
STAT 333 Notes W2024 Jacob Schnell

Elementary Probability
• Conditional Probability: Probability of event A occuring given that event B occured P (A|B) = P (A∩B)

P (B)

provided P (B) > 0. Note we get the useful property P (A ∩B) = P (A|B)P (B).

• Chain Rule: P (A1 ∩ A2 ∩ · · ·An) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (An|A1 ∩ A2 ∩ · · · ∩ An−1)

• Independence: Events A and B are independent iff P (A∩B) = P (A)P (B). RVs X and Y independent
iff for all a, b ∈ R, P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b) iff p(x, y) = pX(x)pY (y) for all x, y ∈ R.

• Law of Total Probability: If {Bi}ni=1 partitions the sample space Ω (i.e., Bi ∩ Bj = ∅ for all i 6= j and
∪n

i=1Bi = Ω), then P (A) =
∑n

i=1 P (A ∩Bi) =
∑n

i=1 P (A|Bi)P (Bi).

• Bayes’ Formula: If {Bi}ni=1 partitions the sample space Ω, then P (Bj|A) = P (A|Bj)P (Bj)

P (A)
=

P (A|Bj)P (Bj)∑n
i=1 P (A|Bi)P (Bi)

.

• Expectation: For g : R → R and an RV X, then E[g(X)] =

{∑
x g(x)p(x) if X is a discrete RV∫∞

−∞ g(x)p(x) dx if X is a continuous RV
.

Note special cases include

(a) E[Xn] is the nth moment of X.
(b) E[aX + bY ] = aE[X] + bE[Y ], i.e., expectation is linear.
(c) If X and Y are independent, then E[XY ] = E[X]E[Y ].
(d) Var(X) = E[(X − E[X])2] = E[X2]− E[X]2 is the variance of X.
(e) Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] is the covariance of X and Y . Note Var(aX + bY ) =

a2Var(X) + b2Var(Y ) + 2abCov(X,Y ). Note also Cov(X,Y ) = 0 if X and Y are independent.
(f) φX(t) = E[etX ] is the moment generating function of X. In the joint case, φX,Y (s, t) = E[esX+tY ]

is the mgf of (X,Y ). Note that the nth derivative of φX satisfies φ
(n)
X (0) = E[Xn] and the (m,n)th

derivative of φX,Y satisfies φ
(m,n)
X,Y (0, 0) = ∂m+n

∂sm∂tn
φX,Y (s, t)

∣∣∣
s=t=0

= E[XmY n]. The MGF also uniquely
characterizes the corresponding probability distribution.

• Marginal Distributions: Where X and Y are RVs with joint pdf f(x, y), the marginal distribution of
the single RV X is given by fX(x) =

∫∞
−∞ f(x, y) dy.

• cdf → pdf: for an RV X, f(x) = lim∆↓0
P (x≤X≤x+∆)

∆
.

• mgf of sum: If X1, X2, . . . , Xn are independent RVs and T =
∑n

i=1Xi, then the mgf of T is the product
of the mgfs of Xis: φT (t) =

∏n
i=1 φXi

(t). In particular, if X1, . . . , Xn are iid, then φT (t) = (φX1(t))
n.

• Strong Law of Large Numbers: If X1, X2, . . . , Xn are iid RVs with common mean µ and E[|X1|] < ∞,
then X̄n = X1+X2+···+Xn

n
→ µ as n → ∞.

Conditional Distributions
• Conditional Distribution: The conditional pdf of X|(Y = y) is fX|Y (x|y) = P (X|Y = y) = f(x,y)

fY (y)
. The

conditional cdf is P (a ≤ X ≤ b|Y = y) =
∫ b

a
fX|Y (x|y)dx =

∫ b
a f(x,y)dx

fY (y)
=

∫ b
a f(x,y)dx∫∞

−∞ f(x,y)dx

• Conditional Expectation: E[g(X,Y )|Y = y] =

{∑
x g(x, y)pX|Y (x|y) if X is a discrete RV∫∞

−∞ g(x, y)fX|Y (x|y) dx if X is a continuous RV
.

