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1 General Concepts

• Interpretability v.s. Prediction Linear regression is very in-
terpretable but has bad prediction abilities. Conversely, most
statistical learning methods are less interpretable but better at
prediction.

• Bias-Variance Tradeoff The expected MSE of a model can be
written as

E[(y0 − f̂(x0)
2] = Var(f̂(x0))︸ ︷︷ ︸

Variance of f̂

+ [Bias(f̂(x0))]
2︸ ︷︷ ︸

Bias of f̂

+ Var(ε)︸ ︷︷ ︸
Inherent Variance

Var(ε) is also called the irreducible error and lower bounds of the
MSE of our model.

A fundamental trade-off is between an overly capable and flexi-
ble model that can fit our data perfectly and an underly flexible
model that cannot learn complicated underlying patterns. The
former will have high variance because it fits random data sam-
ples more closely, whereas the latter will have high bias due to its
inflexibility.

• Bayes Classifer The classifier with minimal expected MSE is
the Bayes classifier:

η(x) = argmax
y

P (Y = y|X = x)

For a given observation x, the Bayes error rate is 1−maxy P (Y =
y|X = x) and the overall Bayes error rate is

1− Ex[max
y

P (Y = y|X = x)]

This is the minimum achievable error of any model but is rarely
known in practice.

• Overfitting Overfitting occurs when the model is too capable
and fits the random sample of acquired training data rather than
true underlying dynamics. Effectively, overfitting arises when we
fit the noise in the training data.

• Evaluation and k-folds We quantify overfitting by holding out
a test set with which to evaluate. k-fold cross-validation makes
this more robust by partitioning the dataset into k-folds. You
then train k models, each one with a different set of k − 1 folds
and evaluate the trained model on the last held-out fold. By
averaging over the k evaluations on held-out data, we get a more
robust measure of our performance and better data efficiency. In
the extreme case, setting k to the number of data points we have
gives us the leave-one-out (LOO) error.

However, if we pick our model based on its performance on an
evaluation set, then we’re indirectly optimizing the model for per-
formance on the evaluation set. In practice, we should have a
validation set (as above) and a separate test set which is used
more sparingly. This lets us avoid fitting to the test set and get
a better / less biased estimate of our performance.

• Metrics Consider the following table for N total examples (called
the confusion matrix)

Predicted
T F

Actual
T TP FN
F FP TN

Then we can define the following metrics:

– Accuracy = (TP + TN)/N . How often were you right?

– Sensitivity/Recall = TP/(TP + FN). The % of actually
true events you correctly predicted/found. (True positive
rate)

– Specificity = TN/(TN + FP ). The % of actually false
events you correctly predicted. (1 - false positive rate)

– Precision = TP/(TP + FP ). The % of your of your pre-
dicted true events that are actually true.

– AUC Area under the ROC curve (see below).

– F1 = (2×TP )/(2×TP +FP +FN). Balance precision and
recall.

• ROC Curve Plots how your sensitivity and specificity change
if you change your threshold for what class you predict. To get
it, sort all data points by increasing the order of the estimated
probability of class 1. For each unique threshold (i.e., each unique
value in your predictions), classify all points below the threshold
as 0 and all points above the threshold as 1. Then, plot a point
at (x, y) = (FPR, TPR).

• Micro-vs-macro Averaging For classification problems with
C > 2 classes we need a way to transform them to binary prob-
lems. For each class, treat it as a binary problem of correctly
predicted or incorrectly predicted. In macro-averaging, you com-
pute the metrics for each of your C classification problems and
average the resulting metrics. In micro-averaging, you combine
all your predictions of correctly predicted or incorrectly predicted,
into one confusion matrix and compute the metric based on the
pooled table. Macro-averaging will place more emphasis on rare
classes as they are treated equally to common classes. Micro-
averaging will place more emphasis on common classes as they
outnumber rare classes.

• Standardizing data There are two common choices to make
data easier to work with (putting all features onto the same scale).

– True standardizing or normalizing. Set x = x−x̄
SD(x)

. I.e.,
subtract the mean and divide by the standard deviation for
each feature.

