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Chapter 1 Probability Measures

Lecture 1 09/05

Definition. σ-field: A class F ⊆ P(Ω) of subsets of a universe Ω is called a σ-field if:

(1) Ω ∈ F.

(2) If A ∈ F then Ac = Ω \ A ∈ F.

(3) If we have A1, A2, . . . ∈ F (countably infinitely many sets), then
⋃∞
i=1Ai ∈ F.

Example: The set F = {∅,Ω} is called the trivial σ-field.

Example: The power set Ω = {A : A ⊆ Ω} is a σ-field.

Example: The set F = {∅, A,Ac,Ω} is a σ-field for any A ⊆ Ω.

Example: The set F = {A ⊆ Ω : A is countable or Ac is countable} is a σ-field. If any set
has Ac is countable, then the union has a smaller (therefore countable) complement. If all
sets are countable, then their countable union is countable.

Example: Consider the following probability space with Ω = (0, 1] and B0 = {the finite union
of disjoint subintervals of Ω of the form (a, b] of Ω}. We see then Ω ∈ B0 and if A is of the
form (a1, b1]∪ · · · ∪ (an, bn], then Ac = (0, a1]∪ (b1, a2]∪ · · · ∪ (bn, 1] ∈ B0. Moreover, we see
that for any two sets A1, A2 ∈ B0, we can combine them by adding non-overlapping intervals
and adding the union of overlapping intervals, so A1 ∪A2 ∈ B0. By induction, we can show
that for A1, . . . , An ∈ B0 then A1 ∪ · · · ∪ An ∈ B0, however, this is only for finite (not
countable) unions. Indeed, a countable union of disjoint intervals is not in B0. E.g., where
An = ( 1

2n
, 1
2n+1

], the union
⋃∞
i=1Ai has no finite union (it has infinitely many connected

components). Another counterexample is An = (0, 1 − 1
n
] since

⋃∞
i=1Ai = (0, 1) /∈ B0 since

it is right open.

Definition. σ-field Generators: Let A be a class of sets. Then the intersection of all the
σ-fields containing A is called the σ-field generated by A , defined as σ(A ). One can check
that this is indeed a σ-field. Moreover, σ(A ) is the smallest σ-field containing A .

Example: The trivial σ-field can be generated as {∅,Ω} = σ({∅}).

Example: The following σ-field is generated {∅, A,Ac,Ω} = σ({A}) = σ({Ac}).

Example: The following σ-field is generated {A ⊆ Ω : A is countable or Ac is countable} =
σ({{w} : w ∈ Ω}) is generated by the set of all singleton sets.

Example. Borel σ-field: The Borel σ-field B defined on Ω = (0, 1] is the σ-field generated
by B0 = {the finite union of disjoint subintervals of Ω of the form (a, b]}. It can also be
generated by B = σ({(a, b] ∈ Ω}) = σ({[a, b) ∈ Ω}) = σ({[a, b] ∈ Ω}) = σ({(a, b) ∈ Ω}).
We can define B on Ω = R in the same way. For a general topological space, the Borel
σ-field is generated by the set of all open (or equivalently all closed) sets.

1 Probability Measures 3 Lecture 1, 09/05
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Exercise: Check that B = σ({(a, b] ∈ Ω}) = σ({[a, b) ∈ Ω}) = σ({[a, b] ∈ Ω}) =
σ({(a, b) ∈ Ω})

Definition. Probability Measure: A set function defined on a σ-field P : F → [0, 1] is a
probability measure if

(1) 0 ≤ P(A) ≤ 1 for all A ∈ F.

(2) P(∅) = 0 and P(Ω) = 1.

(3) P must be countably-additive. In particular, ifA1, A2, . . . ∈ F are disjoint, then lim
n→∞

P(
⋃n
i=1Ai) =

P(
⋃∞
i=1Ai) =

∑∞
i=1 P(Ai) = lim

n→∞

∑n
i=1 P(Ai).

Remark: Some of the conditions of the above definition for probability measures are re-
dundant. In particular, the following is a more succinct definition that is equivalent to the
above.

(1’) P(A) ≥ 0 for all A ∈ F.

(2’) P(Ω) = 1.

(3’) P is countably-additive.

Remark: Probability can be interpreted from a frequentist perspective as the proportion
of the times a given event occurs (or “long-time frequency”) when you repeat an experiment
over and over. Using such a perspective, conditions (1) and (2) are immediate, however, (3)
does not hold since this only yields finite additivity, not countable additivity. Condition (3)
is a technical condition which allows us to take limits.

Remark: We often have two large interpretations (from math to the real world) of proba-
bility. Objective probability is what is defined above, this yields the frequentist perspective.
Subjective probability, on the other hand, is a scale of what events are more likely than
which other events, then rescaled to [0, 1], this yields the Bayesian perspective. Note that
going from the real world back to mathematics is modelling.

Definition. Probability space: Defined as the triplet (Ω, F,P).

• Ω: A set/collection of points {ω}, called the sample space. We liken it to the set
which contains all possible outcomes of some random experiment/variable. However,
mathematically it is just some set.

• F: A σ-field (or sometimes called a σ-algebra). It is a class of subsets of Ω and satisfies
the properties of the above definition. The elements of F are called events.

• P: Is the probability measure assigning probabilities to events of F.

Example: Consider the experiment measuring the outcomes of flipping a coin n times, then
our sample space Ω = {sequences of H and T of length n}.

1 Probability Measures 4 Lecture 1, 09/05
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Example: Consider the experiment measuring the time until some random event happens
(e.g., time until an atom decays), then our sample space Ω = {0} ∪ R+.

Example: Consider the experiment of what will tomorrow’s weather be, then our sample
space Ω = {sunny, rainy, cloudy, . . .}.

Lecture 2 09/10

Example: Let Ω be countable (or finite). Let p : Ω → R be a function such that p(ω) ≥ 0
and

∑
ω∈Ω p(ω) = 1. Then define P(A) =

∑
ω∈A p(ω) for all A ∈ F, then P is a probability

measure. The probability space (Ω,F,P) is called the discrete probability space. Note that
here F is not needed, and just specifies for which sets P is defined. Note moreover that p is
not a probability measure.

Remark: Why do we need F?

1. We can define a probability measure for any P(S), however, we may not be able to
define a good probability measure. For instance, for a given ω ∈ Ω, we could define
P(A) = 1 if ω ∈ A ⊆ Ω and P(A) = 0 otherwise. In particular, we may not have
translation invariance µ(A) = µ(A + b), such as for the defined probability measure
above. In fact, there does not necessarily exist a translation invariant probability
measure whenever F = P(Ω). Translation invariance is a desirable property, as we
hope a measure roughly defines the size of a set.

2. F represents the “information” available for an experiment. For instance, there may
be events which are unsure whether or not they occur and which we may not know
their probability. In particular, F is the collection of sets for which we can talk about
probability and will know if/when they occur. For different people and at different
points in time we may know more information and be able to speak to more events
and therefore have different σ-fields F.

Definition. Set Limits: Recall for a sequence of numbers an, we have

lim inf
n→∞

an = lim
n→∞

inf
k≥n

ak and lim sup
n→∞

an = lim
n→∞

sup
k≥n

ak

We can extend this to sets as follows. Let A1, A2, . . . ,⊆ Ω be an enumeration of sets. We
define the following

lim inf
n→∞

An =
∞⋃
n=1

⋂
j≥n

Aj = {x ∈ Ω : ∃n,∀j ≥ n, x ∈ Aj}

lim inf, therefore, represents the part of the set which stops changing (the smallest subset
that is contained in every tail subsequence). Then ω ∈ lim infn→∞An if and only if ω ∈ Ak
for all but finitely many k. You might therefore write

lim inf
n→∞

An = {An a.a.︸︷︷︸
almost always

}
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I.e., there are only finitely many k where ω ̸∈ Ak. We also define

lim sup
n→∞

An =
∞⋂
n=1

⋃
j≥n

Aj = {x ∈ Ω : ∀n,∃j ≥ n, x ∈ Aj}

lim sup, therefore, represents the part of the set which will always eventually be attainable
(the largest subset that is contained in every tail subsequence). Then ω ∈ lim supn→∞An if
and only if ω happens infinitely often. You might therefore write

lim sup
n→∞

An = {An i.o.︸︷︷︸
infinitely often

}

I.e., there are infinitely many k where ω ∈ Ak. When we lim infn→∞An = lim supn→∞An,
then we call it limn→∞An.

Proposition 1. Limits of Chains: When A1 ⊆ A2 ⊆ · · · , then

lim
n→∞

An =
∞⋃
n=1

An = lim
n→∞

n⋃
k=1

Ak

When A1 ⊇ A2 ⊇ · · · , then

lim
n→∞

An =
∞⋂
n=1

An = lim
n→∞

n⋂
k=1

Ak

Proposition 2. Properties of Probability Measures:

(1) Probability measures are monotonic, in particular if A ⊆ B, then P(A) ≤ P(B).

(2) P(Ac) = 1− P(A).

(3) P(A ∪B) = P(A) + P(B)− P(A ∩B).

Exercise: Prove the above

Proposition 3. Inclusion-Exclusion Formula: The inclusion-exclusion formula specifies
the probability of the union of sets: A1, A2, . . . , An ∈ F

P(
n⋃
i=1

Ai) =
∑

1≤i≤n

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj)

+
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

− · · ·+ (−1)n+1P(A1 ∩ A2 ∩ · · · ∩ An)

1 Probability Measures 6 Lecture 2, 09/10
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Proof. For n = 2 the result holds by property (3). Assume that the result holds for n. Then
note

P(
n+1⋃
i=1

Ai) = P((
n⋃
i=1

Ai) ∪ An+1)

= P(∪ni=1Ai) + P(An+1)− P((
n⋃
i=1

Ai) ∩ An+1)

= P(∪ni=1Ai) + P(An+1)− P(
n⋃
i=1

(Ai ∩ An+1))

=
∑

1≤i≤n

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) + · · ·+ (−1)n+1P(A1 ∩ · · · ∩ An)

+ P(An+1)−
∑

1≤i≤n

P(Ai ∩ An+1) +
∑

1≤i<j≤n

P(Ai ∩ Aj ∩ An+1)

− · · · − (−1)n+1P(A1 ∩ · · · ∩ An+1)

=
∑

1≤i≤n

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) + · · ·+ (−1)n+2P(A1 ∩ · · · ∩ An+1)

Thus the result holds by induction.

Proposition 4. Continuity of Probability Measures: Let (Ω,F,P) be a probability
sapce. Let A1, A2, . . . ∈ F. If A1 ⊆ A2 ⊆ · · · is an increasing sequence or A1 ⊇ A2 ⊇ · · · is
a decreasing sequence, then limn→∞ P(An) = P(limn→∞An). That is, probability measures
are continuous from below and from above.

Proof. Suppose An is increasing, i.e., A1 ⊆ A2 ⊆ · · · . Define Bn = An \
⋃n−1
i=1 Ai = An \An−1

to be the portion added by An. Note then that B1, B2, . . . is a disjoint sequence and An =⋃n
i=1Bi, and in particular A = limn→∞An =

⋃∞
i=1Bi. Then by P’s countable-additivity

P(A) = P(
∞⋃
i=1

Bi) =
∞∑
i=1

P(Bi) = lim
n→∞

n∑
i=1

P(Bi) = lim
n→∞

P(
n⋃
i=1

Bi) = lim
n→∞

P(An).

Suppose instead that An is decreasing, i.e., A1 ⊇ A2 ⊇ · · · . Then instead, considering
complements we see that the sequence Acn is increasing and with limn→∞Acn = Ac. Then
from the previous result, we see that

P(A) = 1− P(Ac) = 1− lim
n→∞

P(Acn) = lim
n→∞

(1− P(Acn)) = lim
n→∞

P(An).

This proves the result from above and from below.

Proposition 5. Boole’s Inequality: If A1, A2, . . . ∈ F, then P(
⋃∞
i=1Ai) ≤

∑∞
i=1 P(Ai).

Proof. Define B1 = A1 and Bn = An \
⋃n−1
i=1 Ai ⊆ An to be what is newly added to

⋃n
i=1Ai

by An. Then we see that B1, B2, . . . are disjoint. Moreover, we see that
⋃n
i=1Ai =

⋃n
i=1Bi,

1 Probability Measures 7 Lecture 2, 09/10
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and in particular
⋃∞
i=1Ai =

⋃∞
i=1Bi. Therefore

P(
∞⋃
i=1

Ai) = P(
∞⋃
i=1

Bi) =
∞∑
i=1

P(Bi) ≤
∞∑
i=1

P(Ai)

since each Bi ⊆ Ai, as desired.

Definition. Field: A class F0 ⊆ P(Ω) of subsets of Ω is called a field if it satisfies the
following:

(1) Ω ∈ F0.

(2) If A ∈ F0 then Ac ∈ F0.

(3) If A,B ∈ F0 then A ∪B ∈ F0.

Note that property (3) shows closedness under finite unions by induction, however, unlike a
σ-field, we do not have closedness under countable unions. Note that we see then that if F
is a σ-field then it is also a field.

Lecture 3 09/12

Definition. Outer Measure: Let Ω be a sample space with field F0 and measure P. For
a set A ⊆ Ω (not necessarily in F0), we define

P∗(A) := inf

{
∞∑
n

P(An) : A ⊆
∞⋃
n=1

An, A1, A2, . . . ∈ F0,

}

That is, the outer measure of a set A is the smallest sum of the measures of a cover of A.

Definition. P∗-measurable Set: Let Ω be a sample space with field F0 and measure P.
A set A ⊆ Ω is said to be P∗-measureable if P∗(A∩E) +P∗(AC ∩E) = P∗(E) for all E ⊆ Ω.
This is called Carathéodory’s criterion in real analysis. Intuitively, this means that for any
set E the boundary between A ∩E and Ac ∩E does not exist, then A is P∗-measurable. In
a sense, this means that the boundary of E with the rest of the space may not be perfectly
coverable, but the boundary within E (cast by A and Ac) is perfectly coverable. We define
M to be the class of all P∗ measurable subsets of Ω.

Proposition 6: Let Ω be a sample space with field F0 and measure P. Then M is a σ-field,
and P∗ is countably additive on M and P∗ is a probability measure. Therefore, (Ω,M,P∗) is
a probability space.

Proof. The proof is omitted. However, we can show conditions (1’) and (2’) to see it is a
probability measure. (1’) P∗(A) ≥ 0 since it is a sum of values of P and P(B) ≥ 0 for all
B ∈ F0. (2’) Ω ∈ F0 by definition and so P∗(Ω) = P(Ω) = 1.

1 Probability Measures 8 Lecture 3, 09/12
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Proposition 7: Let Ω be a sample space with field F0 and measure P. Then F0 ⊆ M.

Proof. Let A ∈ F0. For any E ⊆ Ω, we must show that P∗(A ∩ E) + P∗(Ac ∩ E) = P∗(E).
Let ε > 0. Let A1, A2, . . . ∈ F0 be a cover of E, i.e., such that E ⊆

⋃∞
n=1An, and such

that
∑∞

n=1 P(An) ≤ P∗(E) + ε. Note such a cover exists by the definition of P∗(E). Define
Bn := An ∩ A ∈ F0 and Cn = An ∩ Ac ∈ F0. By countable additivity (and since Bn and Cn
are disjoint), we see that P(Bn) + P(Cn) = P(An). Moreover, we see then that

E ∩ A ⊆
∞⋃
n=1

Bn and E ∩ Ac ⊆
∞⋃
n=1

Cn.

This implies that

P∗(E ∩ A) ≤ P∗(
∞⋃
n=1

Bn) ≤
∞∑
n=1

P(Bn) and P∗(E ∩ Ac) ≤ P∗(
∞⋃
n=1

Cn) ≤
∞∑
n=1

P(Cn)

since {Bn}∞n=1 is one such cover and by Boole’s inequality. Thus,

P∗(E ∩ A) + P∗(E ∩ Ac) ≤
∞∑
n=1

P(Bn) +
∞∑
n=1

P(Cn) =
∞∑
n=1

P(An) ≤ P∗(E) + ε

Since this holds for all ε > 0, taking a limit we see that P∗(E ∩ A) + P∗(E ∩ Ac) ≤ P∗(E).