Note we also see that E[aX + bY |Z = z] = aE[X|Z = z] + bE[Y |Z = z]. It’s also worth noting that
E[g(X,Y )|Y = y] is a function of the conditioning value y. Note also that E[g(X|Y )] = E[g(X)|Y ].
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• Conditional Variance: Var(X|Y = y) = E[(X − E[X|Y = y])2] = E[X2|Y = y]− E[X|Y = y]2.

• Law of Total Expectation: E[g(X)] = EY [EX [g(X)|Y ]] = EZ [EY [EX [g(X)|Y, Z]|Y ] = · · · .

• Variance Alternate Formula: Var(X) = E[Var(X|Y )] + Var(E[X|Y ]).

• fX(x) =

{∑
y fX|Y (x|Y = y)fY (Y = y) if Y if is a discrete RV∫∞

−∞ fX|Y (x|Y = y)fY (Y = y) dy if Y if is a continuous RV

• P (X < Y ) =
∫
P (X < y)fY (y) dy =

∫
FX(y)fY (y) dy

Discrete-time Markov Chains
• Discrete-time Markov Chain: A stochastic process {Xn : n ∈ N} is a DTMC if (1) Xn is a discrete

RV for all n ∈ N and (2) for all n ∈ N, the Markov property holds:

P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1, X0 = x0) = P (Xn+1 = xn+1|Xn = xn).

The Markov property indicates that we only care about the most up-to-date information.

• Transition Probability Matrix: The TPM defined by Pi,j = P (X1 = j|X0 = i) is an S × S matrix
where S ∈ N ∪ {∞} is the number of states in the DTMC. Note since the entries are probabilities, we see
that the rows must sum to 1. We define P

(n)
i,j = P (Xm+n = j|Xm = i) = (P n)i,j for any m,n ∈ N.

• Stationarity of DTMC: We only consider stationary DTMCs where the distribution of Xm and Xn are
identical for all m,n ∈ N. As a result, P (n)

i,j = P (Xn = j|X0 = i) and so the one-tep TPM completely
characterizes its DTMC.

• Chapman-Kolmogorov Equation: For any m,n ∈ N, P (n)
i,j =

∑
k∈S P

(m)
i,k P

(n−m)
k,j . As a result, P (n) = P n

• Initial Conditions: For n ∈ N, let αn = (αn,0, αn,1, . . . , αn,k, . . .) be the row vector αn,k = P (Xn = k) (i.e.,
αn is the marginal pmf of Xn). Then α0 is the initial conditions of the DTMC and αn,k =

∑∞
i=0 αm,iP

(n−m)
i,k

for all m,n ∈ N. In particular, αn = α0P
n.

• Communication: State j is accessible from state i (denoted i → j) if ∃n ∈ N such that P (n)
i,j > 0. If i → j

and j → i, then states i and j communicate denoted by i ↔ j. Communication defines an equivalence
relation (i.e., reflexivity i ↔ i, symmetry i ↔ j ⇐⇒ j ↔ i, and transitivity i ↔ j, j ↔ k =⇒ i ↔ k)
and so we usually separate DTMCs into the sets of states which communicate with each other (called
communication classes). If a DTMC has only one communication class, then it is said to be irreducible.

• Period: The period of state i is d(i) = gcd{n ∈ Z+ : P
(n)
i,i > 0}. If d(i) = 1 then state i is aperiodic. Note

if Pi,i > 0, then d(i) = 1. By convention, if P (n)
i,i = 0 for all n, then d(i) = ∞. The period is shared by

communication classes, in particular, if i ↔ j then d(i) = d(j).

• First Visit: We denote f
(n)
i,j = P (Xn = j,Xn−1 6= j, . . . , X2 6= j,X1 6= j|X0 = i) as the probability that

the first visit to state j when starting in state i i happens after n steps. Note f (n)
i,j = P

(n)
i,j −

∑n−1
k=1 f

(k)
i,j P

(n−k)
j,j .

We also denote fi,j = P (DTMC ever visits state j|X0 = i). Note fi,j =
∑∞

k=1 f
(k)
i,j ≤ 1.