– Rescaling. Set x = x−min x
max x−min x

. I.e., rescale your data lin-
early to [0, 1].

• n-grams Start first by consider the bag-of-words representa-
tion. For every word in our vocabulary, we create a variable xi

is 1 if word i is in a new piece of text and 0 if word i is not in
the text. n-grams generalizes this by considering a sequence of
n-consecutive words. E.g., xi1,i2,...,in is 1 if word i1 followed by
words i2 followed by ... up to in all appear. For instance “hello
world” forms the bigram of hello followed by world. We also often
remove stop-words that don’t help like “the” and “a” and punc-
tuation. n-grams help to recover positional information which
bag-of-words representations cannot do. We can also consider
parts of speech instead of specific words (e.g., noun, beginning or
end of line, etc.). Bag-of-words and especially n-grams struggle
with rare (combinations of) words, however, as the model will
never see these particular n-grams during training.

• TF-IDF Bag-of-words and n-gram representations don’t use in-
formation from repeated occurrences, which might be helpful.
Let ft,d denote that term t appeared ft,d times in document
d. We come up with term-frequency TFt = 1 + log(ft,d) and
TF = 0 when ft,d = 0. We come up with the inverse docu-
ment frequency IDFt = log(N/Nt) where N is the number of
documents and Nt is the number of documents containing term
t. We now use the TF-IDF term as a feature during training
xt = TF-IDFt = TFt × IDFt.

• Similarity To measure the similarity of two inputs (particu-
larly true for documents) we often use the cosine similarity:
⟨x1, x2⟩

∥x1∥ · ∥x2∥
. When x1 and x2 point in the same direction (regard-

less of magnitude) sim(x1, x2) ≈ 1 and are quite similar. When
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x1 and x2 are orthogonal in direction sim(x1, x2) ≈ 0 and are
not at all similar. When x1 and x2 point in opposite directions
sim(x1, x2) ≈ −1 and are opposites of one another.

2 Simple Models

• Logistic Regression Usual linear regression doesn’t work since
probabilities should be bounded to [0, 1] and linear models are un-
bounded. So, we instead make the linear regression model predict
the log-odds (or logit) of a data point instead of its probability:
f(x) = log p

1−p
. We can transform this to a probability by the

sigmoid (or expit) function: σ(x) = ef(x)

1−ef(x) . Now the linear re-

gression model f(x⃗) = β0 + β1x1 + · · · + βpxp has the following
interpretation of its parameters:

A 1 unit increase to xk increases the odds of being pre-
dicted as class 1 by a factor of eβk .

The coefficients β are found by maximizing the likelihood

argmax
β

n∏
i=1

(
p(xi;β)

yi(1− p(xi;β))
1−yi

)
= argmax

β

n∑
i=1

(
yi log p(xi;β)− (1− yi) log(1− p(xi;β))

)
= argmax

β

n∑
i=1

(
yiβxi − log(1 + eβxi)

)
To maximize, we take a derivative and set it to 0. But there’s
no closed-form solution, so instead, we use Newton-Raphson to
find a zero (which requires using the second derivative). Logis-
tic regression isn’t very flexible since it’s a linear model. It also
doesn’t have any tuning parameters to control its flexibility. But
it’s fast, interpretable, and doesn’t overfit as easily. There’s also
an extension for multinomial regression.

• Regularizing Linear Models Least squares optimized linear
models are the best linear unbiased models (BLUE), but trading
off some bias in exchange for better variance might be worthwhile.
Regularization introduces a penalty for complicated models mak-
ing the new loss L = MSE + λ × penalty where λ is a hyper-
parameter. Two common penalties are based on penalizing the
coefficients β0, β1, . . . , βp:

– Lasso regression: penalty = ∥β⃗∥11 =
∑p

i=1 |βi|. I.e., add an
L1 norm penalty on the coefficients. Penalizes large coeffi-
cients, but gives lee-way for very large coefficients.