On the other hand, we trivially have that P∗(E ∩ A) + P∗(E ∩ Ac) ≥ P∗(E) since the union
of the smallest covers of E ∩ A and E ∩ Ac necessarily also forms a cover of E. By the
definition of P∗(E), the cover used must have a smaller (summed) measure than the union
of the covers of E.

Combining the two results, we get P∗(A ∩ E) + P∗(Ac ∩ E) = P∗(E), and so A ∈ M. This
shows that F0 ⊆ M.

Definition. π-system: A class P ⊆ P(Ω) of subsets of Ω is called a π-system if whenever
A,B ∈ P then A ∩B ∈ P (i.e., P is closed under finite intersection).

Definition. λ-system: A class L ⊆ P(Ω) of subsets of Ω is called a λ-system if the
following are satisfied:

(1) Ω ∈ L.

(2) if A ∈ L then Ac ∈ L.

(3) If A1, A2, . . . ∈ L are disjoint, then
⋃∞
n=1An ∈ L.

The only difference between a λ-system and a σ-field is that a λ-system requires the union
to be of disjoint sets (whereas an σ-field does not have this requirement).

Proposition 8: A class P that is both a π-system and a λ-system is a σ-field.

1 Probability Measures 9 Lecture 3, 09/12
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Proof. We only need to show that C is closed under countable (not necessarily disjoint)
union. Let A1, A2, . . . ∈ C. Define B1 = A1, B2 = A2 \ A1 = A2 ∩ Ac1, and in general

Bn = An \ (
n−1⋃
i=1

Ai) = An ∩ Acn−1 ∩ Acn−2 ∩ · · · ∩ Ac1.

Note that each Bn is in C since each one is formed by finite intersections (and C is closed under
complementation). Note then that each B1, B2, . . . are all also disjoint and so

⋃∞
n=1Bn ∈ C.

We see then that
⋃∞
n=1An =

⋃∞
n=1Bn ∈ C, and so C is a σ-field.

Proposition 9: If a λ-system L contains both A ∈ L and A ∩ B ∈ L for some set B ⊆ Ω,
then A ∩Bc ∈ L.

Proof. Note that since A ∈ L then Ac ∈ L. Moreover, Ac and A ∩B are disjoint. So

Ac∪(A∩B) ∈ L =⇒ (Ac∪(A∩B))c = A∩(Ac∪Bc) = (A∩Ac)∪(A∩Bc) = A∩Bc ∈ L,

as desired.

Lecture 4 09/17

Theorem 10. π-λ Theorem: Also called the monotone class theorem. If P is a π-system,
L is a λ-system, and P ⊆ L, then σ(P) ⊆ L.

Proof. Let L(P) =
⋂
{L′ : P ⊆ L′,L′ is a λ-system} ⊆ P(Ω) be the intersection of all the

λ-systems containing P. One can check that L(P) is also a λ-system containing P. For
A ⊆ Ω, define GA to be the class of sets B ⊆ Ω such that A ∩B ∈ L(P).

Step 1. We will show that for any A ∈ L(P), then GA is a λ-system. (1) Note that
A ∩ Ω = A ∈ L(P ) therefore Ω ∈ GA. (2) If B ∈ GA, then L(P) is a λ-system containing
both A and A ∩B (by definition of GA), and so by the previous proposition A ∩Bc ∈ L(P)
and thus Bc ∈ GA. (3) If B1, B2, . . . ∈ GA are disjoint, then A ∩ B1, A ∩ B2, . . . ∈ L(P) are
disjoint. Therefore

⋃∞
i=1(A ∩ Bi) = A ∩ (

⋃∞
i=1Bi) ∈ L(P) since B1, B2, . . . are disjoint and

L(P) is a λ-system. Thus
⋃∞
n=1Bn ∈ GA, which shows that GA is a λ-system.

Step 2. Next, we will show that if A ∈ P then L(P) ⊆ GA. For any B ∈ P, then A ∩ B ∈
P ⊆ L(P) since P is a π-system. Thus, we see that B ∈ GA by the definition of GA. Thus
P ⊆ GA and since GA is a λ-system, then since L(P) is the smallest λ-system containing P,
we have that L(P) ⊆ GA.

Step 3. Finally, we will show that if B ∈ L(P) then L(P) ⊆ GB. For any A ∈ P, then
B ∈ L(P) ⊆ GA from step 2. Thus A∩B ∈ L(P) by definition of GA, and so this also means
A ∈ GB by definition of GB. This shows that P ⊆ GB, and therefore that L(P) ⊆ GB since
L(P) is the smallest λ-system containing P.

1 Probability Measures 10 Lecture 4, 09/17



STAT 901 Fall 2024: Notes Jacob Schnell

Now, we are ready to show the main result. For any A,B ∈ L(P), we have A ∈ GB by step 3
and so by definition of GB we also have A∩B ∈ L(P ). Thus L(P) is also a π-system. Then
by proposition 8, L(P) is a σ-field. Moreover, we see that

P ⊆ σ(P) = L(P) ⊆ L.

The equality follows since L(P) is a σ-field containing P and σ(P) is the smallest σ-field
containing P, this shows σ(P) ⊆ L(P). But also, σ(P) is a λ-system containing P and L(P)
is the smallest λ-system containing P, so L(P) ⊆ σ(P). The last containment follows since
L is some λ-system.

Corollary 11: Let P1 and P2 be two probability measures that agree on a π-system P. That
is P1(A) = P2(A) for all A ∈ P. Then they agree on σ(P).

Proof. Let L = {A ∈ σ(P) : P1(A) = P2(A)} be the class of sets where P1 and P2 agree. We
check L is a λ-system. (1) Note clearly Ω ∈ σ(P ) and P1(Ω) = 1 = P2(Ω) so Ω ∈ L. (2)
Suppose A ∈ L, then P1(A

c) = 1−P1(A) = 1−P2(A) = P2(A
c) and so Ac ∈ L. (3) Suppose

A1, A2, . . . ∈ L are disjoint, then

P1(
∞⋃
n=1

An) =
∞∑
n=1

P1(An) =
∞∑
n=1

P2(An) = P2(
∞⋃
n=1

An)

by countably-additivity of probability measures, so
⋃∞
n=1An ∈ L. We see then that L is a

λ-system.

Then, by applying the π-λ theorem, we see that σ(P) ⊆ L. Then by the definition of L, we
see that P1 and P2 agree on σ(P).

Theorem 12. Existence and Uniqueness of Probability Measures: Let F0 be a field
on Ω and P be a set function defined on F0 such that it satisfies the probability axioms on
F0. I.e.,

(1) 0 ≤ P(A) ≤ 1 for all A ∈ F0.

(2) P(∅) = 0 and P(Ω) = 1.

(3) If A1, A2, . . . ∈ F0 are disjoints sets, and if
⋃∞
k=1Ak ∈ F0 then P(

⋃∞
k=1Ak) =

∑∞
k=1 P(Ak).

That is, if F0 satisfies all of the properties for a σ-field (but F0 is not closed under countable
union), then there exists a unique probability measure Q on σ(F0) such that whenever A ∈ F0

(and therefore A ∈ σ(F0)), then Q(A) = P(A). We say that Q is an extension of P. That is,
for every field and probability measure, there is exists a unique extension of the probability
to the σ-field generated by the field.

Proof. Since F0 ⊆ M and M is a σ-field then M is part of the intersection which yields
σ(F0). Therefore, since P∗ is a probability measure on the σ-field M we see that P∗ must be
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a probability measure on σ(F0) ⊆ M. Moreover, for any A ∈ F0, the smallest cover of A is
A itself, and so P∗(A) = P(A). This shows the existence of an extension of (Ω,F0,P).

Uniqueness follows from corollary 11‘ since F0 is a π-system. Therefore, any probability
measures Q1 and Q2 that agree on F0, then they also agree on σ(F0), and so Q1 and Q2 are
actually the same probability measure.

Remark: Members of σ-fields are typically hard to describe, making it also hard to describe
probability measures on such a σ-field directly. The idea of the above theorem is to define
a probability measure on a smaller/simpler collection of sets and extend the result to the
whole σ-field.

Definition. Lebesgue Measure: Define Ω = (0, 1] and use the Borel-σ-field B. Recall
B0 = B0((0, 1]) = {finite unions of disjoint intervals (a, b] on (0, 1]} and B = σ(B0). De-
fine a set function λ on B0 such that λ((a, b]) = b − a and for other members of B0 it is
the sum of λ applied to each disjoint interval. One can check that λ satisfies the probability
axioms on B0. Then by theorem 12, there is a unique extension of λ which is a probability
measure defined on B since B = σ(B0) (we will continue to denote it by λ for simplicity).
We call λ the Lebesgue measure on B.

Moreover, the Lebesgue measure is the only probability measure on ((0, 1],B) such that the
measure of an interval is equal to its length for all measures.

Remark: Any measure can be transformed into a probability measure by µ′(A) = µ(A)/µ(Ω)
assuming µ(Ω) <∞. However, this implies that the Lebesgue measure defined on R is fun-
damentally different, since λ(R) = ∞.

Definition. Null Set: For a probability space (Ω,F,P), a set A ∈ F is called a null set if
P(A) = 0.

Definition. Completeness: A probability space (Ω,F,P) is complete if whenever A ⊆ B
where B ∈ F but A may or may not be in F, and P(B) = 0 (i.e., B is a null set), then
P(A) = 0 (i.e., A is a null set and A ∈ F).

Proposition 13: If (Ω,F,P) is complete, then for a set A′, if there exists an A ∈ F

such that A∆A′ ⊆ B for some with P(B) = 0, then A′ ∈ F and P(A′) = P(A). Recall
A∆A′ = (A ∩ A′c) ∪ (Ac ∩ A′) is the symmetric difference.

Proposition 14: For any probability space (Ω,F,P), there exists a complete probability
space (Ω,F′,P′) which extends (Ω,F,P). That is, F ⊆ F′ and P′(A) = P(A) for all A ∈ F.

Proof. Recall the outer measure P∗ defined earlier which is a probability measure on the
class M of all P∗-measurable sets. Recall also that A is P∗-measurable if and only if P∗(A ∩
E) + P∗(Ac ∩ E) = P∗(E) for all E ⊆ Ω.

We will show that (Ω,M,P∗) is a complete probability space. Note also that F ⊆ M and by
definition P∗ is an extension of P. Let P∗(B) = 0 and A ⊆ B. For any E ⊆ Ω, note that

P∗(A ∩ E︸ ︷︷ ︸
⊆A⊆B

) + P∗(Ac ∩ E︸ ︷︷ ︸
⊆B

) ≤ P∗(B) + P∗(E) ≤ P∗(E)
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Note this follows by the monotonicity of P∗, which follows since for any A ⊆ B, any cover
of B is also a cover of A, and so by taking the infimum, we have P∗(A) ≤ P∗(B). Note
P∗(E) ≤ P∗(A ∩ E) + P∗(Ac ∩ E) since any cover of E is also a cover of both A ∩ E and
Ac ∩ E. Thus, A ∈ M and P∗(A) = 0 follows by the monotonicity of P∗.

Definition. Conditional Probability: Let (Ω,F,P) be a probability space and let A,B ∈
F. Then the conditional probability of B given A is P(B|A) := P(A∩B)

P(A) .

Proposition 15. Chain Rule: Let (Ω,F,P) be a probability space. An immediate result
of conditional probability is the chain rule. For A1, A2, . . . , An ∈ F, then

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1) · P(A2|A1) · P(A3|A1 ∩ A2) · · ·P(An|A1 ∩ · · · ∩ An−1)

Proposition 16. Law of Total Probability: Let (Ω,F,P) be a probability space. Suppose
A1, A2, . . . ∈ F is a partition of Ω, i.e., A1, A2, . . . are disjoint and

⋃∞
n=1An = Ω. Then for

any event B ∈ F, we have P(B) =
∑∞

n=1 P(B|An)P(An).

Lecture 5 09/19

Theorem 17: Let (Ω,F,P) be a probability space. For a sequence of events A1, A2, . . . ∈ F,
then we have

(1) P(lim inf
n→∞

An) ≤ lim inf
n→∞

P(An) ≤ lim sup
n→∞

P(An) ≤ P(lim sup
n→∞

An)

(2) If limn→∞An = A then limn→∞ P(An) → P(A)

Proof. (1) Define Bn =
⋂∞
k=nAk and Cn =

⋃∞
k=nAk. Then we note Bn is monotonically

increasing since we intersect with fewer events, i.e., B1 ⊆ B2 ⊆ · · · . We also note Cn is
monotonically decreasing since we union with fewer events, i.e., C1 ⊇ C2 ⊇ · · · . Thus,
limn→∞Bn = lim infn→∞An and limn→∞Cn = lim supn→∞An. We also see Bn ⊆ An ⊆ Cn.
And so,

lim inf
n→∞

P(An) ≥ lim
n→∞

P(Bn) = P( lim
n→∞

Bn) = P(lim inf
n→∞

An)

and
lim sup
n→∞

P(An) ≤ lim
n→∞

P(Cn) = P( lim
n→∞

Cn) = P(lim sup
n→∞

An)

(2) follows immediately from (1).

Definition. Independence of Events: Let (Ω,F,P) be a probability space. Two events
A,B are called independent if P(A∩B) = P(A)P(B). When P(A) > 0, then this is equivalent
to P(B|A) = P(B). We write A ⊥⊥ B in this case. For n events A1, . . . , An, they are called
(mutually) independent if P(

⋂
i∈I Ai) =

∏
i∈I P(Ai) holds for all I ⊆ {1, 2, . . . , n}. An infinite

(possibly uncountable) number of events {At}t∈T are said to be independent if every finite
subset {Ai1 , Ai2 , . . . , Ain} ⊆ {At}t∈T is mutually independent.
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Note: For n ≥ 3, mutual independence is different (and stronger) than the pairwise inde-
pendence of all pairs (i.e., Ai ⊥⊥ Aj for all i, j ∈ {1, . . . , n} with i ̸= j). Mutual independence
is also different (and stronger) than the condition P(

⋂n
i=1Ai) =

∏n
i=1 P(Ai).

Exercise: Find examples of events A1, . . . , An that are pairwise independent but not mutu-
ally independent. Find examples of events B1, . . . , Bn that have P(

⋂n
i=1Bi) =

∏n
i=1 P(Bi),

but are not mutually independent.

Definition. Independence Between Collections of Events: Let (Ω,F,P) be a proba-
bility space. A (potentially infinite) number of classes of events (i.e., sets of events) {Aθ}θ∈Θ
such that Aθ ⊆ F for all θ ∈ Θ are called independent if every collection {Aθ : Aθ ∈ Aθ}θ∈Θ is
mutually independent. I.e., every collection that can be formed by picking one element from
Aθ1 , one element from Aθ2 , so and so forth is mutually independent. Two σ-fields, F and G,
are called independent, if they form independent classes of events. That is, for every A ∈ F

and B ∈ G, then A ⊥⊥ B. Similarly, if F1, . . . ,Fn are σ-fields, then they are independent if
every set of events A1, . . . , An is mutually independent for all A1 ∈ F1, . . . , An ∈ Fn. This
continues naturally for infinitely many σ-fields.

Proposition 18: Let (Ω,F,P) be a probability space. If Aθ for θ ∈ Θ are independent and
each Aθ is a π-system, then σ(Aθ) for θ ∈ Θ are independent. That is, σ-fields generated by
independent π-systems are independent.

