ given data $Y_1, \ldots, Y_n \sim G(\mu, \sigma)$.
 - 1. Use $U = \frac{(n-1)s^2}{\sigma_0^2}$ to compute u = U(y). 2. Compute $P(U \le u)$ for $U \sim \chi_{n-1}^2$. 3a. If $P(U \le u) < 0.5$ then $p \text{value} = 2P(U \le u)$. b. If $P(U \le v) < 0.5$ then p_{1} where $2P(U \le u)$.

Bb. If
$$P(U \leq u) < 0.5$$
 then p - value = $2(1 - \overline{P}(U \leq u))$.

- Testing $H_0: \theta = \theta_0$ using likelihood ratio statistic:

 - 1. Find $L(\theta)$ and the MLE $\hat{\theta}$. 2. Compute $\lambda(\theta_0) = -2\log(\frac{L(\theta_0)}{L(\hat{\theta})})$.

3. Then p-value =
$$1 - P(W \leq \lambda(\theta_0))$$
 for $W \sim \chi_1^2$ approximately.

Gaussian Response Models 6

• Residual: The vertical distance between a point and a fitted line.

• $S_{xy} = \sum_{i=1}^{\infty} (x_i - \overline{x})(y_i - \overline{y}) = n \operatorname{Cov}(x, y)$. In particular $SS = S_{yy}$.

- Least-Square Estimate: The predictions $\hat{y}_i = \mu(x_i) = \beta_0 + \beta_1 x_{i1} + \beta_0 + \beta_1 x_{i1}$ $\cdots + \beta_k x_{ik}$ which minimizes the sum of square residuals. Assumes $Y_i \sim$ $G(\mu(x_i), \sigma)$ (homoscedasticity). Where k = 1, we have $Y \sim G(\alpha + \beta x, \sigma)$ and $\hat{\beta} = \frac{S_{xy}}{S_{xx}}$ and $\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$, these are also the MLEs. $\hat{\beta}_j$ represents the increase in the mean of the response variate for a one unit increase in the explanatory variate x_j when the other variates are fixed.
- Sum of Square Errors/Residuals: $SSE = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$.
- Sum of Square Regressions: $SSR = \sum_{i=1}^{n} (\hat{y}_i \overline{y})^2 = S_{yy} SSE.$
- Mean Squared Error $s_e^2 = \frac{1}{n-k-1} \sum_{i=1}^n \left(y_i \beta_0 \sum_{j=1}^k \beta_j x_{ij} \right)^2$. If k = 1then $s_e^2 = \frac{1}{n-k-1}(S_{yy} - \hat{\beta}S_{xy})$. Note: $E[S_e^2] = \sigma^2$ and $\frac{(n-2)S_e^2}{\sigma^2} \sim \chi_{n-2}^2$.
- $\tilde{\beta}$ Distribution: If $Y_i \sim G(\alpha + \beta x_i, \sigma)$, then $\tilde{\beta} = \frac{1}{S_{xx}} \sum_{i=1}^n (x_i \overline{x}) Y_i$ So

- $\tilde{\beta} \sim G(\beta, \frac{\sigma}{\sqrt{S_{xx}}}) \text{ and } \frac{\tilde{\beta} \beta}{S_e/\sqrt{S_{xx}}} \sim t_{n-2}.$ Simple Linear Regression Tests and Intervals: $-H_0: \beta = \beta_0 \text{ has } p\text{-value} = 2\left[1 P\left(T \leq \frac{|\hat{\beta} \beta_0|}{s_e/\sqrt{S_{xx}}}\right)\right] \text{ for } T \sim t_{n-2}.$ $-\beta \text{ has a } (100p\%) \text{ CI of } \hat{\beta} \pm a \frac{s_e}{\sqrt{S_{xx}}} \text{ for } a = qt(\frac{1+p}{2}, n-2).$ $-\alpha \text{ has a CI of } \hat{\alpha} \pm as_e \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{S_{xx}}} \text{ for } a = qt(\frac{1+p}{2}, n-2).$ $-\mu(x) \text{ has a CI of } \hat{\mu}(x) \pm as_e \sqrt{\frac{1}{n} + \frac{(\bar{x}-x)^2}{S_{xx}}} \text{ for } a = qt(\frac{1+p}{2}, n-2).$

$$-\mu(x)$$
 has a PI of $\hat{\mu}(x) \pm as_e \sqrt{1 + \frac{1}{n} + \frac{(x-x)^2}{S_{xx}}}$ for $a = qt \frac{1+p}{2}, n-2).$