– Ridge regression: penalty = ∥β⃗∥22 =
∑p

i=1 β
2
i . I.e., add an

L2 norm penalty on the coefficients. Penalizes very large
coefficients.

– Scaled ridge regression: penalty = ∥β⃗∥22 =
∑p

i=1 β
2
i Var(xi).

This rescales the L2 norm penalty since low variance features
will need a relatively larger coefficient β to contribute to the
overall prediction.

While L2 penalty usually gets better performance, L1 penalty
is good for feature selection. In particular, with an L1 penalty
useless features will have their coefficients shrunk to 0, whereas
with an L2 penalty useless features will just have a very small
coefficient. You can also rewrite these under the dual formulation:

min
β

(RSS + λ× penalty) ⇐⇒ min
β

RSS where penalty ≤ s

for each λ there is an s such that the two are equivalent. In
this view we see that we restrict β to a ball of size s around the
origin. Then, the closest point (according to L2 norm or Euclidean

distance since we’re using MSE) to the ball is likely to be on a
corner for an L1 penalty but on the surface for an L2 penalty.
This is why lasso regression is good at feature selection, minima
are usually on corners where a coefficient is set to 0.

• k-Nearest Neighbours The main idea is to estimate the Bayes
classifier locally. k-NN is a memory-based algorithm that doesn’t
require training. Given a new point x, find the k closest points
x1, . . . , xk in your dataset to k and predict by majority vote, pick-
ing the most common class amongst the x1, . . . , xk. The closest
point is usually picked by the Euclidean distance, but for binary
features the intersection over union (Jaccard similarity) is another

good choice. Another good one is cosine similarity: ⟨x1,x2⟩
∥x1∥·∥x2∥

. In-

creasing k decreases the variance (since you have more samples
voting) but also increases the bias (since the points that vote are
further from new point). It’s worth noting that k-NN is particu-
larly sensitive to variable standardization/scaling. Break ties in
majority vote by:

– Random prediction amongst the most common classes.

– By the prediction of the nearest neighbour (could be ill-
defined if you have multiple nearest neighbours).

– Keep increasing k until the tie is broken.

Typically pick an odd k to minimize the number of ties. One
benefit of k-NN is that it is really easy to find the LOO error.
One variant of k-NN (albeit still rare) is to use a caliper instead,
where you use all neighbours within a certain distance from you.

• Näıve Bayes Näıve Bayes arises from making the following sim-
plifying assumption: given the class y = y, all x features are
independent from one another. By making this assumption, we
get that

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)∑C

k=1 P (X = x|Y = k)P (Y = k)

=
πy

∏p
i=1 fy,i(xi)∑C

k=1 πk

∏p
i=1 fk,i(xi)

∝ πy

p∏
i=1

fy,i(xi)

Thus, we just predict the class that maximizes the numerator of
Bayes rule. To predict the probabilities, we set the prior

πk =
|{1 ≤ i ≤ n : yi = k}|

n

and

fk,i(x) =
|{1 ≤ i ≤ n : xi = x, yi = k}|+ L

|{1 ≤ i ≤ n : yi = k}|+ di × L

where di is the number of values xi can take on and L is a pa-
rameter described below. If x is continuous, we instead estimate
the probabilities from a marginal density, such as a Gaussian dis-
tribution (but this requires predicting µk,i and σk,i). Typically,
however, Näıve Bayes works best for categorical data. One issue
that arises is where a specific x-variable and y-variable has never
been seen before, this sets the probability of the class to 0 (even if
the other x-variables agree with it). We add Laplace smoothing to
account for this: add L observations of each combination of x and
y variables. Higher values of L shrink all distributions towards
the mean. L is also a tuning parameter and can take on decimal
values despite not being as intuitive. Näıve Bayes is very stable
and fast because it breaks a multivariate problem into univariate
problems.
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3 Tree-based Models

• Classification and Regression Trees (CART) The idea is
to sequentially partition our feature space into hyper-rectangles
and fit a single constant to each hyper-rectangle. E.g., if xi < t
predict a otherwise predict b, except a and bmight also be decision
trees further partitioning the space. For categorical variables, just
split subsets of categories into each branch (often do one-vs-rest).
The more splits you have the more interactions between variables
are possible (this makes decision trees very powerful). Directly
predicting all the rectangles that minimize a loss is infeasible,
so we instead recursively split the space in half. For regression
trees our criterion is usually MSE. For classification trees lots of
criterions exist:

– Classification error: 1− accuracy = 1−maxk(p̂m,k where m
is the leaf.