Proof. It is sufficient to show that for any n ∈ N and any A1,∈ σ(A1), . . . ,An ∈ σ(An)
we have P(A1 ∩ · · · ∩ An) = P(A1) · · ·P(An). Fix n ∈ N and A2 ∈ A2, . . . , An ∈ An.
Define L1 = {A1 ∈ σ(A1) : P(A1 ∩ · · · ∩ An) =

∏n
i=1 P(Ai)}. Note then that A1 ⊆ L1 since

by assumption A1, . . . ,An are independent. Moreover, one can check that L1 is a λ-system.
Then by the π-λ theorem, we have that σ(A1) ⊆ L1, hence P(A1∩· · ·∩An) =

∏n
i=1 P(Ai) for

any A1 ∈ σ(A1, A2 ∈ A2, . . . , An ∈ An. This shows that σ(A1), A2, . . . , An are independent
classes. We can then repeat this process, fixing A1 ∈ σ(A1), A3 ∈ A3, . . . , An ∈ An and
defining L2 = {A2 ∈ σ(An) : P(A1 ∩ · · · ∩ An) =

∏n
i=1 P(Ai)}. This will show us that

σ(A1), σ(A2), A3, . . . , An are independent classes. We then repeat this for all remaining Ai,
to show that σ(A1), . . . , σ(An) are independent classes.

Exercise: Show that the π-system condition in the above proposition is necessary.

Lecture 6 09/24

Proposition 19: Let (Ω,F,P) be a probability space. Let

A11 A12 · · ·
A21 A22 · · ·
...

... . . .

be an array of independent events. If Fi = σ({Ai,j : j ∈ N}) is the σ-field generated by the
i-th row, then Fi,F2, . . . are independent. This could also be extended to the uncountable
case, but here we assume the array has cardinality |N× N|. This condition differs from the
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previous proposition since we don’t only have independence within one generating class, but
also between all generating classes.

Proof. Let Ai be the class of all finite intersections of elements of the ith row. One can
check that Ai is then a π-system, and obviously σ(Ai) = Fi. It suffices to show then that
{Ai}∞i=1 is independent. That is, for any finite set of indices I, and any i ∈ I, pick Ci ∈ Ai,
we must then show that P(

⋂
i∈I Ci) =

∏
i∈I P(Ci). Note since Ci ∈ Ai, there is a finite set

Ji of indices such that Ci =
⋂
j∈Ji Aij.

P(
⋂
i∈I

Ci) = P(
⋂
i∈I

⋂
j∈Ji

Aij) =
∏
i∈I

∏
j∈Ji

P(Aij) =
∏
i∈I

P(
⋂
j∈Ji

Ai) =
∏
i∈I

P(Ci)

Thus A1,A2, . . . are independent, so by proposition 18, we see that F1,F2, . . . are indepen-
dent.

Theorem 20. 1st Borel-Contelli Lemma: Let (Ω,F,P) be a probability space. Let
A1, A2, . . . ∈ F be a sequence of events. If

∑∞
n=1 P(An) <∞, then P(An i.o.) = 0

Proof. Recall {An i.o.} = lim supn→∞An =
⋂∞
n=1

⋃∞
k=nAk. Then, lim supn→∞An ⊆

⋃∞
k=mAk

for any m. So we see,

P(lim sup
n→∞

An) ≤ P(
∞⋃
k=m

An) ≤
∞∑
k=m

P(Ak)

for all m ∈ N. Since
∑∞

n=1 P(An) < ∞, we know that
∑∞

k=m P(Ak) → 0 as m → ∞. Thus,
by taking the limit m → ∞, we see that P(lim supn→∞An) → 0 by the squeeze theorem.
Thus P(An i.o.) = 0 by taking the limit.

Theorem 21. 2nd Borel-Contelli Lemma: Let (Ω,F,P) be a probability space. Let
A1, A2, . . . be an independent sequence of events. If

∑∞
n=1 P(An) = ∞, then P(An i.o.) = 1.

Proof. Recall {An i.o.} = lim supn→∞An =
⋂∞
n=1

⋃∞
k=nAk. It suffices to show then that

1− P(An i.o.) = P((
∞⋂
n=1

∞⋃
k=n

Ak)
c) = 0 ⇐⇒ P(

∞⋃
n=1

∞⋂
k=n

Ack) = 0

by De Morgan’s laws. We will show that P(
⋂∞
k=nA

c
k) = 0 for all n. In particular, let n be

given. Then for any j = 1, 2, . . ., note

P(
n+j⋂
k=n

Ack) =

n+j∏
k=n

P(Ack) =
n+j∏
k=n

(1− P(Ak)) ≤
n+j∏
k=n

exp(−P(Ak)) = exp

(
−

n+j∑
k=n

P(Ak)

)
since 1−x ≤ e−x for all x (the inequality is strict if x ̸= 0). Then, since

∑∞
k=1 P(Ak) = ∞, we

see that if
∑n+j

k=n P(Ak) → ∞ as j → ∞, since we only ever drop the first n <∞ terms, and
so
∑n−1

k=1 P(Ak) <∞. This implies then that P(
⋂n+j
k=nA

c
k) → 0 as j → ∞. Finally, this implies

that P(
⋂∞
k=nA

c
k) = 0. But then, P(

⋃∞
n=1

⋂∞
k=nA

c
k) ≤

∑∞
n=1 P(

⋂∞
k=nA

c
k) =

∑∞
n=1 0 = 0, as

desired.
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Exercise: Find a counterexample where
∑∞

n=1 P(An) = 1 but P(An i.o.) ̸= 1 by picking a
sequence A1, A2, . . . which is not necessarily independent.

Example: Suppose you have a box containing m balls. Each time you draw a ball at
random, and put it back in the box along with an extra ball. Thus any ball will always
remain in the box, and the box will have increasingly many new balls. For any given ball,
how many times will it be picked in total?

Let An denote the event that the ball was picked at time n (where we start counting draws
from n = 1). Assume the ball was first put into the box immediately prior to time K (if it
was in the box since the start, then K = 1). Then

P(An) =

{
0 if n < K

1
m+n−1

if n ≥ K

Note also that {An}∞n=1 is independent. Note also that
∑∞

n=1 P(An) = ∞ by the divergence
of the harmonic series. Then by the 2nd Borel-Contelli lemma, P(An i.o.) = 1. Thus with
probability 1, the chosen ball will be picked infinitely many times.

Example: Suppose you have a box containing 1 ball. This time, each time you draw a ball
at random, and put it back in the box along with enough new balls so that there are exactly
2n new balls. Thus any ball will always remain in the box, and the box will have increasingly
many new balls. For any given ball, how many times will it be picked in total?

Let An denote the event that the ball was picked at time n (where we start counting draws
from n = 1). Assume the ball was first put into the box immediately prior to time K (if it
was in the box since the start, then K = 1). Then

P(An) =

{
0 if n < K
1
2n

if n ≥ K

Then
∑∞

n=1 P(An) < ∞, and so by the 1st Borel-Contelli lemma, P(An i.o.) = 0. So with
probability 1, the chosen ball will be picked only finitely many times.

Remark. Zero-One Laws: Many results in probability theory take the form of zero-one
laws, i.e., P(An i.o.) = 0 or P(An i.o.) = 1. They assert that certain events take place with
probability 1 (almost always happen) or probability 0 (almost never happen). The above
are some examples of zero-one laws.

Example. DTMC Recurrence: A state i in a discrete-time Markov chain (DTMC) is
said to either be recurrent or transient. If i is recurrent, then the chain will visit i infinitely
many times (starting from state i) with probability 1, and if i is transient, then the chain
will only visit i finitely many times (starting from state i) with probability 1. Let Ni denote
the number of visits to state i after infinitely many steps, starting from the initial state i.
Then if i is recurrent P(Ni = ∞) = 1 or if i is transient P(Ni = ∞) = 0. Thus recurrence is
a zero-one law.

Definition. Tail σ-field: Let (Ω,F,P) be a probability space. Let A1, A2, . . . ∈ F be
events. Then the tail σ-field of {An}∞n=1 is T =

⋂∞
n=1 σ(An, An+1, . . .). We call elements of

T tail events.
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Example: Let (Ω,F,P) be a probability space. Let A1, A2, . . . ∈ F be an independent
sequence of events. Let T be their tail σ-field. Consider lim supn→∞An =

⋂∞
n=1

⋃∞
k=nAk.

Then since {
⋃∞
k=nAi}∞n=1 is a decreasing sequence of events. So we can write

lim sup
n→∞

An =
∞⋂
n=m

∞⋃
k=n

An ∈ σ(Am, Am+1, . . .) ∈ T

for any m. We can similarly show that lim infn→∞An ∈ T

Remark: We’ll now introduce a mechanism which leads to many zero-one laws.

Theorem 22. Kolmogorov’s Zero-One Law: Let (Ω,F,P) be a probability space. Let
A1, A2, . . . ∈ F be an independent sequence of events. Let T be their tail σ-field. Then any
event A ∈ T either has probability P(A) = 0 or P(A) = 1.

Proof. By independence ofA1, A2, . . ., we know that σ({A1}), . . . , σ({An−1}), σ({An, An+1, . . .})
are all independent for any n. For A ∈ T , A ∈ σ(An, An+1, . . .) and hence, A is indepen-
dent of A1, . . . , An−1. Since this holds for all n, σ(A) and σ(A1, A2, . . .) are independent.
However, we also have A ∈ T ⊆ σ(A1, A2, . . .). Obviously A ∈ σ(A) and A ∈ σ(A1, A2, . . .),
which by the independence of the two σ-fields implies A is independent of itself. This implies
P(A) = P(A ∩ A) = P(A) · P(A), whose only solutions are P(A) = 0 or P(A) = 1.

Chapter 2 Random Variables

Lecture 7 09/26

Example: Consider the sample space Ω = {sunny, rainy, cloudy, . . .} describing tomorrow’s
weather. Then we can map these to some variable X with domain {1, 2, 3, . . .}, to make
talking about these easier. E.g., we can take probabilities PP(X = 1),P(X ∈ [1, 2]), etc.

Definition. Measurable Mappings: Let (Ω,F) and (S,A ) be measurable spaces. A
mapping X : Ω → A is said to be measurable if for any A ∈ A , if the pre-image
X−1(A) := X−1(A) = {ω ∈ Ω : X(ω) ∈ A} of A under X, is such that X−1(A) ∈ F. That
is, the pre-image of any measurable set is measurable. If (S,A ) = (R,B), then X is called
a random variable.

Notation. Random Variable Notation: Suppose (Ω,F) and (R,B) are measurable
spaces and X : Ω → R is a random variable. When we discuss events defined by the value of
X, we often use the shorthand {X ∈ B} := {ω ∈ Ω : X(ω) ∈ B} = X−1(B). We also often
use the shorthand P(X ∈ B) = P(X−1(B)).

Example. Discrete Probability Space: If Ω is a countable sample space, then (Ω,P(Ω),P)
is said to be a discrete probability space. Then, any mapping X : Ω → R is a random vari-
able. As always, the probability measure induced by X is P(X ∈ B) =

∑
b∈B P(X = b) =

P(X−1(B)).
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Example. Indicator Random Variable: Let (Ω,F,P) be a probability space. Let A be
an event in F. The indicator of A is defined as

1A(ω) =

{
1 if ω ∈ A, i.e., A “happens”
0 if ω /∈ A

Then 1A is a random variable.

Definition. Distribution of a Random Variable: Let (Ω,F,P) be a probability space
and X be a random variable on (Ω,F,P). Then X induces a probability measure µ on
(R,B) by setting µ(B) = P(X ∈ B) = P(X−1(B)). Using this definition, µ is called the
distribution of X.

Exercise: Check that µ as defined above is indeed a probability measure.

Remark: The probability measure µ induced by the random variable X is also called a
push-forward measure, since it “pushes” the probability measure P defined on (Ω,F) to the
measurable space (R,B).

Definition. Cumulative Distribution Function: Let (Ω,F,P) be a probability space
and X be a random variable on (Ω,F,P). The function F : R → [0, 1] defined through
F (x) = P (X ≤ x) = µ((−∞, x]) is called the (cumulative) distribution function (often ab-
breviated c.d.f.). Since {(−∞, x], x ∈ R} is a π-system, it generates B, and thus by ex-
tension, F (x) uniquely determines µ. I.e., the distribution of a random variable is fully
characterized by its (cumulative) distribution function.

Proposition 23: Let (Ω,F,P) be a probability space and X be a random variable on
(Ω,F,P). The following are some properties of the distribution function F of X.

(1) F is non-decreasing.

(2) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

(3) F is right-continuous, which is to say F (a) = limx→a− F (x) for all a ∈ R.

(4) limx→a+ F (x) = P(X < a) = µ((−∞, a)) we also write F (x−) = P(X < x).

(5) P(X = x) = F (x)− F (x−).

Proof. (1) Follows by the monotonicity of probability measures.

(2) Note that limx→∞(−∞, x) = R and limx→−∞(−∞, x), then the result follows by the
continuity of probability measures.

(3) By the continuity (from above) of probability measures, we have

lim
x→a−

F (x) = lim
x→a−

P({X ≤ x}) = P(
⋂
x→a−

{X ≤ x}) = P({X ≤ a}) = F (a)

(4) By the continuity (from below) of probability measures, we have

lim
x→a+

F (x) = lim
x→a+

P({X ≤ x}) = P(
⋃
x→a+

{X ≤ x}) = P({X < a}) = F (a)
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(5) Follows by taking the difference between properties (3) and (4).

Lecture 8 10/01

Theorem 24: Suppose a function F : R → R satisfies (1), (2), and (3) of the properties in
proposition 23, above. Then there exists a probability space (Ω,F,P) and a random variable
X on that space such that F is the distribution function of X. That is, the properties (1),
(2), and (3) fully characterize distribution functions.

Proof. Take Ω = (0, 1), F = B and P to be the Lebesgue measure λ. In particular, for
ω ∈ (0, 1) define X(ω) := sup{y ∈ R : F (y) < ω} =: F−1(ω), called the generalized inverse
of F . Note for the generalized inverse it is not the case that F ◦ F−1 is the identity. Then
we want to show that the events A = {ω ∈ (0, 1) : ω ≤ F (x)} and B = {x ∈ R : X(ω) ≤ x}
are the same.

Let ω ∈ (0, 1) and x ∈ R. If ω ≤ F (X) so that ω ∈ A, then we know that for any y such
that F (y) < ω (since F is non-decreasing), then x > y. Then taking the limit, we have
x ≥ sup{y ∈ R : F (y) < ω)} and so X(ω) ≤ x, and so x ∈ B.

On the other hand, if ω > F (x) so that ω ∈ Ac, then since F is right-continuous (and the
inequality is strict), we can move slightly to the right of x to get x′ > x still satisfying
ω > F (x′). Then x′ ∈ {x ∈ R : F (x) < ω} and so x < x′ ≤ sup{x ∈ R : F (x) < ω} = X(ω).

We see then that ω ≤ F (x) if and only if X(ω) ≤ x, so the events are identical. So,
P(X(ω) ≤ x) = P(ω ≤ F (x)) = λ((0, F (x))) = F (x), so the distribution function of X is
F (x), as desired.

Notation: If X and Y induce the same distribution on (R,B), equivalently, if X and Y
have the same distribution functions FX = FY , then we say that X and Y have the same
distribution or that they are equal in distribution. We denote this by X D

= Y . Note that this
does not necessarily imply that X = Y , or equivalently that X(ω) = Y (ω) for all ω or that
they are equal almost surely (i.e., for all but a set of measure 0).

Definition. Probability Density/Mass Function: Let (Ω,F,P) be a probability space
and X be a random variable on (Ω,F,P). If there exists a function f such that for any x ∈ R
we have P(X ≤ x) = F (x) =

∫ x
−∞ f(y)dy, then f is called the (probability) density function

of X (often abbreviated p.d.f.). If f is only defined on a countable set A ∈ B, then f is
called the (probability) mass function of X (often abbreviated p.m.f.).

Remark: Let (Ω,F,P) be a probability space and X be a random variable on (Ω,F,P) with
density function f . Note that by the Fundamental Theorem of Calculus, if F is well-behaved,
then d

dx
F (x) = f(x). Moreover,

P(X ∈ (a, b])) = F (b)− F (a) =

∫ b

−∞
f(y)dy −

∫ a

∞
f(y)dy =

∫ b

a

f(y)dy
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and as a result,

P(X = x) = lim
ε→0

P(X ∈ (x− ε, x+ ε)) = lim
ε→0

∫ x+ε

x−ε
f(y)dy = 0.