• Recurrence: State i is recurrent if fi,i = 1, if fi,i < 1 then it is transient. If a state is recurrent, it will
be visited infinitely often, otherwise it will be visited only finitely often. Recurrence is also shared by
communication classes, in particular, if i ↔ j then state i is recurrent if and only if state j is recurrent.
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• Let Mi count the number of number of visits to state i (ever). Note then that Mi ∼ GEOf (1− fi,i) and so

E[Mi|X0 = i] =
fi,i

1− fi,i
=

∞∑
n=1

P
(n)
i,i =

{
< ∞ if state i is transient
∞ if state i is recurrent

• If i ↔ j and state i is recurrent then fi,j = 1.

• Test for Transience: If state i is recurrent and state i does not communicate with state j, then P
(k)
i,j = 0

for all k ∈ Z+. This provides a test for transience, in that if states i and j do not communicate but ∃k
such that P

(k)
i,j > 0, then i is transient.

• Limiting Behaviour of Transient States: For any state i and transient state j, limn→∞ P
(n)
i,j = 0.

• Mean Recurrent Time: For a recurrent state i, let Ni = min{n ∈ Z+ : Xn = i} denote the number
of steps before visiting (or returning to) Xi for the first time. Note then that P (Ni = n|X0 = i) = f

(n)
i,i

and the mean recurrent time of state i is E[Ni|X0 = i] =
∑∞

n=1 nf
(n)
i,i . We see then that mi is the average

number of steps between successive visits to state i. If mi < ∞ then we say state i is positive recurrent, and
if mi = ∞ then we say state i is null recurrent. Note positive recurrence is also shared by communication
classes, in particular, if i ↔ j and state i is positive recurrent, then j is positive recurrent.

• Ergodicity: If a state i is both positive recurrent and aperiodic, then it is called ergodic.

• Recurrence in Finite-State DTMCs: A finite-state DTMC has at least one recurrent state. As a
result, all states from a finite-state irreducible DTMC are recurrent. In a finite-state DTMC, there are no
null recurrent states, so any recurrent state is necessarily positive recurrent.

• Stationary Distribution: A distribution {pi}∞i=0 is a stationary distribution (of a DTMC) if
∑∞

i=0 pi = 1
and pj =

∑∞
i=0 piPi,j for all states j. In matrix form, stationarity is the property p = pP . In particular, if

α0 = p, then X0, X1, X2, . . . are all identically distributed. A stationary distribution exists iff there is at
least one positive recurrent state. Note that stationary distributions are not necessarily unique.

• Basic Limit Theorem: For an irreducible, recurrent, and aperiodic DTMC, limn→∞ P
(n)
i,j = πj = 1

mj

exists for all i, j. If the DTMC is also positive recurrent, then {πj}∞j=0 is the unique stationary distribution

and is the unique positive solution to the system of linear equations given by

{
πj =

∑∞
i=0 πiPi,j ∀j ∈ N∑∞

j=0 πj = 1

or written in matrix form, π = π and πe′ = 1. Note that when the DTMC has finitely many states, this
system is overspecified, and so any one equation can be dropped. Note that if state j is null recurrent of
transient, then πj = 0.

• Doubly Stochastic: The TPM of a DTMC is doubly stochastic if all row sums of P are 1 (necessary to
be a TPM) and all column sums of P are also 1. An irreducible, aperiodic DTMC with N < ∞ states and
a doubly stochastic TPM has πj =

1
N

for all j ∈ N.

• Interpretation of Limiting Behaviour: Assuming the conditions of the BLT, after running the DTMC
for a “long” time, the probability of finding the process in state j is πj. However, πj also represent the
long-run fraction of time that the process spends in state j, i.e., the fraction of time steps with Xn = j.

• Shared Properties of Communication Classes: The following properties are the same for all states
i, j from the same communication class

– i ↔ j and so ∃n, P (n)
i,j > 0 and ∃m, P

(m)
j,i > 0.
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– d(i) = d(j).
– i and j are either both recurrent or both transient.
– if i and j are both recurrent, then they are either both positive recurrent or both null recurrent.