– Gini index:
∑C

k=1 p̂m,k(1− p̂m,k).

– Entropy / information: −
∑C

k=1 p̂m,k log p̂m,k

The latter two criterions prefer pure leaves (fewer classes). Within
a leaf we predict the constant that minimizes the loss of our cri-
terion. Usually this is the average value in regression and the
majority class in classification. Now to split a leaf (making it an
internal node that partitions the space), we just pick the feature
and split value (by brute force) that minimizes our criterion when
we fit a constant to each leaf. Our stopping criterion varies, but
there are common choices:

– A maximum number of splits has been reached.

– A maximum depth of the tree has been reached.

– A minimum improvement threshold has been reached.

– Each leaf has hit our minimum number of observations.

After this, it’s also common to prune the tree by removing splits
one at a time to minimize the criterion

|T |∑
m=1

∑
i:xi∈Rm

ℓ(yi, ŷm) + α|T |

where |T | is the number of leaves and ℓ is our loss. Increasing α
means smaller trees with more bias but less variance. Trees are
especially good at dealing with missing values, here’s a few ways:

– Add a missing value category. This often means just assign-
ing missing values to one of the two branches

– Just pick a child to go to (random or largest).

– Create a surrogate tree where you pick the branch you’ll go
down split based on other, non-missing values. Create a split
(or multiple) based on the other variables that picks which of
the two branches you go down by minimizing the loss using
those fixed predictions / branches.

• Bagging Bagging (or bootstrap aggregating) can in theory be ap-
plied to any algorithm, but is particularly popular for tree meth-
ods. The idea is simple: draw B bootstrap samples (samples of
size n with replacement) from your data and learn a model on each
bootstrap sample. Then, just predict the average value (regres-
sion) or majority (classification). Even better, have each model
predict a probability of class k and predict the average probability.
Bagging removes interpretability, but leads to random forests.

• Random Forest As in bagging, build m trees from m different
bootstrap samples. Within each tree, each time you make a split
pick a subset of the p features and only choose a split from among
those variables (commonly use

√
p of all variables). This helps to

de-correlate the tree and better use all variables. Often specify
maximum number of splits or minimum node size to determine
when to stop. Often keep adding trees until the test error stops
improving. One benefit of random forest is that you can use
out-of-bag data points for testing. For each datapoint, get the
predictions of all trees that don’t use it in training and average
their predictions. Using the error from these trees gives a good
estimate of the error. Variable importance is often also based on
the out-of-bag samples.

• Variable Importance We can estimate how important an x
variable is to the overall model by destroying its predictive power
and finding the testing accuracy. Do this by shuffling/permut-
ing all the features of the variable and having the model predict
with the permuted data. The decrease in prediction accuracy is
proportional to the importance of the variable. By repeating this
permutation process we can get a more stable estimate of impor-
tance.

• Adaboost The earliest form of boosting, uses lots of weak learn-
ers to form a strong learner. Start with a uniform distribu-
tion/weights over your data. For m = 1, . . . ,M fit a classifier
Gm to your (weighted) data and compute the (weighted) error.
Set the weight of classifier αm = log((1− errm)/errm) and set the
weight of each datapoint to wi = wi · exp(αm1[yi ̸= Gm(xi)]).
Intuitively, the next model is fit to the data we greater emphasis
on datapoints that the previous model incorrectly classified. The
overall classifier is

G(x) = sign(

M∑
m=1

αmGm(x))

One can prove that Adaboost’s error will go to 0 as M → ∞ (see
CS 485). The weights wm should be interpreted as a distribution
over the data which gets renormalized to sum back to 1.