Note this also implies then that P(a < X < b) = P(a ≤ X ≤ b).

Definition. Continuous Distribution: If a distribution has a density function, then it
is called an absolutely continuous distribution. If a distribution has P(X = a) = F (a) −
limx→a− F (x) = 0 for all a, i.e., its distribution function is continuous, then the distribu-
tion is called continuous This also implies that all absolutely continuous distributions are
continuous, though the converse is not necessarily true.

Definition. Discrete Distribution: Let (Ω,F,P) be a probability space and X be a
random variable on (Ω,F,P). If there is a countable set A ∈ B such that P(X ∈ A) = 1,
then X is said to be discrete. Note if X is not continuous, then it is discrete and has a
probability mass function.

Definition. Singular Distribution: Let (Ω,F,P) be a probability space and X be a
random variable on (Ω,F,P) with density function f . If there is a set A ∈ B such that
λ(A) = 0 for the Lebesgue measure λ, but P(X ∈ A) = 1 and X is continuous, then X is
said to be singular.

Remark: The existence of singular distributions is why we cannot assume that a general
distribution is a mixture of a part with density and a part with probability mass, as there
may be a singular part. However, any distribution can be decomposed into an absolutely
continuous part, a discrete part, and a singular part.

Example: Suppose X has a p.d.f. f(x) = 1 for x ∈ (0, 1). Then X has c.d.f.

F (x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

In this case, we say that X is a uniform (0, 1) distribution and write X ∼ U(0, 1)

Example: Suppose X has a p.d.f. f(x) = λe−λx for x ≥ 0 (and λ > 0). Then we say X is
an exponential λ distribution and write X ∼ Exp(λ).

Example: Suppose X has a p.d.f. f(x) = 1√
2π
e−x

2/2 for all x ∈ R. Then we say X is a
standard normal distribution and write X ∼ N(0, 1).

Example: Suppose X has point mass at 0, i.e., P(X = 0) = 1 so that F (x) = 1x≥0. Then
we say X has a Dirac distribution.

Definition. σ-field Generated by a Mapping: Let X : Ω → R be a mapping. Consider
the class of sets {{ω ∈ Ω : X(ω)inB} : B ∈ B}. This class is a σ-field, and in fact {{ω ∈
Ω : X(ω) ∈ B} : B ∈ B} is the smallest σ-field on Ω such that X is a measurable mapping.
We call it the σ-field generated by X and denote it by σ(X). Similarly, σ(X1, X2, . . .) is the
smallest σ-field such that all of X1, X2, . . . are measurable.
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Exercise: Prove σ(X) = {{ω ∈ Ω : X(ω) ∈ B} : B ∈ B} is a σ-field and the smallest
σ-field such that X is a measurable mapping.

Theorem 25: Let (Ω,F,P) be a probability space. If X : (Ω,F) → (S,A ) and f :
(S,A ) → (T,B) are measurable mappings, then f ◦ X : (Ω,F) → (T,B) (defined by
(f ◦X)(ω) = f(X(ω))) is a measurable mapping.

Proof. Let B ∈ B. Since f is a measurable mapping and B ∈ B, then f−1(B) ∈ A . Since
X is a measurable mapping and f−1(B) ∈ A, then X−1(f−1(B)) ∈ F. Then note that

{ω : f(X(ω)) ∈ B} = {ω : X(ω ∈ f−1(B)︸ ︷︷ ︸
∈A

} ∈ F

so f ◦X is measurable. As a result, a measurable function of random variable(s) is a random
variable.

Note: Let X1, X2, . . . , Xn be random variables. Consider X(ω) = (X1(ω), . . . , Xn(ω)) be
a function X : (Ω,F) → (Rn,Bn) and f : (Rn,Bn) → (R,B). Then f ◦ X is a random
variable. Then, for instance, −X1, X1 + · · ·+Xn, X1 · · ·Xn, eX1 , sin(X1 +X2), etc. are all
random variables.

Theorem 26: Let (Ω,F,P) be a probability space. If X1, X2, . . . are random variables on
(Ω,F,P), then

inf{Xn : n ∈ N}, sup{Xn : n ∈ N}, lim infn→∞Xn, lim supn→∞Xn

are all random variables (on the extended reals R).

Proof. Note that infXn < a if and only if Xn < a for some n. Note that {Xn < a} ∈ F

for all n since each Xn is a random variable. Hence, {infXn < a} =
⋃∞
n=1{Xn < a} ∈ F

Similarly, {supXn > a} =
⋃
{Xn > a} ∈ F.

Now lim infn→∞Xn = supn infm≥nXm, however, infm≥nXm is a random variable, and thus
supn infm≥nXm = lim infn→∞Xn is a random variable. Similarly, lim supn→∞Xn is also a
random variable.

Chapter 3 Lebesgue Integration

Lecture 9 10/03

Definition. σ-finite Measure: Let (Ω,F, µ) be a measure space (µ is not necessarily
a probability measure, i.e., it may not have total mass 1). Then µ is σ-finite if there are
A1, A2, . . . ∈ F such that µ(An) <∞ for all n = 1, 2, . . . and

⋃
nAn = Ω.

Definition. Simple Function: Let (Ω,F, µ) be a measure space. A function φ : Ω → R is
a simple function if φ(ω) =

∑n
i=1 ai1ω∈Ai

where ai ∈ R and Ai ∈ F with µ(Ai) < ∞ for all
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i = 1, . . . , n. Simple functions are in a sense, a generalization of the bins used in Riemann
integrals.

Definition. Lebesgue Integral of Simple Function: Let (Ω,F, µ) be a measure space.
Let φ(ω) =

∑n
i=1 ai1ω∈Ai

be a simple function. We define the Lebesgue integral of φ to be∫
φdµ =

n∑
i=1

aiµ(Ai)

Lemma 27: Let (Ω,F, µ) be a measure space. Let φ and ψ be simple functions. Then the
following holds

(1) φ ≥ 0 almost everywhere (a.e.) (i.e., µ(φ < 0) = 0), then
∫
φdµ ≥ 0.

(2) For any a ∈ R, then
∫
aφdµ = a

∫
φdµ.

(3)
∫
φ+ ψdµ =

∫
φdµ+

∫
ψdµ.

(4) If φ ≤ ψ almost everywhere, then
∫
φdµ ≤

∫
ψdµ.

(5) If φ = ψ almost everywhere, then
∫
φdµ =

∫
ψdµ

(6) |
∫
φdµ| ≤

∫
|φ|dµ.

Proof. (1) Trivial.

(2) Trivial.

(3) Suppose φ =
∫ n
i
ai1Ai

and ψ =
∑m

j bj1Bj
. Note for ω ∈ Ai∩Bj then (φ+ψ)(ω) = ai+bj.

So we may write φ+ ψ =
∑n

i=1

∑m
j=1(ai + bj)1Ai∩Bj

. Then∫
φ+ ψdµ =

n∑
i=1

m∑
j=1

(ai + bj)µ(Ai ∩Bj)

=
n∑
i=1

m∑
j=1

aiµ(Ai ∩Bj) +
n∑
i=1

m∑
j=1

bjµ(Ai ∩Bj)

=
n∑
i=1

ai

m∑
j=1

µ(Ai ∩Bj) +
m∑
j=1

bj

n∑
i=1

µ(Ai ∩Bj)

=
n∑
i=1

aiµ(Ai) +
m∑
j=1

bjµ(Bj)

=

∫
φdµ+

∫
ψdµ,

(4) By (3), we may write
∫
ψdµ =

∫
φdµ+

∫
(ψ−φ)dµ. But (ψ−φ) ≥ 0 almost everywhere,

and so by (1) we have that∫
ψdµ =

∫
φdµ+

∫
(ψ − φ)dµ ≥

∫
φdµ+ 0
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(5) Since φ = ψ almost everywhere, necessarily both φ ≤ ψ almost everywhere and ψ ≤ φ
almost everywhere. Then by (4) we have equality of their integrals.

(6) Note that |φ| = max(φ,−φ). Then necessarily φ ≤ |φ| and so
∫
φdµ ≤

∫
|φ|dµ by

(4). Similarly, −φ ≤ |φ| and so −
∫
φdµ =

∫
−φdµ ≤

∫
|φ|dµ. This shows that

|
∫
φdµ| ≤

∫
|φ|dµ.

Proposition 28: Let (Ω,F, µ) be a measure space. Let f : Ω → R be a bounded function
such that f(x) = 0 for x ∈ Ec for some E with µ(E) <∞. Then

sup

{∫
φdµ : φ ≤ f and φ satisfies (*)

}
= sup

{∫
ψdµ : ψ ≥ f and ψ satisfies (*)

}
where (*) is the condition that φ (resp. ψ) is simple and φ(x) = 0 (resp. ψ(x) = 0) for all
x ∈ Ec.

Proof. Then for any such φ and ψ we have φ ≤ f ≤ ψ and they are simple so that
∫
φdµ ≤∫

ψdµ. Thus, we also see supφ≤f
∫
φdµ ≤ infψ≥f

∫
ψdµ.

On the other hand, as f is bounded, there is some M such that |f(ω)| ≤ M for all ω ∈ Ω.
Let n ∈ {1, 2, . . .} be given. Define Ek = {x ∈ E : kM

n
≥ f(x) ≥ (k−1)M

n
} for −n ≤ k ≤ n.

Now define

ψn(x) =
n∑

k=−n

kM

n
1x∈Ek

and φn(x) =
n∑

k=−n

(k − 1)M

n
1x∈Ek

We also know then that ψn(x) − φn(x) = M
n
1x∈E. We see then

∫
(φn − ψn)dµ = M

n
µ(E).

Therefore, we see that

sup
φ≤f

∫
φdµ ≥

∫
φndµ =

∫
ψndµ−

∫
ψn−φndµ =

∫
ψndµ−

M

n
µ(E) ≥ inf

ψ≥f

∫
ψdµ−M

n
µ(E)

since φn (resp. ψn) is only one such φ ≤ f (resp. ψ ≥ f) in the supremum (resp. infimum).
Therefore, taking n→ ∞ we see that

sup
φ≤f

∫
φdµ = lim

n→∞
sup
φ≤f

∫
φdµ ≥ lim

n→∞
inf
ψ≥f

∫
ψdµ− M

n
µ(E) = inf

ψ≥f

∫
ψdµ

We have thus shown both sides of the inequality, and so we see that

sup
φ≤f

∫
φdµ = inf

ψ≥f

∫
ψdµ.

Definition. Lebesgue Integral of a Bounded Function: Let (Ω,F, µ) be a measure
space. Let f be a bounded function such that f(x) = 0 for x ∈ Ec for some E with
µ(E) <∞. Then we define the integral of f to be

∫
fdµ = supφ≤f

∫
φdµ = infψ≥f

∫
ψdµ.

Lemma 29: The properties (1)–(6) of integrals for simple functions in lemma 27 also hold
for bounded functions.
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Proof. Exercise.

Definition. Lebesgue Integral of Non-negative Function: Let (Ω,F, µ) be a measure
space. Let f : Ω → R be a non-negative function. Then we define the integral of f to be∫

fdµ = sup

{∫
hdµ : 0 ≤ h ≤ f , h is bounded, and µ({x : h(x) > 0}) <∞

}
.

Lemma 30: Let (Ω,F, µ) be a measure space. Let f : Ω → R be a non-negative function.
Define (f∧n) := min(f, n). Define hn = (f∧n)1En where E1 ⊆ E2 ⊆ · · · and limn→∞En = Ω
but µ(En) <∞ for n = 1, 2, . . .. Then limn→∞

∫
hndµ =

∫
fdµ.

Proof. Clearly,
∫
hndµ is non-decreasing (each hn itself gets larger and larger, and the area

of integration gets larger and larger). Thus the limit limn→∞
∫
hndµ exists. Let

H := {h : Ω → R : 0 ≤ h ≤ f , h is bounded, and µ({x : h(x) > 0}) <∞}

so that
∫
fdµ = sup{

∫
hdµ : h ∈ H}. For any h ∈ H, let M be an upper bound of h. Then

for any n ≥M , we have that∫
hndµ =

∫
En

f ∧ ndµ ≥
∫
En

hdµ =

∫
hdµ−

∫
Ec

n

hdµ

since h ≤ f and h is bounded by M so that h ≤ min{f,M} = f ∧ M ≤ f ∧ n. Let
E = {x : h(x) > 0} with µ(E) <∞. Then∫

Ec
n

hdµ =

∫
Ec

n∩E
hdµ ≤

∫
Ec

n∩E
Mdµ =Mµ(Ec

n ∩ E) =Mµ(E \ En)

But, En → Ω so that µ(E \ En) → 0. This implies then that
∫
Ec

n
hdµ → 0. So, taking

n→ ∞, we have limn→∞
∫
hndµ ≥

∫
hdµ. Since this is true for any h ∈ H, we have that

lim
n→∞

∫
hndµ ≥ sup

{∫
hdµ : h ∈ H

}
=

∫
fdµ.

On the other hand, hn ∈ H for all n, and so necessarily

lim
n→∞

∫
hndµ ≤ sup

{∫
hdµ : h ∈ H

}
=

∫
fdµ.

Proving the equality, as desired.

Note: This proof does not necessarily mean that limn→∞
∫
hmndµ =

∫
fdµ is finite. In fact,

both sides can simultaneously be infinite.

Lemma 31: The properties (1)–(6) of integrals for simple functions in lemma 27 also hold
for non-negative functions.

Proof. Exercise.
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Definition. Lebesgue Integral: Let (Ω,F, µ) be a measure space. Let f : Ω → R be
any measurable function. If

∫
|f |dµ < ∞ (which is defined since |f | is non-negative), then

we say f is integrable and define
∫
fdµ =

∫
f+dµ −

∫
f−dµ, where f+(x) = max{f(x), 0}

and f−(x) = −min{f(x), 0} = max{−f(x), 0} are the positive and negative parts of f ,
respectively. Each of f+ and f− is non-negative, however, and thus have defined integrals.
Note that f = f+ − f− and |f | = f+ + f−.

Theorem 32: The properties (1)–(6) of integrals for simple functions in lemma 27 hold for
all integrable functions.

Proof. Exercise.

TWO PROBABILITY INEQUALITIES, PART 5 OF LECTURE 8

Theorem 33. Chebyshev’s Inequality (General): Let X be an random variable and g
be a non-negative function. For some B ∈ B, let l := inf{g(x) : x ∈ B} (a lower bound of
g(x) on B). Then l · P(X ∈ B) ≤ E[g(X)] or equivalently P(X ∈ B) ≤ 1

l
E[g(X)].

Proof. Define Y = l · 1X∈B. Then

P(Y = y) =

{
P(X ∈ B) if y = l

1− P(X ∈ B) if y = 0

Then, clearly Y ≤ g(x) for any x ∈ B and so we see that

l · P (X ∈ B) = E[Y ] ≤ E[g(X)]

as desired.

Corollary 34. Markov Inequality: A result of the above theorem is that if X is a
non-negative random variable, then P(X ≥ a) ≤ 1

a
E[X] for any a ≥ 0.

Proof. Take B = [0,∞) ∈ B and g(x) = x+ = max{x, 0}. Then the result holds by
Chebyshev’s inequality.

Corollary 35. Chebyshev’s Inequality (Strict): A result of the above theorem is that

a2P(|X| ≥ a) ≤ E[X2] and a2P(|X − E[X]| ≥ a) ≤ Var(X)

Proof. Take g(x) = x2 and B = (−∞,−a]∪ [a, infty). Then the result holds by Chebyshev’s
inequality in the general case.
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Chapter 4 Convergence of Random Variables

Lecture 10 10/22

Note: When lim supn→∞Xn = lim infn→∞Xn, then limn→∞Xn exists.

Ω0 := {ω : lim
n→∞

Xn exists} = {lim sup
n→∞

Xn − lim inf
n→∞

Xn︸ ︷︷ ︸
Random Variable

= 0}

is measurable. If P(Ω0) = 1, then we say that Xn converges almost surely ( a.s.)