• Galton-Watson Branching Process: This process models the size of a population when each person has
a certain probability of having m offspring in the next generation. Formally, let Xn denote the population
of the nth generation of process, where αm is the probability an individual has m offspring. Note that
since P0,0 = 1 and Pi,0 > 0, we know that state 0 is recurrent and all other states are transient. Let Z

(j)
i

denote the number of offspring produced by individual i in the jth generation, then Xn =
∑Xn−1

i=1 Z
(n−1)
i ,

so Xn is a DTMC. Let µ = E[Z(j)
i ] and σ2 = Var(Z

(j)
i ) denote the (common) mean and variance of the

number of offspring respectively. Then E[Xn] = µE[Xn−1] and Var(Xn) = σ2E[Xn−1] + µ2Var(Xn−1). As
a result, assuming X0 = 1, then

E[Xn] = µn and Var(Xn) = σ2µn−1

n−1∑
i=0

µi =

{
nσ2 if µ = 1

σ2µn−1
(

1−µn

1−µ

)
if µ 6= 1

Let π0 = limn→∞ P (Xn = 0) denote the probability that the population dies out. Then π0 is the unique
solution in [0, 1) to the equation z =

∑∞
j=0 αjz

j (note that z = 1 is always a solution to the equation).
Note when µ ≤ 1 then π0 = 1 (i.e., the population is guaranteed to die out). The value 1 − π0 is the
probability that the population will keep growing infinitely. In the general case where X0 = n then the
extinction probability is πn

0 (for π0 computed in the X0 = 1 case). Note when α0 + α = 1, Xn will stay at
1 for some number of generations (according to a geometric distribution) and then eventually die out.

• Gambler’s Ruin Problem: The process models the sum of money a gambler has before he either goes
bankrupt or wins the jackpot. Formally, let Xn denote the number of units of money the gambler has
at time n, we assume that the gambler either wins one unit with probability p ∈ (0, 1) and loses one
unit with probability q = 1 − p each step, until he either goes bankrupt (reaching Xn = 0) or wins the
jackpot (reaching Xn = N for some N < ∞). Note that states 0 and N are recurrent, and the states
{1, 2, . . . , N −1} form a transient communication class. Let G(i) denote the probability that starting with
X0 = i the gambler eventually reaches the jackpot N . Consider the TPM and its limiting behaviour:

P =



0 1 2 3 N − 2 N − 1 N
0 1 0 0 0 · · · 0 0 0
1 q 0 p 0 · · · 0 0 0
2 0 q 0 p · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

N − 1 0 0 0 0 · · · q 0 p
N 0 0 0 0 · · · 0 0 1


lim

n→∞
P (n) =



0 1 2 N − 1 N
0 1 0 0 · · · 0 0
1 1−G(1) 0 0 · · · 0 G(1)
2 1−G(2) 0 0 · · · 0 G(2)
...

...
...

...
. . .

...
...

N − 1 1−G(N − 1) 0 0 · · · 0 G(N − 1)
N 0 0 0 · · · 0 1


Notice that

(p+ q)G(i) = pG(i+ 1) + qG(i− 1) =⇒ G(i+ 1)−G(i) = q
p
(G(i)−G(i− 1)) = ( q

p
)iG(1)

Then, for any k = 1, . . . , N , adding together the above equations for each i = 1, 2, . . . , k − 1 we get a
telescoping sum resulting in

G(k)−G(1) =
k−1∑
i=1

G(1)( q
p
)i =⇒ G(k) = G(1)

k−1∑
i=1

( q
p
)i =

G(1)

(
1−(

q
p
)k

1− q
p

)
if p 6= q

kG(1) if p = q

Using the above formula and noting G(N) = 1, we can find a formula for G(1). Using this newfound

formula, we find G(k) =


1−(

q
p
)k

1−(
q
p
)N

if p 6= q

k
N

if p = q

for k = 0, 1, . . . , N . Note when p ≤ 1
2
, limN→∞G(i) = 0

and when p > 1
2
, limN→∞ G(i) = 1− ( q

p
)i.
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• Absorbing DTMCs: Consider an N state DTMC where states 0, 1, . . . ,M − 1 are transient and states
M,M + 1, . . . , N − 1 are recurrent. The TPM for this DTMC can be expressed as

P =



0 M − 1 M N − 1
0

M − 1
M

N − 1

Q R

0 I

 =



0 M − 1 M N − 1
0 Q0,0 · · · Q0,M−1 R0,M · · · R0,N−1

...
. . .

...
...

. . .
...

M − 1 QM−1,0 · · · QM−1,M−1 RM−1,M · · · RM−1,N−1

M 0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
N − 1 0 · · · 0 0 · · · 1


Such states M ≤ i ≤ N − 1 are called absorbing, since once entered the DTMC will never leave them.
Note that the tools we will develop can also be applied where there are recurrent communication classes,
replacing them with a single absorbing state and then solving their limiting distributions.