• Boosting Now we consider general boosting, which is a gener-
alization built off of Adaboost. The overall classifier will instead
be

f(x) =

M∑
m=1

βmb(x; γm)

where our b’s are basis functions / weak learners. Boosting is a
sequential, additive model where after learning b1, . . . , bm we hold
these constant and fit bm+1 to the residuals of bm. In particular,
we learn b so as to minimize the loss

1

n

n∑
i=1

ℓ(yi, fm−1(xi) + βmb(xi; γm))

and update the function fm = fm−1 + βmbm(· ; γm).

Think of the loss as a function of the target and our predictor
ℓ(y, f). We want to minimize the overall loss w.r.t. our function
argminf L(f). We can minimize this loss by setting the derivative
to 0, but that means finding an f such that L′(f) = 0. Since we’re
trying to make the derivative of the loss 0, let’s fit our next basis
function bm to the negative derivative of the loss of the last model
(this is a step in the direction of minimum loss). This is the pseudo

residual of fm−1: rm = ∂L(f)
∂f

∣∣∣
f=fm−1

. Now our targets are the

negative residuals and our fitted values are the values that will set
the derivative (residuals) to 0. We can apply Newton-Raphson to
see how we should get to an fm that gets a derivative of 0

fm = fm−1 −
ℓ′(yi, fm−1)

ℓ′′(yi, fm−1)︸ ︷︷ ︸
=γj,m

where xi ∈ Rj,m. One can think of this equation as minimizing∑n
i=1 ℓ(yi, fm−1(xi) + γj,m) w.r.t. γj,m. So to summarize the

(MART) algorithm:

3
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1 Initialize f0
2 for m = 1, . . . ,M do

3 Compute pseudo-residuals: ri,m = −∂ℓ(yi, fm−1(xi))

∂fm−1(xi)
for

i = 1, . . . , n
4 Fit a new regression tree to the psuedo residuals
5 Fitted values of the leaves of the tree are

γj,m = −
∑

i:i∈Rj,m

ℓ′(yi, fm−1(xi))

ℓ′′(yi, fm−1(xi))

6 Update fm(xi) = fm−1(xi) + γj,m where xi ∈ Rj,m

7 return fM

• Tuning Boosting Models We usually specify a fixed number
of leaves per tree or a fixed depth of each tree. We also specify
the number of trees/iterations M . We can additionally introduce
a learning rate / shrinking parameter ν by multiplying γj,m by ν,
making the steps taken by our iterations smaller. It’s also common
to fit each tree in boosting with a different random subset (e.g.,
50%) of observations. This is not a bootstrap sample and is taken
without replacement. Similar to random forests we also often
choose a random subset of the available features for each split.

• XGBoost XGBoost improves over usual (MART) boosting by
making engineering improvements adding a regularization term.
We now regularize the loss we minimize w.r.t. to γj,m by

∑
i:i∈Rj,m

ℓ(yi, fm−1(xi) + γj,m) +
ν

2

|T |∑
j=1

γ2
j,m + α|T |

We now have an L2 penalty on our predictions γj,m and a penalty
on the size of our trees α|T |. We also simplify the first term (our
usual error) by a Taylor expansion around a = fm−1(xi) for each
i = 1, . . . , n.:

ℓ(yi, fm−1(xi) + γj,m) ≈ ℓ(y, fm−1(xi)) + giγj,m + 1
2
hiγ

2
j,m

where gi = ∂ℓ(yi,f)
∂f

∣∣∣
f=fm−1(xi)

and hi = ∂2ℓ(yi,f)

∂f2

∣∣∣
f=fm−1(xi)

.