Example. Binomial Distribution: Let X ∼ Bin(n, p) be a random variable with
distribution defined by P(X = k) =

(
n
k

)
pk(1 − p)n−k. This is also the distribution of

the number of successes in n independent trials, each having a probability of success p.
As a result, X D

= Y1 + · · · + Yn where Y1, . . . , Yn
i.i.d.∼ Bern(p). We see, moreover, that

E[X] = E[Y1] + · · ·+ E[Yn] = nE[Y1] = np. Since each Y1, . . . , Yn is independent, variance is
also additive, so Var(X) = Var(Y1) + · · · = Var(Yn) = nVar(Y1) = np(1− p).

Definition. Characteristic Function: Let X be a random variable. Its characteristic
function (ch.f.) is defined as

φX(t) = E[eitX ] = E[cos(tX)]+iE[sin(tX)] =

∫
R
eitxf(x)dx =

∫
R
cos(tx)f(x)dx+i

∫
R
sin(tx)f(x)dx.

Note: The characteristic function of X is also the same as the Fourier transform of the
probability density function of X.

Note: Unlike the moment generating function E[etX ] or the generating function of non-
negative integer-valued random variables E[sX ], the characteristic function always exists on
R. So we, don’t need to worry about checking its existence. This is why, to prove general
results about random variables, we should always use the characteristic function instead of
the (moment) generating function.

Theorem 36. Jensen’s Inequality: Let X be a random variable and φ be a convex
function. Then φ(E[X]) ≤ E[φ(X)].

Theorem 37. Properties of Characteristic Function: Let φ = φX be the characteristic
function of a random variable X. Then we have,

(1) φ(0) = 1.

(2) φ(−t) = φ(t) (i.e., the complex conjugate a+ bi = a− bi).

(3) |φ(t)| = |E[eitX ]| ≤ E[|eitX |] = 1.

(4) φaX+b(t) = E[eit(aX+b)] = eitbE[eitaX ] = eitbφX(at).

Proof. (1) Trivially, e0·iX = 1.
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(2) Trivially, φ(−t) = E[e−itX ] = E[cos(−tX)] + iE[sin(−tX)] = E[cos(tX)] − iE[sin(tX)]
since cos is even and sin is odd.

(3) Note that f(x, y) = (x2 + y2)1/2 is a convex function. Thus, by Jensen’s inequality
f(E[X],E[Y ]) ≤ E[f(X, Y )]. Define X ′ = cos(tX) and Y ′ = sin(tX). Then

|φ(t)| = |E[cos(tX)] + iE[sin(tX)]| = f(E[X ′],E[Y ′]) ≤ E[f(X ′, Y ′)] = E[|φ(t)|] = 1.

(4) Follows trivially.

Theorem 38: Let X and Y be independent random variables with characteristic functions
φX and φY , respectively. Then X + Y has characteristic function φX+Y = φX · φY .

Proof. Notice

φX+Y (t) = E[eit(X+Y )] = E[eitXeitY ] = E[eitX ]E[eitY ] = φX(t)φY (t)

since E[f(X)g(Y )] = E[f(X)]E[g(Y )] when X and Y are independent.

Example. Poisson Distribution: Let X ∼ Poi(λ) be a random variable with distribution
defined by P(X = k) = e−λ λ

k

k!
for k = 0, 1, . . .. Then

φ(t) = E[eitX ] =
∞∑
k=0

e−λ
λkeitk

k!
= e−λ

∞∑
k=0

(λeit)k

k!
= e−λeλe

it

= eλ(e
it−1)

since
∑∞

k=0
xk

k!
= ex by the Taylor series expansion of ex. Now let Y ∼ Poi(η) be independent

of X. Then
φX+Y (t) = φX(t)φY (t) = eλ(e

it−1)eη(e
it−1) = e(λ+η)(e

it−1)

We see that this is the characteristic function of a Poi(λ + η). We may wonder then if
this guarantees X + Y ∼ Poi(λ+ η)? More generally, does the characteristic function fully
characterize/determine the distribution? Yes!

Theorem 39. Inversion Formula: Let φX(t) =
∫
eitxµ(dx) =

∫
eitxdµ = E[eitX ] where µ

is the probability measure induced by X. Then for a < b,

lim
T→∞

(2π)−1

∫ T

−T

e−ita − e−itb

it
φ(t)dt︸ ︷︷ ︸

:=IT

= µ((a, b)) + 1
2
µ({a, b})
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Proof. Define IT as above. Namely,

IT =

∫ T

−T

e−ita − e−itb

it
φ(t) dt

=

∫ T

−T

e−ita − e−itb

it

∫
eitx µ(dx) dt

=

∫ ∫ T

−T

e−ita − e−itb

it
eitx dt µ(dx) by Fubini’s

=

∫ ∫ T

−T

eit(x−a) − eit(x−b)

it
dt µ(dx)

=

∫ (
−
∫ T

−T

sin(t(x− a))

t
dt+

∫ T

−T

sin(t(x− b))

t
dt

)
µ(dx) (*)

Note equation (*) follows since

eit(x−a)

i
=

− cos(t(x− a)) + i sin(t(x− a))

i
= − sin(t(x− a)) + i cos(t(x− a))

but, since cos is an even function and our integration interval [−T, T ] is symmetric, the cos
cancels itself out. Now, for any θ > 0, note that∫ T

−T

sin(θt)

t
dt =

∫ T

−T

sin(θt)

θt
d(θt) =

∫ θT

−θT

sin(y)

y
dy

by a u-substitution with y = θt. Now taking the limit

lim
T→∞

∫ T

−T

sin(θt)

t
dt = lim

T→∞

∫ θT

−θT

sin y

y
dy =

∫ ∞

−∞

sin y

y
dy = π

Similarly, for θ < 0 we get that

lim
T→∞

∫ T

−T

sin(θt)

t
dt = lim

T→∞

∫ θT

−θT

sin y

y
dy =

∫ ∞

−∞

sin y

y
dy = −π

Therefore, applying this above result, we see that

g(x) := lim
T→∞

∫ T

−T

sin(t(x− a))

t
dt−

∫ T

−T

sin(t(x− b))

t
dt =


2π if a < x < b

π if x = a or x = b

0 if x < a or x > b

Note that ∫ T

−T

sin(t(x− a))

t
dt ≤ sup

c

∫ c

−c

sin(y)

y
dy =:M <∞

This implies ∣∣∣∣∫ T

−T

sin(t(x− a))

t
dt−

∫ T

−T

sin(t(x− b))

t
dt

∣∣∣∣ ≤ 2M

Then by the dominated convergence theorem,

lim
T→∞

IT =

∫
g(x)µ(dx) = 2πµ((a, b)) + πµ({a, b})

Hence, 1
2π
IT → µ((a, b)) + 1

2
µ({a, b}).
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Lecture 11 10/29

Remark: From the inversion formula, we know that if X1, X2, . . . , Xn are Poisson random
variables with Xi ∼ Poi(λi) then

∑n
i=1Xi ∼ Poi(

∑n
i=1 λi). It’s worth noting that we rarely

apply the inversion formula directly, rather it’s primary use is in ensuring that characteristic
functions fully characterize their distributions.

Example. Normal Distribution: A standard normal distribution X ∼ N(0, 1) has prob-
ability density function f(x) = 1√

2π
e−x

2/2 for x ∈ R. Then the characteristic function is

φ(t) = E[eitX ]

=

∫
C
eitxf(x)dx

=

∫
C

1√
2π
eitx−x

2/2dx

= e−t
2/2

∫
C

1√
2π
e(x−it)

2/2dx

= e−t
2/2

∫
C

1√
2π
e−y

2/2︸ ︷︷ ︸
=f(y)

dy y = x− it

= e−t
2/2

Note, however, that we simplified this problem by performing a u-sub, ignoring the fact that
it is an integral over the complex plane. However, doing so is valid since we are taking the
analytic continuation of E[etX ] = e−1/2t2 to the complex plane.

Example. General Normal Distribution: A general normal distribution X ∼ N(µ, σ2)
has probability density function f(x) = 1

σ
√
2π
e−(x−µ)2/2σ2 . Let Y = µ + σZ for Z ∼ N(0, 1).

Then, we can easily show Y
D
= X by property (4) of characteristic functions. In particular,

φY (t) = eiµt−σ
2t2/2

Notice also that if X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) with X1 and X2 being independent,

then

φX1+X2(t) = φX1(t)φX2(t) = exp(iµ1t−1
2
σ2
1t

2) exp(iµ2t−1
2
σ2
2t

2) = exp(i(µ1+µ2)t−1
2
(σ2

1+σ
2
2)t

2)

We notice this is the characteristic function of a N(µ1 + µ2, σ
2
1 + σ2

2) distribution. Thus, by
the inversion formula, we see that Y1 + Y2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2).

Remark. Multivaraite Characteristic Functions: Suppose X⃗ = (X1, . . . , Xn) is a
multivariate random variable. Then for any t⃗ = (t1, . . . , tn) ∈ Rn the characteristic function
of X⃗ is defined to be

φX⃗(T⃗ ) = E[ei⟨⃗t,X⃗⟩] = E[exp(i
n∑
j=1

(tiXi))]
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where ⟨a, b⟩ is the inner-product of a and b. In Rn this inner product is usually the dot
product a · b =

∑n
i=1 aibi.

Example. Multivariate Normal: An Rn-valued multivariate random variable X⃗ = (X1, . . . , Xn)
is said to be normal if any linear combination of the coordinates X1, . . . , Xn follows a (uni-
variate) normal distribution. Note that this univariate normal distribution may or may not
be degenerate, which is to say it may have variance 0, and therefore take on a single constant
value almost surely. Recall any such linear combination would be of the form

∑n
i=1 aiXi ∈ R

where a1, . . . , an ∈ R.

We see then that X⃗ is a Rn-valued normal random variable if and only if its characteristic
function has the form

φX⃗ (⃗t) = exp(i⟨⃗t, µ⃗⟩ − 1
2
⟨⃗t,Σ, t⃗⟩) (*)

where µ⃗ ∈ Rn and σ ∈ Rn×n is a symmetric positive semi-definite matrix. Recall a matrix
A ∈ Rn×n is said to be positive semi-definite if and only if xAxT ≥ 0 for all x ∈ Rn. In this
case, µ⃗ is the mean of X⃗:

µ⃗ = (µ1, . . . , µn) = (E[X1], . . . ,E[Xn]) = E[X⃗]

and Σ is the (variance-)covariance matrix of X:

Σij =


σ2
11 σ2

12 · · · σ2
1n

σ2
21 σ2

22 · · · σ2
2n

...
... . . . ...

σ2
n1 σ2

n2 · · · σ2
nn


where σ2

ij = Cov(Xi, Xj).

Proof. ( ⇐= ) Assume equation (*) holds. Then for Y =
∑n

i=1AiXi = ⟨⃗a, X⃗⟩, its character-
istic function is given by

φY (t) = E[eitY ] = E[ei(ta1X1+···+tanXn)]

= E[ei⟨t⃗a,X⃗⟩]

= φX⃗(t⃗a)

= exp(i⟨t⃗a, µ⃗⟩ − 1
2
⟨t⃗a,Σt⃗a⟩)

= exp(it⟨⃗a, µ⃗⟩ − t2

2
⟨⃗a,Σa⃗T ⟩)

We remark, however, that this is the characteristic function of a univariate normal distribu-
tion N(⟨⃗a, µ⃗⟩, ⟨⃗a,Σa⃗⟩). Note that ⟨⃗aΣa⃗⟩ = a⃗TΣa⃗.

( =⇒ ) Suppose X⃗ is a multivariate normal. Then for any a⃗ ∈ Rn, consider Y = ⟨⃗a, X⃗⟩ =
a1X1 + · · ·+ anXn ∈ R. Then Y is a univariate normal distribution, and in particular, from
an n-dimensional generalization of the sum of normals seen in the previous example, we will
have Y ∼ N(⟨⃗a, µ⃗⟩, ⟨⃗a,Σa⃗⟩). From this, we know that the characteristic function of Y will
be

φY (t) = exp(it⟨⃗a, µ⃗⟩ − t2

2
⟨⃗a,Σa⃗⟩)
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notice also that

φX⃗ (⃗a) = E[exp(i⟨⃗a, X⃗⟩)] = E[exp(iY )] = E[exp(i · 1 · Y )] = φY (1) = exp(i⟨⃗a, µ⃗⟩ − 1
2
⟨⃗a,Σa⃗⟩)

We see, however, that this is exactly (*) (if we take a⃗ = t⃗ for whichever t⃗ ∈ Rn for which
we’d like to evaluate φt⃗(⃗t)).

Remark: We can see that the distribution of a multivariate normal random variable is
completely determined by its mean vector and covariance matrix (its first two moments).

Corollary 40: If X⃗ ∼ N(µ⃗,Σ) then AX⃗ + c⃗ ∼ N(Aµ⃗ + c⃗, AΣAT ) for any A ∈ Rm×n

and c⃗ ∈ Rm. Note X⃗ is an Rn-valued multivariate normal random variable and AX⃗ is an
Rm-value multivariate normal random variable.

Corollary 41: If X⃗ ∼ N(µ⃗,Σ), then any two components Xi, Xj are independent if and
only if Cov(Xi, Xj) = 0.

Proof. It is easiest to prove the reverse direction by analyzing their characteristic functions.

Remark: In the general case, while X ⊥⊥ Y implies Cov(X, Y ) = 0, it is not necessarily the
case that Cov(X, Y ) implies X ⊥⊥ Y .

Lecture 12 10/31

Definition. Almost Sure Convergence: Let X1, X2, . . . be a sequence of random vari-
ables. We say that the sequence {Xn}∞n=1 converges almost surely to a random variable X if
and only if P(limn→∞Xn = X) = 1. This effectively checks that the realizations of each ran-
dom variable are the same. This can be alternatively written as P({ω : Xn(ω) → X(ω)}) = 1.
Note you can also check that the complement has probability measure 0. In this case, we
write {Xn → X} a.s.or Xn

a.s.→ X.

Definition. Convergence Everywhere: Let X1, X2, . . . be a sequence of random vari-
ables. We say that the sequence {Xn}∞n=1 converges everywhere to a random variable X if
and only if Xn(ω) → X(ω) for all ω ∈ Ω. Note this differs from converging almost surely
since Xn(ω) → X(ω) has to hold for all ω ∈ Ω, not only on a set of measure 1.

Definition. Convergence in Lp: Defined for 1 ≤ p < ∞. Let X1, X2, . . . be a sequence
of random variables. We say that the sequence {Xn}∞n=1 converges everywhere to a random
variable X if and only if limn→∞ E[|Xn − X|p] = 0. Recall that LP is the normed vector
space with norm ∥x∥p = (

∑n
i=1 x

p
i )

1/p for vectors, ∥f∥p = (
∫
|f |pdµ)1/p for functions, and

∥X∥p = E[|X|p]1/p for random variables. Thus, Xn
Lp

→ X if and only if ∥Xn −X∥p → 0. A

useful case is that ifXn
L1

→ X then E[|Xn−X|] → 0 which in turn implies that E[Xn] → E[X],
this is necessary but not sufficient to imply convergence. Similarly Xn

L2

→ X if and only if
E[(Xn−X)2] → 0 which implies E[X2

n] → E[X2] which is again necessary but not sufficient to
imply convergence. Note that L2 is an especially nice space to analyze convergence in since
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it is a Hilbert space (has an inner product structure). Other Lp spaces are Banach spaces,
but not necessarily Hilbert spaces, and so they do not necessarily have inner products.

Exercise: Prove that Xn
L1

→ X implies that E[Xn] → E[X]. Give a counterexample where

E[Xn] → E[X] but Xn

L1

̸→ X.

Definition. Convergence in Probability: Let X1, X2, . . . be a sequence of random
variables. We say that the sequence {Xn}∞n=1 converges in probability to a random variable
X if and only if limn→∞ P(|Xn − X| > ε) = 0 for any ε > 0. This is equivalent to saying
limn→∞ P({ω : |Xn(ω)−X(ω)| > ε}) = 0 for all ε > 0. In this case we write Xn

P→ X

Theorem 42:

(1) If Xn
a.s.→ X, then Xn

P→ X.