• Absorption Time: The absorption time of the DTMC is defined as T = min{n ∈ Z+ : M ≤ Xn ≤ N−1}.
Note if Tj denotes the number of remaining steps until absorption given that the current state is j, then
T |(X0 = i) ∼ Ti and T |(X1 = j,X0 = i) ∼ (1 + Tj)|X1 = j.

• Absorption Probability: The absorption probability of transient state 0 ≤ i ≤ M − 1 into recurrent
state M ≤ k ≤ N −1 is defined as Ui,k = P (XT = k|X0 = i) = Ri,k+

∑M−1
j=0 Qi,jUj,k. Letting U = [Ui,k] be

a matrix, it satisfies the expression U = R +QU or equivalently U = (I −Q)−1R. Notice this also yields

the limiting distribution lim
n→∞

P (n) =

[
0 U
0 I

]
• Mean Absorption Time: The mean absorption time from state i is defined as vi = E[T |X0 = i] =

1+
∑M−1

j=0 Qi,jvj. Letting v = [vi] be a column vector, it satisfies the expression v = e′+Qv or equivalently
v = (1−Q)−1e′.

• Mean Number of Visits: Let ` be a transient state and define the indicator variable An = 1[Xn = `].
Then the mean number of visits made to state ` (including time 0) before absorption given that X0 = i is
defined as Wi,` = E[

∑T−1
n=0 An|X0 = i] = δi,` +

∑M−1
j=0 Qi,jWj,`. Letting W = [Wi,`] be a matrix, it satisfies

the expression W = I + QW or equivalently W = (I − Q)−1. Note we also get the following formula for
the probability of ever making a future visit to state `: fi,` =

Wi,`−δi,`
W`,`

. Combining this with our prior
knowledge, we know

fi,j =


Wi,j−δi,j

Wj,j
if i and j are both transient

Ui,j if i is transient and j is absorbing
δi,j if i is absorbing

Poisson Processes
• Properties of Exponential: If X ∼ EXP(λ), then X has tpf P (X > x) = e−λx and mgf φX(t) =

λ
λ−t

for t < λ.

• Properties of Erlang: If X1, . . . , Xn are iid EXP(λ) RVs, then Y =
∑n

i=1Xi ∼ Erlang(n, λ). So Y has
tpf P (Y > y) = e−λy

∑n−1
j=0

(λy)j

j!
and mgf φY (t) =

(
λ

λ−t

)n for t < λ.

• Minimum of Independent Exponentials: If {Xi}ni=1 is a sequence of independent RVs with Xi ∼
EXP(λi), then Y = min{X1, . . . , Xn} has distribution Y ∼ EXP(

∑n
i=1 λi). In particular, if X1, . . . , Xn are

iid EXP(λ), then Y ∼ EXP(nλ). Note that P (Xi = min{X1, . . . , Xn}) = λi

λ1+···+λn
. Also worth noting is

P (X1 < X2 < · · · < Xn) =
λ1

λ1 + · · ·+ λn
· λ2

λ2 + · · ·+ λn
· · · λn−1

λn−1 + λn
· λn

λn
=

n∏
i=1

P (Xi = min{Xi, Xi+1, . . . , Xn})

From this we see that X1|(X1 < X2 < · · · < Xn) ∼ Y .
5
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• Memoryless Property: An RV X is memoryless iff P (X > y+z|X > y) = P (X > z) iff P (X > y+z) =
P (X > y)P (X > z) iff P (X > Y + Z|X > Y ) = P (X > Z) for all y, z ∈ R and RVs Y and Z. The
exponential distribution is the unique memoryless continuous distribution and the geometric distribution
is the unique memoryless discrete distribution. As a result of this, we see that (X − Y )|(X > Y ) ∼ X

• Counting Process: A stochastic process {N(t)}t≥0 where N(t) represents the number of events that
occurred by (continuous) time t. Some properties of a counting process are (1) N(0) = 0, (2) N(t) ∈ N,
(3) if s < t then N(s) ≤ N(t), and (4) if s < t then N(t)−N(s) counts the number of events that occurred
in the interval (s, t]. A counting process is said to have independent increments if N(t1) − N(s1) and
N(t2)−N(s2) are independent whenever (s1, t1]∩(s2, t2] = ∅. A counting process is said to have stationary
increments if N(s+ t)−N(s) has the same distribution as N(t) for all S < t.