Written using this Taylor expansion, we get an overall loss of

n∑
i=1

ℓi +

|T |∑
j=1

γj,m ∑
i:i∈Rj,m

gi +
γ2
j,m

2

ν +
∑

i:∈Rj,m

hi


︸ ︷︷ ︸

−similarity

+α|T |

where ℓi = ℓ(yi, fm−1(xi) is the loss of our previous iteration.
Solving for γj,m we now get our fitted values being

γj,m = −
∑

i:i∈Rj,m
gi

ν +
∑

i:i∈Rj,m
hi

For the Gaussian object (MSE) this simplifies to

γj,m = − RSS

ν +# of residuals

To efficiently compute this more complicated loss in each split,
we only evaluate the terms which change, the terms in the square
brackets in our loss, called the negative similarity. Plugging our
optimal γ into the formula for similarity, we get

similarity =
1

2
·

(∑
i:i∈Rj,m

gi
)2

ν +
∑

i:i∈Rj,m
hi

We then just pick the split which maximizes our gain:

gain = similarityleft + similarityright − similarityparent − α

where the α comes from our penalty on tree size. But α doesn’t
affect picking which split has the highest gain. In practice we
just grow trees until some stopping criteria is reached (e.g., max
depth) and prune leaves with less than α gain.

Finally, XGBoost also has engineering improvements. Most im-
portant of which is splitting continuous values only at set quantiles
(not every possible split). XGBoost also naturally handles missing
values by sending missing values to the branch which maximizes
the gain of the split. It also uses subsampling of datapoints and
only splitting on a subset of features as in normal boosting. Fi-
nally, parallel computing and careufl memory management help
make it more efficient.

• Variable Influence The influence of variable xi in a tree is the
sum of redudction in the residual sum of squares across all splits
on variable xi. For a method with multiple trees, we then usually
average this over all trees:

Ii =
1

M

M∑
i=1

|S(Tm)|∑
j=1

(RSSj −RSSj,left−RSSj,right)1[split j is on xi]

where S(Tm) is all the internal/splitting nodes in tree Tm.

• Recycled Predictions We could also determine how changing
the value of a variable changes predictions. For each datapoint,
set xj to a fixed value but keep all other variables as usual. Then
plot the average prediction over all data points for each fixed value
of xj to get an idea of the overall impact of xj .

4 Complex Models and Ensembling

• Support Vector Machines SVMs arise from the idea that
for linearly separable data multiple lines may separate our data
perfectly. SVMs will pick the line which maximizes the mar-
gin, distance from the decision boundary to the closest obser-
vation. The closest observations (of which there must always be
at least one of each class) are called support vectors. Encode re-
sponse at y ∈ {−1, 1}. SVMs are always halfspaces of the form
ŷ = sign(β0+β1x1+· · ·+βpxp). We want to maximize the margin
M where y(β0 + ⟨β, x⟩) ≥ M (which is always > 0 when we’re

correct). The margin can also be written as y(β0+⟨β,x⟩)
∥β∥2

. Since we

only care about the sign, we can fix the numerator (or the de-
nominator) arbitrarily. Let’s set the numerator to be 1, then we
want to maximize 1

∥β∥2
. This is the same as minβ

1
2
∥β∥22 subject

to the constraint y(β0 + ⟨β, x⟩) ≥ 1. Using Lagrangian duals, we
get

min
β

max
α≥0

1
2
∥β∥22 −

n∑
i=1

αi(yi(β0 + ⟨β, xi⟩ − 1)

But we often have non-linearly separable data, so we allow some
slack: yi(β0 + ⟨β, xi⟩) ≥ M(1 − εi) where

∑n
i=1 εi ≤ C. Equiv-

alently, we just limit the maximization to max0≤α≤C . Note our
prediction (1) correct when αi = 0 (2) incorrect when αi = C and
(3) correct and a support vector when 0 < αi < C.