- R^2 Statistic: $R^2 = 1 \frac{SSE}{S_{yy}} = \frac{SSR}{SS} = \frac{\text{Variation explained by regression}}{\text{Total variation}}$. We want R^2 close to 1, as this explains more variation.
- Adjusted R^2 : Adjusted $R^2 = 1 \frac{SSE/(n-k-1)}{S_{yy}/(n-1)}$. Compensates for the fact that adding more variables can artificially improve R^2 .
- Model Checking: Need Y_i to have Gaussian distribution with constant variance (homoscedasticity) and $E[Y_i] = \mu(x_i)$ to be linear in x_i . Can check using graphics: should be linear and evenly spread. Using residual plots: residual $\hat{r_i} = y_i - \hat{y_i}$ should be drawn from $G(0, \sigma)$ and standardized residual $\hat{r}_i^* = \frac{\hat{r}_i}{s_e}$ should be drawn from G(0,1). Plotting standardized residual plot $(x_i, \hat{r_i^*})$, 99.7% of points should be in (-3, 3)and should be evenly spread out around 0. Plot $(\hat{\mu}_i(x_i), \hat{r}_i^*)$ for multiple linear regression. Can also check normality of residuals using Q-Q plots.
- Regression Pitfalls: (1) Multicolinearity: when 2 or more variates are highly correlated, can lead to incorrect conclusions. (2) Predicting beyond covariate range: model assumption may not hold, lack of data.
- Generalized Linear Model (GLM): (1) Probability distribution for response variate, (2) linear model $\eta = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$, (3) link
- function from linear model to parameters of outcome distribution. **Odds:** The odds of event A are $odds(A) = \frac{P(A)}{1-P(A)}$. Prefer odds at times since $odds(A) \in \mathbb{R}$, not just [0, 1].
- Logit $g: [0,1] \to \mathbb{R}$ with $g(p) = \operatorname{logit}(p) = \operatorname{log}(\operatorname{odds}(p)) = \operatorname{log}(\frac{p}{1-p})$, also called log odds. Has inverse $g^{-1}(x) = \frac{1}{1+e^{-x}}$.
- Log Odds Ratio: If O_1, O_2 are the odds of events, then the log odds ratio $\log(\frac{O_1}{O_2})$ is positive if event 1 is more probable than event 2.
- Logistic Regression: GLM with logit as the link function. If we consider outcomes as $Y_i \sim Bin(1, p_i)$, we can fit $logit(p_i) = \eta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$ and then recover $p_i = \frac{1}{1 + e^{-\eta_i}}$. We can interpret $\hat{\beta_j}$ as the increase in log odds or equivalently as the log odds ratio. So $\hat{\beta}_j > 0$ if and only if p_i increases as x_{ij} increases. Assumes events are independent (i.e., Y_1, \ldots, Y_n), linear regression if appropriate for the log odds.
- Logistic Regression Model Checking: Split the events y_i by quantiles along a covariate with $p = \frac{\text{successes}}{\text{events}}$ for each quantile. Plot the log odds against the median of the covariate in each quantile. If the relationship is linear, logistic regression seems appropriate.
- Two Sample Gaussian (Equal) Testing H_0 : $\mu_1 \mu_2 = 0$ given $Y_{1,1},\ldots,Y_{1n_1}\sim G(\mu_1,\sigma)$ and independently $Y_{2,1},\ldots,Y_{2n_2}\sim G(\mu_2,\sigma).$

1. Note
$$\tilde{\mu_1} - \tilde{\mu_2} = \overline{Y_1} - \overline{Y_2} \sim G(\mu_1 - \mu_2, \sigma_\sqrt{\frac{1}{n_1} + \frac{1}{n_2}})$$

2. Compute
$$S_p^2 = \frac{(n_1-1)S_1 + (n_2-1)S_2}{n_1+n_2-2}$$
 so that $E[S_p^2] = \sigma^2$.

3. Then
$$\frac{\overline{Y_1 - \overline{Y_2} - (\mu_1 - \mu_2)}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}.$$

4a. CI for $\mu_1 - \mu_2$ is $\overline{y_1} - \overline{y_2} \pm as_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ for $a = \operatorname{qt}(\frac{1+p}{2}, n_1 + n_2 - 2).$

Two Sample Gaussian (Unequal) Testing $H_0: \mu_1 - \mu_2 = 0$ given $Y_{1,1}, \ldots, Y_{1n_1} \sim G(\mu_1, \sigma_1)$ and independently $Y_{2,1}, \ldots, Y_{2n_2} \sim G(\mu_2, \sigma_2)$. 1. $\frac{\overline{Y_1} - \overline{Y_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{2} + \frac{S_2^2}{2}}} \sim G(0, 1)$ approximately for $n_1, n_2 \gtrsim 30$.