• Big-O Notation: f(x) ∈ o(h) if limh→0
f(h)
h

= 0, i.e., f(h) goes to 0 faster than h. This is the only big-oh
notation we need.

• Poisson Process: A counting process {N(t)}t≥0 is said to be a Poisson process at rate λ if (1) it possesses
both independent and stationary increments, (2) P (N(h) = 1) = λh+ o(h), and (3) P (N(h) ≥ 2) = o(h).
Intuitively, conditions 2 and 3 imply that the probability of an event occurring in an interval is proportional
to the length of the interval and the probability of more than one event occurring in an interval vanishes
as the interval becomes increasingly small. Any such Poisson process at rate λ satisfies N(t) ∼ POI(λt).

• Interarrival Times: Let Ti be time elapsed between the (i − 1)th event and ith event of a Poisson
process, then {Ti}∞i=1 is a sequence of iid EXP(λ) RVs. We can also reverse this, if {Xi}∞i=1 if a sequence
of iid EXP(λ) RVs, then N(t) = max{n ∈ N :

∑n
i=1Xi ≤ t} defines a Poisson process at rate λ. Let Sn

denote the time elapsed before the nth event occurs, so that Sn =
∑n

i=1, then clearly Sn ∼ Erlang(n, λ). If
N1(t) and N2(t) define separate Poisson processes at rates λ1, λ2 respectively and S

(1)
m , S

(2)
n denote the time

elapsed before the mth event of the first process and nth event of the second process occurring respectively,
then P (S

(1)
m < S

(2)
n ) =

∑n−1
j=1

(
m+j−1
m−1

) (
λ1

λ1+λ2

)m (
λ2

λ1+λ2

)j

.

• Splitting Poisson Processes: If N(t) is a Poisson process at rate λ, and an event of this process is
of type i with probability pi for k total possible types, then we can define k Poisson processes Ni(t) and
with the property N(t) =

∑k
i=1 Ni(t). Moreover, Ni(t) is a Poisson process at rate λpi. This also works in

reverse, if N1(t), . . . , Nk(t) are Poisson processes with associated rates λ1, . . . , λk, then N(t) =
∑k

i=1Ni(t)

is a Poisson process at rate
∑k

i=1 λi.

• Conditional Poisson Process: Let N(t) be a Poisson process at rate λ. Then N(s)|(N(t) = n) ∼
Bin(n, s

t
). Suppose N(t) = n, then the conditional distribution of the arrival times is the same as the

order statistics of a uniform distribution. In particular, (S1, . . . , Sn)|(N(t) = n) ∼ (Y(1), . . . , Y(n)) where
Y1, . . . , Yn are iid U(0, t) RVs. Note the joint pdf of the ordered uniform RVs is f(y1, . . . , yn) = n!

tn
for

0 < y1 < y2 < · · · < yn < t.

• Non-homogeneous Poisson Process: A counting process {N(t)}t≥0 is a non-homogeneous Poisson
process with rate function λ(t) if (1) it has independent increments, (2) P (N(t + h) − N(t) = 1) =
hλ(t) + o(h), and (3) P (N(t + h) − N(t) ≥ 2) = o(h). This generalization allows the rate at which
events happen to vary as a function of time, however, we lose stationary increments. If N(t) is a non-
homogeneous Poisson process with rate function λ(t), then N(t+s)−N(s) ∼ POI(m(t+s)−m(s)) where
m(t) =

∫ t

0
λ(τ)dτ is the mean value function for t ≥ 0.

• Compound Poisson Process: Let {Yi}∞i=1 be an iid sequence of RVs and let N(t) be a Poisson pro-
cess at rate λ, independent of each Yi. Then X(t) =

∑N(t)
i=1 Yi is a compound Poisson process and has

both independent and stationary increments. While finding X(t)’s distribution is in general intractable,
E[X(t)] = λtE[Y1] and Var(X(t)) = λtE[Y 2

1 ] = λt(Var(Y1) + E[Y1]
2).
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