(2) If Xn
Lp

→ X, then Xn
P→ X.

Proof. (1) Fix ε > 0. Let An = {ω ∈ Ω : |Xn(ω) − X(ω)| ≤ ε for all m ≥ n}. Then An is
non-decreasing (i.e., A1 ⊇ A2 ⊇ A3). Notice then that

lim
n→∞

An =
∞⋃
n=1

An

= {exists n such that |Xm −X| ≤ ε for all m ≥ n}
⊇ {Xn → X} = {ω ∈ Ω : Xn(ω) → X(ω)}

Then, since P ({Xn → X}) = 1, we see that

lim
n→∞

P(An) = P( lim
n→∞

An) = P({Xn → X}) = 1

by the continuity of convergence. On the other hand, An ⊆ {|Xn−X| ≤ ε} which shows
that 1 ≤ limn→∞ P(An) ≤ limn→∞ P(|Xn −X| ≤ ε) ≤ 1.

(2) Fix ε > 0. Then

P(|Xn −X| > ε) = P(|Xn −X|p > εp) ≤ E[|Xn −X|p]
εp

by the Markov Inequality. We know, however, that limn→∞ E[|Xn − X|p] = 0 since
Xn

Lp

→ X and so

lim
n→∞

P(|Xn −X| > ε) ≤ lim
n→∞

E[|Xn −X|p]
εp

=
0

εp
= 0

Proposition 43: Let 1 ≤ p < q <∞. If Xn
Lq

→ X then also Xn
Lp

→ X.
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Proof. For any ε < 1,

E[|Xn −X|p] = E[|Xn −X|p1{|Xn−X|≥ε}] + E[|Xn −X|p1{|Xn−X|<ε}]

Note that whenever |Xn − X| ≥ ε, then |Xn − X|p ≤ εp−q|Xn − X|q since p − q < 0 and
xp−q is therefore a decreasing function. We also clearly see that whenever |Xn−X| < ε then
|Xn −X|p < εp. So, we have that

E[|Xn −X|p] = E[|Xn −X|p1{|Xn−X|≥ε}] + E[|Xn −X|p1{|Xn−X|<ε}]

≤ εp−qE[|Xn −X|q1{|Xn−X|≥ε}] + εp

≤ εp−qE[|Xn −X|q] + εp

This implies
lim
n→∞

E[|Xn −X|p] ≤ εp−q lim sup
n→∞

E[|Xn −X|q] + εp = εp

Taking ε→ 0 completes the proof.

Example: In general, Xn
P→ X does not imply Xn

a.s.→ X or Xn
Lp

→ X. As a counterexample,
take the probability space (Ω,F, µ) = ((0, 1),B, λ) where λ is the Lebesgue measure.

Consider taking X1 = 10≤ω≤1, then X2 = 10≤ω≤ 1
2

and X3 = 1 1
2
≤ω≤1, then X4 = 10≤ω≤ 1

3
and

X5 = 1 1
3
≤ω≤ 2

3
and X6 = 1 2

3
≤ω≤1. I.e., partitioning the space into smaller and smaller splits

on which Xn is 1. We see then that Xn
P→ 0 but Xn

a.s.
̸→ 0. To see Xn

P→ 0, let ε be given,
then the probabilities are P(|Xn| > ε) = 1, 1

2
, 1
2
, 1
3
, 1
3
, 1
3
, 1
3
, . . . → 0 To see Xn

a.s.
̸→ 0, notice

that for all irrational numbers ω ∈ (0, 1) there will always be some n such that Xn(ω) = 1.
Thus P({Xn → 0}) < 1.

Consider now Xn = n10<ω< 1
n
. Similarly to above, Xn

P→ 0, in particular for any 0 < ε < 1

and any n, P(|Xn − 0| > ε) = 1
n
→ 0. But E[|Xn − 0|p] =

∫
n · 1

n
dλ = 1 for all n, and so

Xn

L1

̸→ 0, and as a result Xn

Lp

̸→ 0 for any p ≥ 1.

Remark: The above examples also show that Xn
a.s.→ X does not imply Xn

L1

→ X or vice-
versa. In fact, the first example above had Xn

L1

→ X despite Xn

a.s.
̸→ X and the second

example had X a.s.→ X despite Xn

L1

̸→ X.

Theorem 44: If Xn
P→ X, then there exists a subsequence {Xim}∞m=1 for i1 < i2 < i3 < · · ·

where Xim
a.s.→ X

Proof. Set i0 = 0. For any m ≥ 1, set im = inf{i ≥ im−1 : P(|Xi −X| > 1
m
) ≤ 2−m}. Notice

this infimum is always exists since limn→∞ P(|Xn −X| > ε) = 0 for any ε > 0. We see then
that

∞∑
m=1

P(|Xim −X| > 1

m
) ≤

∞∑
m=1

2−m = 1 <∞
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Then, by the first Borel-Contelli Lemma,

P(|Xim −X| > 1

m
i.o.) = 0

this in turn implies that |Xim −X| > 1
m

almost surely, only for finitely many m. Finally, this
means that |Xim −X| ≤ 1

m
starting from some term m ≥ M almost surely. This therefore

means that Xim
a.s.→ X.

Definition. Uniform Integrability: Let X1, X2, . . . be a sequence of random variables.
We say that the sequence {Xn}∞n=1 is uniformly integrable (denote U.I.) if

lim
k→∞

sup
n

E[|Xn|1{|Xn|>k}] = 0

Intuitively, if you only had 1 function X in your sequence and you only look at the part
|X| > k, then the area will eventually be 0. So uniform integrability implies that our integrals
don’t grow faster than linearly. This means that our random variables grow nicely and we
don’t always have huge integrals. For instance, in our counterexample with rectangles of
shape [0, 1

n
]× [0, n], these grow too quickly for uniform integrability.

Lecture 13 11/05

Theorem 45: If Xn
P→ X and {Xn}∞n=1 is uniformly integrable, then Xn

L1

→ X.

Proof. Without loss of generality, assume X ≡ 0 (as we can just subtract both sides of the
convergence by X). For any fixed ε > 0, since {xn} is uniformly integrable, there exists
some tε > 0 such that E[|Xn|1{|Xn|>tε}] ≤ ε for any n (by definition of the limit). Since
Xn

P→ X = 0, there exists an Nε such that for any n ≥ Nε, we have P(|Xn| > ε) ≤ ε
tε

.
Hence, for any n ≥ Nε,

E[|Xn|] =
∫
{|Xn|<ε}

|Xn|dP+

∫
{ε<|Xn|<tε}

|Xn|dP+

∫
{|Xn|>tε}

|Xn|dP

≤
∫
{|Xn|<ε}

εdP+ tεP(|X| > ε) + E[|Xn|1{|Xn|>tε}]

≤ ε+ ε · ε
tε

+ ε

= 3ε

Since this holds for all ε > 0 and n ≥ Nε, this shows limn→∞ E[|Xn|1] = 0. Thus, Xn
L1

→ X
by definition.

Remark: We have seen so far that almost sure convergence and convergence in Lp both
imply convergence in probability. We also saw that convergence in probability implies the
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existence of a subsequence that converges almost surely. Finally, we just saw that for uni-
formly integrable sequences, convergence in probability implies convergence in Lp. We will
not be able to find any relation between almost sure convergence and convergence in Lp.

Definition. Convergence in Distribution: (Also called weak convergence.) LetX1, X2, . . .
be a sequence of random variables with distribution functions F1, F2, . . ., respectively. We
say that the sequence {Xn}∞n=1 converges in distribution to a random variable X with distri-
bution function F if and only if Fn → F pointwise in all points where F is continuous. This
is equivalent to saying that limn→∞ Fn(x) = F (x) for all x ∈ R such that F is continuous at
x. In this case, we write Xn

d→ X.

Remark: Convergence in distribution is different from the previous three types of conver-
gences in the sense that we don’t care about the random variables themselves converging,
only about their distribution functions. In particular, the previous convergences told us
something about the pointwise behaviour of the random variables. Convergence in distribu-
tion only gives us information about the pointwise behaviour of the distribution functions.
I.e., it is not about relation of Xn(ω) and X(ω), rather only about the distributions Fn(x)
and F (x).

Example: If X1, X2, . . . ,
i.i.d.∼ X, then X

d→ X, but X1, X2, . . . does not have any other
convergence in random variables.

Example: Consider independent trials which we repeat until we get our first success. If the
probability of a success in a given trial is p, then the number of trials until a success, Xp,
has a geometric distribution with parameter p. Note also that P(Xp = n) = p(1− p)n−1 and
so this implies that P(Xp > n) = (1− p)n. Consider taking p→ 0. Then

lim
p→0

P(p ·Xp > x) = lim
p→0

P(Xp >
x

p
) ≈ lim

p→0
(1− p)x/p = e−x ∀x ≥ 0

(where the approximation comes from the fact that x
p

is not necessarily an integer). We see
then that P(pXp ≤ x) → 1 − e−x, which is the distribution function of an Exp(1) random
variable. Thus, we see that pXp

d→ W where W ∼ Exp(1).

Proposition 46: Let {Xn}∞n=1 be a sequence of random variables. If Xn
P→ X for some

random variable X then Xn
d→ X.

Proof. Let Fn be the distribution function of Xn. Let F be the distribution function of X.
Let a ∈ R be any point such that F is continuous at a. For any ε > 0, since F is continuous
at a and F is non-decreasing, there exists a δ > 0 such that

F (a)− ε < F (a− δ) ≤ F (a) ≤ F (a+ δ) < F (a) + ε

Now since Xn
P→ X, there exists an Nε > 0 such that P(|Xn −X| > δ) < ε for all n ≥ Nε.

Now for such an n ≥ Nε, we have that

Fn(a) = P(Xn ≤ a) = P(Xn ≤ a, |Xn −X| ≤ δ) + P(Xn ≤ a, |Xn −X| > δ)

Note, however, that

0 ≤ P(Xn ≤ a, |Xn −X| > δ) ≤ P(|Xn −X| > δ) < ε
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Notice also that we have

P(Xn ≤ a, |Xn −X| ≤ δ) ∈
[
P(X ≤ a− δ, |Xn −X| ≤ δ), P(X ≤ a+ δ, |Xn −X| ≤ δ)

]
⊆
[
P(X ≤ a− δ)− P(|Xn −X| > δ), F (a+ δ)

]
⊆
[
F (a− δ)− ε, F (a+ δ)

]
Thus, this implies that Fn(a) ∈ [F (a−δ)−ε, F (a+δ)+ε] ⊆ (F (a)−2ε, F (a)+2ε). Since this
holds for all ε > 0, we conclude that Fn(a) → F (a) for all a ∈ R such that F is continuous
at a. Thus, by definition Xn

d→ X.

Proposition 47: Let {Xn}∞n=1 be a sequence of random variables (defined on the same
probability space). If Xn

d→ c for some constant c, then Xn
P→ c.

Proof. For any ε > 0, we need to show that P(|Xn − c| ≤ ε) converges to 1. Let Fn denote
the distribution function of Xn. Now notice that

P(|Xn − c| ≤ ε) = P(c− ε ≤ Xn ≤ c+ ε) ≥ P(c− ε,Xn ≤ c+ ε) = Fn(c+ ε)− Fn(c− ε)

Since the distribution of X ≡ c is F (x) = 1{x>c}, we see that Fn(c + ε) → F (c + ε) = 1
and Fn(c− ε) → F (c− ε) = 0 (since F is continuous at c− ε and c+ ε and by definition of
convergence in distribution). Thus, this implies that

lim inf
n→∞

P(|Xn − c| ≤ ε) ≥ lim inf(Fn(c+ ε)− Fn(c− ε)) ≥ 1− 0 = 1

Since P(|Xn − c| ≤ ε) → 1 holds for all ε, then X P→ c.

Remark: We note that convergence in distribution is the weakest form of convergence. In
particular, every other form of convergence implies convergence in distribution. However,
convergence in distribution implies convergence in probability only if X is constant.

Lecture 14 11/07

Theorem 48. Skorokhod’s Theorem: Let X1, X2, . . . be a sequence of random variables
such that Xn

d→ X for a random variable X. Then there exists a probability space (Ω,F,P)
and a sequence of a random variables Y1, Y2, . . . and a random variable Y such that Xn

D
= Yn

and X D
= Y such that Yn

a.s.→ Y .

Proof. Let Fn be the distribution functions of eachXn, respectively. Let F be the distribution
function ofX. Let the probability space be ((0, 1),B, λ) where λ is Lebesgue measure. Recall
that we can define Y1, Y2, . . . and Y on this space such that each distribution function Fn
has

Yn(x) := F−1
n (x) = sup{y : Fn(y) < x}

4 Convergence of Random Variables 36 Lecture 14, 11/07



STAT 901 Fall 2024: Notes Jacob Schnell

This is the generalized inverse of Fn. From theorem 24, we had seen that Yn defined as above
has distribution function Fn. We can similarly define Y (x) := F−1(x). We will show that
Yn

a.s.→ Y .

For any x ∈ (0, 1), define

ax := sup{y : F (y) < x} (= F−1(x)) and bx := inf{y : F (y) > x}

Also define Ω0 := {x : (ax, bx) = ∅} = {x : ax = bx}. Note that if x ∈ Ω0, then y < F−1(x)
implies F (y) < x and y > F−1(x) implies F (y) > x.

We claim for any x ∈ Ω0 that

(1) lim infn→∞ F−1
n (x) ≥ F−1(x).

(2) lim sup−1
n→∞(x) ≤ F−1(x).

This will be sufficient to imply almost sure convergence since Ω \ Ω0 is at most countable
(which will in turn imply it has measure zero, i.e., P(Ω \ Ω0) = 0). To see that Ω \ Ω0,
note each x ∈ Ω \ Ω0 corresponds to a disjoint interval. Each such interval contains a
different rational number, so consider mapping rational numbers to the intervals containing
them. Since there are countably many rational numbers, there are only countably many
such intervals, and so Ω \ Ω0 is countable.

Now we prove (1). Let y < F−1(x) be such that F is continuous at y. Since x ∈ Ω0, we
know that F (y) < x. By the weak convergence of Xn

d→ X, we know that Fn(y) → F (y).
Thus, limn→∞ Fn(y) = F (y) < x implies Fn(y) < x for sufficiently large n. This implies
that y ≤ F−1

n (x) and so that y ≤ lim infn→∞ F−1
n (x). Taking the limit y → F−1(x) from

below gives F−1(x) ≤ lim infn→∞ F−1
n (x). (Note this limit is valid since there are also only

countably many points of discontinuity in F . The proof follows by a similar argument to
showing Ω \ Ω0 is countable.)

We will not prove (2), as it holds by a similar argument.

Definition. µ-continuity Set: A set A is said to be a µ-continuity set if µ(∂(A)) = 0
where ∂(A) is the boundary of A (i.e., ∂(A) = A \ Int(A)).

Theorem 49. Portmanteau Theorem: Let X1, X2, . . . be a sequence of random variables
and be another random variable X. The following are equivalent:

(1) Xn
d→ X.

(2) E[f(Xn)] → E[f(X)] for all bounded and continuous function f .

(3) µn(A) → µ(A) for every µ-continuity set A, where µn is the probability measure induced
by Xn and µ is the probability measure induced by X. This is equivalent to saying
P(Xn ∈ A) → P(X ∈ A) for all sets A such that P(X ∈ ∂(A)) = 0.

Proof. We will show (1) ⇐⇒ (2) and (1) ⇐⇒ (3).
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(1) =⇒ (2) Let f be any bounded and continuous function f . By Skorohod’s theorem, there are
Y1, Y2, . . . and Y such that Yn

D
= Xn and Y

D
= X where Yn

a.s.→ Y . Note in this case
E[f(Yn)] = E[f(Xn)] and E[f(Y )] = E[f(X)]. Since f is continuous and Yn

a.s.→ Y , we
know that f(Yn)

a.s.→ f(Y ). Moreover, f is bounded and so we can use the dominated
convergence theorem. This theorem in turn implies that E[f(Yn)] → E[f(Y )].