2a. CI for
$$\mu_1 - \mu_2$$
 is $\overline{y_1} - \overline{y_2} \pm a \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ for $a = \operatorname{qnorm}(p)$.
2b. p -value = $2[1 - P(Z \le d)]$ for $d = \frac{|\overline{y_1} - \overline{y_2} - 0|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ and $Z \sim G(0, 1)$.

Two Sample Gaussian (Paired) Testing H_0 : $\mu_1 - \mu_2 = 0$ given $\begin{array}{l} Y_{1,1}, \dots, Y_{1n_1} \sim G(\mu_1, \sigma) \text{ and } Y_{2,1}, \dots, Y_{2n_2} \sim G(\mu_2, \sigma). \\ 1. \text{ Set } Y_i = Y_{1i} - Y_{2i} \sim G(\mu_1 - \mu_2, \sigma). \text{ Check } y_1, \dots, y_n \text{ is Gaussian.} \\ 2a. \text{ CI for } \mu = \mu_1 - \mu_2 \text{ is } \overline{y} \pm a \frac{s}{\sqrt{n}} \text{ for } a = \operatorname{qt}(\frac{1+p}{2}, n-1). \\ 2b. p-\text{value} = 2[1 - P(T \leq d)] \text{ for } d = \frac{|\overline{y} - 0|}{s/\sqrt{n}} \text{ and } T \sim t_{n-1}. \end{array}$

Multinomial Models and Goodness of Fit Tests 7 **Multinomial MLE:** Multinomial has $L(\theta) \propto \theta_1^{y_1} \cdots \theta_k^{y_k}$ and $\hat{\theta}_j = \frac{y_j}{n}$.

- Pearson's Goodness of Fit Statistic: $D = \sum_{j=1}^{k} \frac{(Y_j E_j)^2}{E_j}$.
- Degrees of Freedom: Number of values which are free to move. ٠ • Testing $H_0: \theta_j = \frac{E_j}{n}$ where $e_j \ge 5$:
 - 1. Compute either $\lambda = 2 \sum_{j=1}^{k} y_j \log(\frac{y_j}{e_j})$ or $d = \sum_{j=1}^{k} \frac{(y_j e_j)^2}{e_j}$. 2. *p*-value $\approx 1 P(W \leq \lambda) \approx P(W \leq d)$ for $W \sim \chi^2_{k-1-p}$ where k = 0
 - # of categories and p = # of estimated parameters.
- Testing independence in two-way table: assume categories are $A_1, \ldots, A_a \text{ and } B_1, \ldots, B_b$
 - 1. Let r_i be the sum of row i, c_j be the sum of column j.
 - 2. Let $\alpha_i = P(A_i)$ and $\beta_j = P(B_j)$ with MLE $\hat{\alpha}_i = \frac{r_i}{n}$ and $\hat{\beta}_j = \frac{c_j}{n}$.
 - 3. $Y_{11}, Y_{12}, \ldots, Y_{ab} \sim Multinomial(n; \theta_{11}, \theta_{12}, \ldots, \theta_{ab})$. Independence iff $H_0: \theta_{ij} = \alpha_i \beta_j$ is true.

4. Expected count for
$$A_i \cap B_j$$
 is $E_{ij} = n\alpha_i\beta_j$ so $e_{ij} = \frac{r_i c_j}{n}$.

5. Compute
$$\lambda = 2 \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij} \log(\frac{y_{ij}}{e_{ij}})$$
.

6. If $e_{ij} \geq 5$, then p-value $\approx 1 - P(W \leq \lambda)$ for $W \sim \chi^2_{(q-1)(b-1)}$.

8 Causality

Possible Relations Between Variates:

- 1. Explanatory variate is the direct cause of the response variate.
- 2. Response variate is the direct cause of the explanatory variate.
- 3. Explanatory variate is a contributing cause of the response variate. 4. Both variates are changing with time.
- The association is due to coincidence. 5.
- 6. Both variates have a common cause.
- Confounding Variate: When two variates have a common cause, the cause is called a confounding variate or confounder.