Finding the minim w.r.t β we get βi =
∑n

i=1 αiyixi. But plugging
this into a new evaluation point we find that this is the same as

ŷ = sign

(
β0 +

n∑
i=1

αiyi⟨xi, x⟩

)

Thus far we’re limited to halfspaces / linear classifiers. What if
we lift our data to a higher dimensional space, e.g., by making

4
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new features ϕ(x) 7→ (1, x1, . . . , xp, x
2
1, x1x2, x1x3, . . . , x

2
p)? This

would be a lot slower for our computation because we now have
1 + p + p2 features... But the inner product is fast, it’s just
⟨ϕ(x), ϕ(z)⟩ = (⟨x, z⟩ + 1)p! This is called a reproducing kernel,
where ϕ has a special form to make ⟨ϕ(x), ϕ(z)⟩ fast. The poly-
nomial kernel k(x, z) = (⟨x, z⟩+ 1)d is one example, but a better
choice is often the Gaussian kernel (or radial basis function):

k(x, z) = exp

(
−γ

p∑
i=1

(xi − zi)
2

)

Other choices exist, like the sigmoid kernel, Laplace kernel, etc.
Note that SVMs are incredibly sensitive to scales. Continuous
variables should be standardized by subtracting the mean and
diving by the standard deviation. Note also that SVMs produce
a sort of score score(x) = β0 +

∑n
i=1 αiyik(x, xi). If you want

probabilities, just train logistic regression on the score and recover
the probability from that.

• Neural Networks Given input x, a single stage’s forward pass
puts x through a linear transformation z = Wx followed by a
non-linearity out = σ(z). σ is called the activation function, com-
mon choices include ReLU, GeLU, Sigmoid, tanh, etc. Stacking
multiple layers as such gives you a neural network (MLP to be
specific). We update the weights W by a stochastic gradient de-
scent (with learning rate η). To do this, we need to find the
derivative of the loss w.r.t. the weight W by backpropagation
(repeated application of the chain rule).

Considerations: When the chain of partial derivative is long, a lot
of the partial derivative will either be < 1 and cause vanishing
gradients or > 1 and cause exploding gradients. This is part of
why ReLU is preferred and is leads to the success of ResNets. To
stabilize the variance of neural networks, weights should be ini-
tialized with Xavier initialization. Let fanin denote the number of
input variables to a particular node. Then all weights associated
with that node should be initialized according to a N(0, 1

fanin
)

distribution. This will make all nodes have outputs with variance
of 1 (in expectation). To regularize neural networks, common
techniques include weight-decay by adding a penalty λ

∑NW
i=1 w2

i

(or absolute value for L1 penalty) to encourage smaller weights,
as in ridge regression. Another form of regularization is dropout
where during training you randomly remove edges with a certain
probability to encourage learning redundancies. It’s also better
to standardize inputs for neural networks. Neural networks can
struggle to converge and are prone to overfitting, particularly for
tabular data and in smaller datasets.

• Ensembling We can improve our accuracy and variance by train-
ing multiple models (akin to bagging). Train each model on a
subset of the data and predict the average (regression) or major-
ity (classification) answer. Often ensembling is done with models
of the same type.

• Stacking A slightly more sophisticated version of ensembling is
stacking. It produces predictions by training a logistic regression
model whose inputs are the outputs of the base models. For each
model, use k-fold cross-validation and training on k− 1 folds and
predicting on the held out fold. Then combine all the predictions
on held-out folds to train a logistic regression model. Finally,
retrain the base models using all the data. The final stacked
model runs each base model and passes all the outputs as the
input to the logistic regression model.

Often stacking uses base models of different types. One variant
is to also pass through the input x-variables as an input to the
logistic regression model. Another variant is to use “extremely
randomized trees” as one of the base models. These are a variation
of random forests where the split point for each feature is drawn

at random and then the best variable (with the random split)
is chosen. When also using a subset of features as usual, these
have very high bias but lower variance. These can sometimes
passthrough a bit more information due to their poor prediction
ability.

But should we always weight each model the same for all data-
points? Some models might do better in certain cases than oth-
ers. If we have some small number of relevant meta features (e.g.,
number of reviews), we can come up with a weight function and
have our logistic regression model be of the form

log
p(x)

1− p(x)
= β0 +

m∑
i=1

k∑
j=1

βi,jfj(x)gi(x)

where fj(x) is one of the k weights based on meta-features and we
havem base models g1, . . . , gm. However, this is more complicated
and requires more hands-on engineering, but it can be effective.
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