(1) =⇒ (3) A similar idea applies here, but we instead use the function f = 1{x∈A}, which is not
continuous at ∂(A). We know, however, that P(Y ∈ ∂(A)) = P(X ∈ ∂(A)) = 0 since
A is a µ-continuity set, and so f is almost surely continuous for all Y . Hence, we still
have f(Yn)

a.s.→ f(Y ). Thus, since f is clearly bounded, we again can apply dominated
convergence theorem. This theorem in turn implies that

P(Xn ∈ A) = P(Yn ∈ A) = E[f(Yn)] → E[f(Y )] = P(Y ∈ A) = P(Xn ∈ A).

(3) =⇒ (1) Take A = (−∞, x] so that ∂(A) = {x}. Clearly A is a µ-continuity if and only if
P(X = x) = 0. This is true, however, if and only if F is continuous at X. So our
statement is that Fn(x) = P(Xn ∈ A) → P(X ∈ A) = F (x) for all µ-continuity sets
implies, or equivalently that Fn(x) → F (x) for all continuity points of F .

(2) =⇒ (1) For any x such that F is continuous at x and y > x, define f as

f(t) =


1 if t ≤ x
y−t
y−x if x < y < y

0 if t ≥ y

which is linear between x and y. We see then that f is both bounded and continuous.
Notice also that

Fn(x) = P(Xn ≤ x) = E[1(−∞,x](Xn)] ≤ E[f(Xn)]

and
E[f(X)] ≤ E[1(∞,y)(X)] = F (y)

So by (2), taking n → ∞ we see that lim supn→∞ Fn(x) ≤ F (y). Now since F is
continuous at X, taking y → x from above we have lim supn→∞ Fn(x) ≤ F (x).

Consider instead taking y < x and defining a similar f . We can similarly get F (x) ≤
lim inf Fn(x) by taking y → x from below. We have seen then that

F (x) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x)

which shows that limn→∞ Fn(x) = F (x), as desired.

Lecture 15 11/12

Theorem 50. Helly’s Selection Theorem: Let X1, X2, . . . be a sequence of random
variables. Let Fn be the distribution functions of each Xn, respectively. Then there exists a
subsequence Fn(1), Fn(2), . . . where n(1) < n(2) < · · · of F1, F2, . . . and a right continuous non-
decreasing function F such that limm→∞ Fn(m)(y) = F (y) for all y at which F is continuous.
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Proof. Consider an enumeration q1, q2, . . . of the rational numbers. Thus, since Fn(q1), Fn(q2), . . .
is a bounded sequence of real numbers, then by Heine-Borel theorem, there is a subsequence
Fn1(1), Fn1(2), . . . which converges to G (for some G) at q1. Now, take a further subsequence
Fn2(1)(q2), Fn2(2)(q2), . . . (where {n2(i)}∞i=1 ⊆ {n1(i)}∞i=1) which converges to G at q1 and q2.
We continue this for each rational number qk. Consider now a diagonal argument:

Fn1(1) Fn1(2) Fn1(3) · · ·
Fn2(1) Fn2(2) Fn2(3) · · ·
Fn3(1) Fn3(2) Fn3(3) · · ·

...
...

... . . .

Where row i converges to G at q1, q2, . . . , qi and row j is a subsequence of row i for i < j.
Consider taking the sequence Fn1(1), Fn2(2), Fn3(3), . . .. Then this sequence is a subsequence of
each row (since the tail of n > i is a subsequence of row i). As a result, Fn1(1), Fn2(2) converges
to G at each rational number. Since each Fi is non-decreasing, and G is formed as the limit
of these non-decreasing functions, it is also non-decreasing. To make G right-continuous,
consider defining F (x) := inf{G(q) : q ∈ Q, q > x}. F is still non-decreasing, but now also
right-continuous by the construction with an infimum. Now we show that Fnk(k)(x) → F (x)
at all x ∈ R such that F is continuous at x. Let ε > 0 be given. Take rational numbers
r1, r2, s ∈ Q such that r1 < r2 < x < s and

F (x)− ε < F (r1) ≤ F (r2) ≤ F (x) ≤ F (s) < F (x) + ε

Now since Fnk(k)(s) → G(s) and G(s) ≤ F (s) < F (x) + ε, (in particular taking the limit we
have G(s) ≤ G(q) for all q ∈ Q with q > s and G(s) ≤ inf{G(q) : q ∈ Q, q > s} = F (s)),
there exists N1 such that

Fnk(k)(x) ≤ Fnk(k)(s) < F (x) + ε

for all k ≥ N1. Similarly, since Fnk(k)(r2) → G(r2) we have G(r2) ≤ F (r2) (however this
inequality isn’t in the direction we’d like). Now we have that F (r1) = inf{G(q) : q ∈ Q, q >
r1} ≤ G(r2) since r2 > r1. But now we have that G(r2) ≥ F (r1) > F (x) − ε. Thus, there
exists an N2 such that

Fnk(k)(x) ≥ Fnk(k)(r2) > F (x)− ε

for all k ≥ N2. Thus, setting N = max{N1, N2}, we have that whenever k ≥ N ,

F (x)− ε < Fnk(k)(r2) ≤ Fnk(k)(x) ≤ Fnk(k)(s) < F (x) + ε

That is, for any ε > 0, there is an N such that |Fnk(k)(x)−F (x)| < ε whenever k ≥ N . And
so, Fnk(k) → F for all x ∈ R, as desired.

Remark: Note that in the above theorem, the limit function F may not necessarily be a
distribution function.

Definition. Tightness of Measures: A sequence of probability measures µ1, µ2, . . . on
(R,b) is called tight if for any ε > 0, there is an M > 0 such that lim infn→∞(µn(−M,M ]) ≥
1 − ε. This is equivalent to µn((−M,M ]) ≥ 1 − ε for a large enough n. This is equivalent
to µn((−M ′,M ′]) ≥ 1 − ε for all n for some M ′ (different from M). This is equivalent
to lim supn→∞ µ(R \ (−M,M ]) < ε. For distribution functions F1, F2, . . ., we say that the
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sequence is tight if and only if the sequence of probability measures µ1, µ2, . . . induced by
the distribution functions is tight. Note that for distribution functions the last equivalence
may be rewritten as lim supn→∞ µ(1−F (m)+F (−m)) < ε. Intuitively, this means that the
majority of the mass is not found in the tails of the distributions.

Theorem 51: The sequence of distribution functions F1, F2, . . . is tight if and only if each
of its subsequences has a further subsequence that converges weakly (pointwise at points of
continuity) to a probability measure.

Proof. ( =⇒ ) Suppose µ1, µ2, . . . is a tight sequence of probability measures. By Helly’s se-
lection theorem, we already know that every subsequence has a further subsequence Fn(1)(y), Fn(2)(y)
which converges to F (y) for all points y at which F is continuous. It remains to show
that F is in fact a distribution function.. In particular, the only missing properties are
limy→−∞ F (y) = 0 and limy→∞ F (y). Recall that in theorem 48 we had shown that a non-
decreasing function has only countably many points of discontinuity. Thus, Fn(m) → F (y)
almost everywhere. Since Fn(m) are distribution functions, we know that limy→−∞ F (y) ≥
0 and limy→∞ F (y) ≤ 1. Thus, it suffices to show that limy→∞(F (y) − F (−y)) = 1.
By the tightness of the sequence, we know that for ε > 0 there is an Mε such that
lim supn→∞(1 − Fn(Mε) + Fn(−Mε)) ≤ ε. Then, taking r < −Mε and s > Mε that are
continuity points of F , we have that

1−F (s)+F (r) = lim
m→∞

(1−Fn(m)(s)+Fn(m)(r)) ≤ lim sup
m→∞

(1−Fn(m)(Mε)+Fn(m)(−Mε)) ≤ ε

But then, we have that

lim
y→∞

(F (y)− F (−y)) ≥ F (s)− F (r) ≥ 1− ε

However, since ε > 0 was arbitrary, we have that 1 ≤ limy→∞(F (y)−F (−y)) ≤ 1, as desired.

( ⇐= ) By way of contrapositive, suppose that the sequence of probability distributions
F1, F2, . . . is not tight. Then there exists an ε > 0 and indices n(m) → ∞ such that
1 − Fn(k)(k) + Fn(k)(−k) ≥ ε for all m = 1, 2, . . .. By Helly’s selection theorem, there is
a subsequence Fm(1), Fm(2), . . . (where {m(i)}∞i=1 ⊆ {n(i)}∞i=1) and a non-decreasing right-
continuous function F such that Fm(k)(y) → F (y) for all points y at which F is continuous.
Then, for any r < s such that r and s are points of continuity of F , then

1− F (s) + F (r) = lim
k→∞

(1− Fm(k)(s) + Fm(k)(r)) ≥ lim inf
k→∞

(1− Fm(k)(k) + Fm(k)(−k)) ≥ ε

Thus, taking r → −∞ and s → ∞, we get that limr→−∞,s→∞ F (s)− F (r) ≤ 1− ε. We see
then that F cannot be a valid distribution function. Then, any further subsequence of Fn(m)

cannot converge (weakly) to the distribution function either.

Lecture 16 11/14

Corollary 52: If µ1, µ2, . . . is a tight sequence of probability measures, and each weakly
converging subsequence converges to the same limit, µ, then µn

d→ µ.
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Proof. By way of contradiction, suppose that µn
d

̸→ µ. Let F, F1, F2, . . . be the distribution
functions induced by µ, µ1, µ2, . . . respectively. Then there is a point x such that F is
continuous at x but Fn(x) ̸→ F (x). That is, there is an ε > 0 such that |Fn(x)− F (x)| ≥ ε
for infinitely many n. Let n1, n2, . . . be the enumeration of all nk such that |Fnk

(x)−F (x)| ≥
ε. Consider the subsequence µn1 , µn2 , . . .. By tightness, this subsequence has a further
subsequence that converges weakly. This subsequence cannot, however, converge to µ, as
the corresponding distribution functions by construction do not converge to F (x). This is
a contradiction by the assumption that each weakly convergent subsequence has the same
limit. Thus, it must be that µn

d→ µ.

Proposition 53: Let φ be the characteristic function of a probability measure µ. Then φ
is continuous on R.

Proof. Recall, φ(t) = E[eitX ]. Note that as s→ t we have eisX → eitX pointwise. Moreover,
since |eitX | = 1, then by the dominated convergence theorem φ(s) → φ(t) as s → t. This
shows that φ is continuous on R.

Theorem 54. Continuity Theorem: Let µ1, µ2, . . . and µ be probability measures on
(R,B). Let φ, φ1, φ2, . . . be the chracteristic functions for µ, µ1, µ2, . . . respectively. Then
µn

d→ µ if and only if φn(t) → φ(t) for all t ∈ R.

Proof. ( =⇒ ) Note that eitX is a continuous, bounded function of X. Therefore, by the
portmanteau theorem (note that while eitX is complex not real, we can apply portmanteau
theorem to the real and imaginary parts separately) we have that E[eitXn ] → E[eitX ] where
Xn ∼ µn and X ∼ µ. That is, φn(t) → φ(t) for all t ∈ R.

( ⇐= ) We will first show that µ1, µ2, . . . is tight. Note

1

u

∫ u

−u
(1− φn(t)︸ ︷︷ ︸

E[1−eitX ]

)dt = E
[
1
u

∫ u

−u
(1− eitXn)dt

]
hard

= 2E
[
1− sin(uXn)

uXn

]
by hyperbolic sine

≥ 2E
[(

1− 1

|uXn|

)
· 1{|Xn|≥ 2

u
}

]
since −1 ≤ sinx

x
≤ 1

≥ 2E
[(
1− 1

2

)
· 1{|Xn|≥ 2

u
}

]
since |Xn| ≥

2

u
1

u

∫ u

−u
(1− φn(t))dt ≥ P(|Xn| ≥ 2

u
) (*)

Note that the above expectation (and in particular getting to sin) is quite difficult to show,
and there are complete proofs available elsewhere. Now since φ is continuous by the previous
proposition, and φ(0) = 1, we know that

lim
u→0

u−1

∫ u

−u
(1− φ(t))dt = 0
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We can view this as the average around 0, which since φ(t) is continuous and φ(0) = 1, this
is 0. Thus, for any ε > 0, there is a u such that

u−1

∫ u

−u
(1− φ(t))dt < ε

Now since φn → φ pointwise, by dominated convergence theorem, we have that

u−1

∫ u

−u
(1− φn(t))dt→ u−1

∫ u

−u
(1− φ(t))dt

Since this is a pointwise converges, there is an N such that whenever n ≥ N , then

u−1

∫ u

−u
(1− φn(t))dt < ε

Set M = 2
u

in equation (*) to get

P(|Xn| ≥M) ≤ 1

u

∫ u

−u
(1− φn(t))dt < ε

or equivalently, P (Xn ∈ (−M,M)) > 1 − ε for any n ≥ N . This is one of our equivalent
definition for tightness, thus we see that µ1, µ2, . . . is tight.

Now assume that there is a subsequence µn1 , µn2 , . . . converges weakly to a probability mea-
sure µ′, i.e., µnk

d→ µ′. By the other direction of this theorem, we know that φnk
(t) → φ′(t) for

all t ∈ R where φ′ is the characteristic function of µ′. However, we know that φnk
(t) → φ(t),

and so we must have that φ′ = φ. Since the characteristic function completely determines the
distribution, we must have that µ = µ′. Hence, all weakly convergent subsequences converge
to the same limit µ. By the previous corollary, we therefore also have that µn

d→ µ.

Chapter 5 Big Theorems in Probability

Theorem 55: Let X1, X2, . . . be a sequence of uncorrelated random variables (note this is
strictly weaker than independence) with E[Xi] = µ and such that Var(Xi) ≤ c < ∞ for all
i = 1, 2, . . .. Let Sn = X1 + · · ·+Xn. Then 1

n
Sn

L2

→ µ (and as a result 1
n
Sn

P→ µ).

Proof. Note that E[Sn

n
] = µ. Hence, consider the second moment

E

[(
Sn
n

− µ

)2
]
= Var

(
Sn
n

)
=

1

n2
(Var(X1) + · · ·+Var(Xn)) ≤

nc

n2
→ 0

Thus, we see that the first two moments of Sn

n
converge to µ, or Sn

n

L2

→ µ (which is a strictly
stronger result than 1

n
Sn

P→ µ).
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Remark: If X1, X2, . . . are i.i.d. with finite variance (or second moment), then 1
n
Sn

L2

→ µ.

Theorem 56: Consider a triangular array of random variables

X1,1

X2,1 X2,2

X3,1 X3,2 X3,3
...

...
... . . .

where Xn,1, . . . , Xn,n, the variables in the same row, are all independent. Define Sn =∑n
i=1Xn,i to be the sum of random variables in row n. Let µn = E[Sn] and σ2

n = Var(Sn).

If σ2
n

b2n
→ 0, then Sn−µn

bn

L2

→ 0 (and as result Sn−µn
bn

P→ 0).

Proof. Note that

E
[(

Sn − µn
bn

)]
=

1

b2n
E[(Sn − µn)

2]︸ ︷︷ ︸
Var(Sn)

=
σ2
n

b2n
→ 0

Thus Sn−µn
bn

L2

→ 0 (which is a strictly stronger result showing Sn−µn
bn

P→ 0).

Remark: This extends our previous result, since now we can have multiple separate se-
quences that show convergence. Previously, we had to have one contiguous sequence which
is convergent, whereas now we have increasingly large but separate sequences.

Remark: If Xn,k are all identically distributed with mean µ and variance σ2 and the random
variables in the same row are independent (i.e., Xn,1, . . . , Xn,n

i.i.d.∼ X), then X̄n := Sn

n

P→ µ
(by taking bn = n). This is the most common formulation of the law of large numbers.

Lecture 17 11/19

Theorem 57: Consider a triangular array of random variables

X1,1

X2,1 X2,2

X3,1 X3,2 X3,3
...