Dealing with Confounders:

- Twin studies: place one identical twin in each group.
- Matching: find similar units from each group.
- Randomization: randomly associate each unit with a group. This could lead to disproportionate groups, or be unethical.

• Establishing Causation in Observational Studies:

- 1. The association between variates must be observed in many studies of different types among different groups.
- $\mathbf{2}$ The association must hold when the effects of plausible confounders are taken into account.
- 3. There must be a plausible scientific explanation for the direct influence of one variate on the other.
- 4. There must be a consistent response.
- Counterfactual: The effect that would have happened in the other case. E.g., Y(0) for didn't take drug, Y(1) for did take drug.
- Average Causal Effect: $\tau = E[Y(1) Y(0)] = \frac{1}{n} \sum_{i=1}^{n} (Y(1) Y(0)).$
- **Propensity Score:** $\pi(x) = P(A = 1 | X = x)$ where A is group, X is a variate. Often we estimate this by logistic regression.
- Inverse Probability Weighting (IPW): $\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n \frac{y_i \cdot 1_{(A_i=1)}}{\hat{\pi}(x_i)}$ and

 $\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n \frac{y_i \cdot 1_{(A_i=0)}}{1 - \hat{\pi}(x_i)} \text{ are such that } E[\tilde{\mu_0}] = E[Y(0)] \text{ and } E[\tilde{\mu_1}] =$ E[Y(1)]. Assumptions:

- 1. Consistency: $Y_i = Y_i(0)1_{(A_i=0)} + Y_i(1)1_{(A_i=1)}$
- 2. Stable Unit Treatment Value Assumption (SUTVA): one patient receiving a treatment doesn't affect other patients' treatment.
- No Unmeasured Confounder (NUC): every confounding variate is accounted for in the model.
- 4. Positivity: $0 < \pi(x) < 1$ for all x. Every subject has a non-zero chance of assignment to each treatment.

• DAGs

• Can close an open (backdoor or direct) path by accounting for it in the model. Should only do this to backdoor paths. Can open a closed (blocked) path by accounting for it in the model. Should not do this.

- **Distributions** Gaussian: (Continuous) Has p.d.f. $\frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/(2\sigma^2)}$. Arises from central limit theorem.
- χ^2_k : (Continuous) $k \ge 1$ denotes the degrees of freedom. Has p.d.f. $f(x;k) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{(k/2)-1} e^{-x/2}$. Properties:
 - 1. If W_1, \ldots, W_n are i.i.d. with $W_i \sim \chi^2_{k_i}$, then $\sum_{i=1}^n W_i \sim \chi^2_{\sum k_i}$. 2a. If $Z \sim G(0, 1)$, then $Z^2 \sim \chi^2_1$. So, $P(W \ge w) = 2(1 P(z \le \sqrt{w}))$ and $P(W \le w) = 2P(Z \le \sqrt{w}) 1$. 2b. If $Z_1, \ldots, Z_n \sim G(0, 1)$, then $\sum_{i=1}^n Z_i^2 \sim \chi^2_n$. 3. If $W \sim \chi^2_2$, then $W \sim Exp(2)$.

• Student t_k : (Continuous) $k \ge 1$ denotes the degrees of freedom. Has p.d.f. $f(x;k) = \frac{\Gamma(\frac{k+2}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})} \left(1 + \frac{t^2}{k}\right)^{-(k+1)/2}$. Properties: 1. $\lim_{k \to \infty} t_k \sim G(0, 1)^{\binom{k}{2}}$.

2. If
$$Z \sim G(0,1)$$
 and $U \sim \chi_k^2$, then $\frac{Z}{\sqrt{U/k}} \sim t_k$

- Exponential: (Continuous) Assuming Poisson process for events which occur on average θ times per time unit, X denotes the number of time units before the first event occurs. Has c.d.f. $1 - e^{-x/\theta}$.
- Poisson: (Discrete) Number of events which take place in a given period of time, where on average θ events take place. X denotes the number of events. Often we assume a Poisson process:
 - 1. Independence: Events are independent from each other.
 - 2. Individuality: As the time frame Δt goes to zero, the number of events goes to zero.
 - 3. Uniformity: Events occur at a uniform rate over time.
- Binomial: (Discrete) Performing n Bernoulli (success/failure) trials, each with a p chance of success. X denotes the number of successes.
- Bernoulli: (Discrete) Binomial with n = 1.
- Negative Binomial: (Discrete) Performing Bernoulli (success/failure) trials, each with a p chance of success, until we get k successes. X denotes the number of failures before getting k successes.
- Geometric: (Discrete) Negative Binomial with k = 1.
- Hypergeometric: (Discrete) Drawing n objects (without replacement) from a group of N total objects, r of which are considered a success. Xdenotes the number of drawn successes.
- Multinomial: (Discrete) Performing n trials with k outcomes, each outcome having probability p_i . X_i denotes the number of events of type *i*. $f(x_1, \ldots, x_k) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}; E[X_i] = np_i; \operatorname{Var}[X_i] = np_i(1-p_i).$
- Uniform: (Continuous) Drawing randomly and uniformly from an interval. X denotes the drawn value. Has c.d.f. $\frac{x-a}{b-a}$

Distribution	p.d.f.	E[X]	Var[X]
$Gaussian(\mu, \sigma)$	See above	μ	σ^2
χ_k^2	See above	k	2k
t_k	See above	0 if $k \ge 2$	$\frac{k}{k-2}$ if $k \ge 3$
Exponential(θ)	$\frac{1}{\theta}e^{-x/\theta}$	θ	θ^2
$Poisson(\theta)$	$\frac{e^{-\theta}\theta^x}{x!}$	θ	θ
Binomial(n, p)	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
Bernoulli(p)	$p^x (1-p)^{1-x}$	p	p(1 - p)
NegativeBinomial(k, p)	$\binom{x+k-1}{x}p^k(1-p)^x$	$\frac{k(1-p)}{p}$	$\frac{k(1-p)}{p^2}$
$\operatorname{Geometric}(p)$	$p(1-p)^x$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
$\operatorname{Hypergeometric}(N, r, n)$	$\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$	$\frac{nr}{N}$	$\frac{nr}{n}\left(1-\frac{r}{N}\right)\frac{N-n}{N-1}$
Uniform(a, b)	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$

R Commands

Distribution	p.d.f.	c.d.f.	Quantiles	
Z	P(Z=z) or f(z)	$P(Z \le z)$	$P(Z \le a) = z$	
$G(\mu, \sigma)$	$\texttt{dnorm}(z,\mu,\sigma)$	$\mathtt{pnorm}(z,\mu,\sigma)$	$\texttt{qnorm}(z,\mu,\sigma)$	
χ_k^2	$\mathtt{dchisq}(z,k)$	$\mathtt{pchisq}(z,k)$	qchisq(z,k)	
t_k	$\mathtt{dt}(z,k)$	$\mathtt{pt}(z,k)$	qt(z,k)	
$Exponential(\theta)$	$\mathtt{dexp}(z,\theta)$	$\mathtt{pexp}(z, heta)$	$qexp(z, \theta)$	
$Poisson(\theta)$	$\texttt{dpois}(z,\theta)$	ppois(z, heta)	qpois(z, heta)	
$\operatorname{Binomial}(n, \theta)$	dbinom(z,n, heta)	pbinom(z,n, heta)	qbinom(z,n heta)	

Other suffixes include hyper for hypergeometric, geom for geometric, nbinom for negative binomial, unif for uniform (continuous).

>	> mod <- lm(y ~ x1 + x2)								
> summary(mod)									
		Estimate	Std.	Error	t value	Pr(> t)			
(Intercept)	-1.01375	5	.01527	-0.202	0.84133			
х	1	0.73142	0	.07664	9.544	3.83e-10	*		
х	2	0.28225	0	.09850	2.866	0.00797	*		
-									

Multiple R-squared: 0.9244,

Residual standard error: 4.608 on 27 degrees of freedom

- Estimate is $\hat{\beta}$ for given covariate ($\hat{\alpha}$ for intercept).
- Std. Error is $SD(\ddot{\beta}_i) = \frac{s_e}{z}$ for given *i*. $\sqrt{S_{x_i x_i}}$
- t value is test statistic t = Estimate Std. Errror.
 Pr(>|t|) is 2 * (1 pt(|t value|, df)) is p-value for H₀ : β_i = 0.
- Residual standard error is s_e.
- Multiple R-squared and Adjusted R-squared is R^2 and adjusted R^2 .

predict(mod, data.frame(x1= x_1 ,...,xn= x_n), interval=type, level=p) where type \in {"confidence", "prediction"} and $\alpha \in (0,1)$ gives 100p%type interval for covariates x_1, \ldots, x_n .

4