...
... . . .

where Xn,1, . . . , Xn,n, the variables in the same row, are all independent. Let b1, b2, . . . be a
sequence of real numbers such that each bn > 0 and bn → ∞. Now consider truncating the
random variables by Xn,k := Xn,k1{|Xn,k|≤bn}. Suppose that as n→ ∞ then

(1)
∑n

k=1 P(|Xn,k| > bn) → 0

(2) b−2
n

∑n
k=1 E[Xn,k

2
] → 0

Now further define Sn = Xn,1 + · · ·Xn,n to be the row sum for the nth row and define
an =

∑n
k=1 E[Xn,k]. Then Sn−an

bn

P→ 0.
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Proof. Define Sn = Xn,1 + · · ·+Xn,n. Let ε > 0. Then

P

( ∣∣∣∣Sn − an
bn

∣∣∣∣ > ε︸ ︷︷ ︸
Sn ̸=Sn or |Sn−an

bn
|>ε

)
≤ P(Sn ̸= Sn) + P

(∣∣∣∣Sn − an
bn

∣∣∣∣ > ε

)

Now note that

P(Sn ̸= Sn) ≤ P(∃k = 1, . . . , n Xn,k ̸= Xn,k)

≤
n∑
k=1

P(Xn,k ̸= Xn,k)

=
n∑
k=1

P(|Xn,k| > bn) → 0

by condition (1). Note that an = E[Sn], and so

E

[(
Sn − an
bn

)2
]
= b−2

n Var(Sn) = b−2
n

n∑
k=1

Var(Xn,k) ≤ b−2
n

n∑
k=1

E[Xn,k
2
] → 0

by condition (2). Thus, we have that

Sn − an
bn

L2

→ 0 and so
Sn − an
bn

P→ 0

This gives

P
(∣∣∣∣Sn − an

bn

∣∣∣∣ > ε

)
→ 0 and so P

(∣∣∣∣Sn − an
bn

∣∣∣∣ > ε

)
→ 0,

as desired.

Lemma 58: Let Y ≥ 0 be a non-negative random variable. Then

E[Y 2] =

∫ ∞

0

2yP(Y > y)dy

Proof. Note that P(Y > y) = E[1{Y >y}]. Thus,∫ ∞

0

2yP(Y > y)dy =

∫ ∞

0

E[2y1{Y >y}]dy

= E
[∫ ∞

0

2y1{Y >y}dy

]
by Fubini’s

= E
[∫ Y

0

2y dy

]
= E[Y 2]
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Theorem 59: Let X1, X2, . . . be an i.i.d. sequence of random variables with xP(|X1| >
x) → 0 as x→ ∞. Define Sn = X1 + · · ·+Xn and µnE[X11{|X1|≤n}). Then Sn

n
− µn

P→ 0

Proof. Take Xn,k = Xk and bn = n. Then
∑n

k=1 P(|Xn,k| > bn) = n · P(|X1| > n) → 0,
satisfying condition (1) of the previous theorem. Now notice that

b−2
n

n∑
k=1

E[Xn,k
2
] = n−2 · n · E[Xn,1

2
] =

1

n
E[Xn,1

2
]

From the above lemma, we have that

E[Xn,1
2
] =

∫ ∞

0

2yP(|Xn,1| > y)dy ≤
∫ n

0

2yP(|X1| > y)dy

since whenever |Xn,1| > y, then also |Xn,1| > y and whenever y > n, this is trivially false
(since Xn,1 is truncated). Now since yP(|X1| > y) → 0, we have that

1

n

∫ n

0

2yP(|X1| > y)dy → 0

(since the running average converges to the limit). This implies that b−2
n

∑n
k=1 E[Xn,k

2
] → 0,

thereby satisfying condition (2) of the previous theorem. Now by the previous theorem,

Sn − an
bn

P→ 0 ⇐⇒ Sn − nµn
n

=
Sn
n

− µn
P→ 0

Remark: Now we’ll look at a weak law of large numbers that does not require finite second
moments. Note also that if p ≤ q and E[|X|q] < ∞ and E[|X|p] < ∞. In particular, if
0 < x ≤ 1 then xq ≤ xp ≤ 1 and if x > 1 then xp ≤ xq, which shows the result. Thus having
finite means is a weaker condition than having finite second moments.

Theorem 60. Weak Law of Large Numbers: Let X1, X2, . . . be an i.i.d. sequence of
random variables with E[|X1|] <∞. Let Sn = X1 + · · ·+Xn and µ = E[X1]. Then Sn

n

P→ µ.

Proof.

xP(|X1| > x) = E[x1{|X1|>x}]

≤ E[|X1|1{|X1|>x}] → 0

To see this, note that by the dominated convergence theorem

E[|X1|1{|X1|>x} → 0

since |X1|1{|X1|>x} ≤ |X1| and |X1|1{|X1|>x} → 0 as x→ ∞. Note also that by the dominated
convergence theorem,

µn = E[X11{|X1|≤n}] → E[X1] = µ
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since |X11{|X1|≤n}| ≤ |X1| and X11{|X1|≤n} → X1 as n→ ∞.. Thus, we see that

Sn
n

− µ =

(
Sn
n

− µn

)
+ (µn − µ)

P→ 0

which in turn shows that Sn

n

P→ µ. To see this, we would need to show that if Xn
P→ X and

Yn
P→ Y then Xn + Yn

P→ X + Y , though this is straightforward.

Remark: Note that many of the previous theorems are forms of weak laws of large numbers,
but the above theorem is the most classical statement.

Lemma 61: If y ≥ 0, then
2y

∑
k∈Z : k>y

k−2 ≤ 4

Proof. For y ≥ 1, note that

∑
k∈Z : k>y

k−2 =
∞∑

k=⌊y⌋+1

1

k2
≤

∞∑
k=⌊y⌋+1

(
1

k − 1
− 1

k

)
=

1

⌊y⌋

Since y ≥ 1, then y
⌊y⌋ ≤ 2 and so 2y

∑
k∈Z : k>y k

−2 ≤ 4. If instead 0 ≤ y < 1, then

∑
k∈Z : k>y

k−2 = 1 +
∞∑
k=2

k−2

︸ ︷︷ ︸
≤1

≤ 2

and so 2y
∑

k∈Z : k>y k
−2 ≤ 4.

Lemma 62: Let X1, X2, . . . be a sequence of random variables have identical distributions
and pairwise independent. Define Yk = Xk1{|Xk|≤k}. Then

∞∑
k=1

Var(Yk)

k2
≤ 4E[|X1|] <∞

Proof. Note

Var(Yk) = E[Y 2
k ]− E[Yk]2 ≤ E[Y 2

k ] =

∫ ∞

0

2yP(|Yk| > y)dy ≤
∫ k

0

2yP(|X1| > y)dy
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Thus, we see that

∞∑
k=1

Var(Yk)

k2
≤

∞∑
k=1

E[Y 2
k ]

k2

≤
∞∑
k=1

1

k2

∫ ∞

0

1{y<k}2yP(|X1| > y)dy

=

∫ ∞

0

∞∑
k=1

1

k2
1{y<k}2y︸ ︷︷ ︸
≤4

P(|X1| > y)dy by Fubini’s

≤ 4

∫ ∞

0

P(|X1| > y)dy By prev. lemma

= 4E[|X1|] <∞

Lecture 18 11/21

Theorem 63. Strong Law of Large Numbers: Let X1, X2, . . . be a sequence of random
variables that have identical distributions and are pairwise independent. Assume E[|X1|] <
∞ and let E[X1] = µ and Sn = X1 + · · ·+Xn. Then, Sn

n

a.s.→ µ.

Proof. Let Yk = Xk1{|Xk|≤k|}. Let Tn = Y1+Y2+ · · ·+Yn. We argue that it suffices to prove
that Tn

n

a.s.→ µ. To see this, note that

∞∑
k=1

P(|Xk| > k) ≤
∫ ∞

0

P(|X1| > t)dt = E[|X1|] <∞

where E[|X1|] <∞ since E[X1] exists. Now since Xk ̸= Yk only when |Xk| > k, then by the
first Borel-Contelli lemma, the probability P(Xk ̸= Yk i.o.) = 0. So almost surely, Xk ̸= Yk
only happens for finitely many k. This implies then that Sn

n
− Tn

n

a.s.→ 0 since Sn and Tn only
differ by finitely many terms, and 1

n
→ 0. Thus, Sn

n

a.s.→ µ if and only if Tn
n

a.s.→ µ. Also note
that since we can always separate X = X+ −X− (where X+ is the positive part and X− is
the negative part), it suffices to prove the result for non-negative X ≥ 0 (as we can analyze
each part separately).

The idea of the proof is to prove the convergence for a subsequence and then use the fact
that X ≥ 0 to get the general convergence through inequalities.

Let α > 1 and let k(n) = ⌊αn⌋. We will show that Tk(n)

k(n)
converges. Note by Chebyshev’s
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inequality, for any ε > 0

∞∑
n=1

P(|Tk(n) − E[Tk(n)]| > εk(n)) ≤ ε−2

∞∑
n=1

Var(Tk(n))

k(n)2

= ε−2

∞∑
n=1

 1

k(n)2

k(n)∑
m=1

Var(Ym)


= ε−2

∞∑
m=1

Var(Ym)
∑

n : k(n)≥m

1

k(n)2
by Fubini’s

where we can add the variances to get Ym since our Xn are pairwise independent. Note that∑
n : k(n)≥m

1

k(n)2
=

∑
n : k(n)≥m

1

⌊αn⌋2
≤ 4

∑
n : αn≥m

α−2n ≤ 4 · m−2

1− α−2

since ⌊αn⌋ ≥ αn

2
for all n ≥ 1 and α > 1 and by bounding the sum by the geometric series∑∞

n=m α
−2n. Continuing our main proof, we have

∞∑
n=1

P(|Tk(n) − E[Tk(n)]| > εk(n)) ≤ ε−2

∞∑
m=1

Var(Ym)
∑

n : k(n)≥m

1

k(n)2

≤ ε−24(1− α−2)−1

∞∑
m=1

m−2Var(Ym)︸ ︷︷ ︸
<∞

<∞

where we finiteness of the sum follows by our previous lemma. Now, by the first Borel-
Contelli lemma,

P
(
|Tk(n) − E[Tk(n)]|

k(n)
> ε i.o.

)
= 0

Therefore, almost surely,

lim sup
n→∞

|Tk(n) − E[Tk(n)]|
k(n)

≤ ε

Since this holds for all ε > 0, we conclude that Tk(n)−E[Tk(n)]

k(n)

a.s.→ 0. Now since Yk
D
=

X11{|X1|≤k}
a.s.→ X1 and E[|X1|] < ∞, then by dominated convergence theorem E[Yk] →

E[X1] = µ. Thus, we see that E[Tk(n)]

n
→ E[X1]. Hence,

Tk(n)
k(n)

− E[X1] =

(
Tk(n)
k(n)

−
E[Tk(n)]
k(n)

)
︸ ︷︷ ︸

a.s.→ 0

+

(
E[Tk(n)]
k(n)

− E[X1]

)
︸ ︷︷ ︸

→0

a.s.→ 0

and so our result holds for the subsequence {Yk(n)}, it remains only to show it for the general
case.
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For the general form, note that for any m, there is some n such that k(n) ≤ m ≤ k(n+ 1).
Now note that

Tk(n)
k(n+ 1)

≤ Tm
m

≤
Tk(n+1)

k(n)
(*)

since Tn is a partial sum of non-negative values, and is therefore increasing. Now note that
k(n+1)
k(n)

→ α and so
Tk(n)

k(n+ 1)
=

Tk(n)
k(n)︸ ︷︷ ︸

a.s.→ E[X1]

· k(n)

k(n+ 1)︸ ︷︷ ︸
→ 1

α

a.s.→ 1

α
E[X1]

Thus, taking limits in (*) we have

1

α
E[X1] ≤ lim inf

n→∞

Tm
m

≤ lim sup
n→∞

Tm
m

≤ αE[X1]

Then, taking α → 1, we have that Tm
m

a.s.→ E[X1].

Remark: Suppose that X1, X2, . . . are i.i.d. and that E[X+
1 ] = ∞ but E[X−

1 ] < ∞,
then we have that Sn

n
→ ∞. We would show this by a truncation argument showing that

lim infn→∞
Sn

n
> x for all x.

Example: In renewal theory, interval times for the (continuous) arrival of customers, or
service times of a server, or lifespan of light bulbs, etc. are are all i.i.d. positive random
variables. We can then define T (n) = X1 + · · ·+Xn is the time until the nth occurrence of
the event. From this, we can define Nt = sup{n : T (n) ≤ t} to be the number of occurrences
by time t.

Theorem 64: Let X1, X2, . . . be i.i.d. positive random variables. Define T (n) = X1 + · · ·+
Xn and Nt = sup{n : T (n) ≤ t} as in the above example. If E[X1] = µ < ∞, then Nt

t

a.s.→ 1
µ

as t→ ∞.

Proof. By the strong law of large numbers, T (n)
n

a.s.→ µ. Note that T (Nt) ≤ t < T (Nt + 1)
(i.e., in particular T (Nt) is the time of the last event before time t, and T (Nt+1) is the time
of the next event after time t). We see then that

T (Nt)

Nt

≤ t

Nt

<
T (Nt + 1)

Nt

=
T (Nt + 1)

Nt + 1
· Nt + 1

Nt

.

Now since limt→∞Nt → ∞ and limt→∞
Nt+1
Nt

→ 1, we have

lim
t→∞

t

Nt

= lim
t→∞

T (Nt)

Nt

= lim
n→∞

T (n)

n
= µ a.s.

Hence,

lim
t→∞

Nt

t
=

1

µ
a.s.

5 Big Theorems in Probability 49 Lecture 18, 11/21



STAT 901 Fall 2024: Notes Jacob Schnell

Lecture 19 11/26

Theorem 65. Glivenko-Contelli Theorem: Suppose X1, X2, . . . are i.i.d. samples form a
known distribution (function) F . Let Fn(x) = 1

n

∑n
m=1 1{Xn≤x} be the “empirical distribution

function.” (Intuitively, Fn(x) is estimating P(X1 ≤ x) by the fraction of our Xi’s such that
Xi ≤ x.) Then supx |Fn(x) − F (x)| → 0 almost surely as n → ∞. (Note this uniform
convergence implies that note only do we have pointwise convergence, but also the shapes
will converge.)

Proof. Note that almost sure pointwise convergence holds trivially as a result of apply strong
law of large numbers to the indicator functions In = 1{Xn≤x} for a fixed x. Note also that
Fn(x−) = limy→x− Fn(y) = 1

n

∑n
m=1 1{xm<x} will converge almost surely to P(Xn < x) =

F (x−). However, this does not directly imply uniform convergence (especially for non-
continuous distribution functions). For k = 1, 2, . . . and 1 ≤ j ≤ k − 1, define xj,k := inf{y :
F (y) ≥ j

k
}. Effectively, xj,k is the j

k
th quantile. Then by the definition of xj,k, we have that

F (xj,k−) − F (xj−1,k) ≤ 1
k
. Due to almost sure pointwise convergence, then almost surely

there exists Nk(ω) such that |Fn(xj,k)− F (xj,k)| < 1
k

and |Fn(xj,k−)− F (xj,k−)| < 1
k

for all
1 ≤ j ≤ k − 1 and n ≥ Nk(ω). Thus, for x ∈ [xj−1,k, xj,k) and since both Fn and F are
non-decreasing, we have that

Fn(x) ≤ Fn(xj,k−) ≤ F (xj,k−) +
1

k
≤ F (x) +

2

k

On the other hand,

Fn(x) ≥ Fn(xj−1, k) ≥ F (xj−1,k)−
1

k
≥ F (x)− 2

k

We see then that |Fn(x) − F (x)| ≤ 2
k

for all n ≥ Nk(ω). Thus since this holds for all x, we
have that supx |Fn(x) − F (x)| ≤ 2

k
. Moreover, this holds for all k, thus taking the limit as

n→ ∞, we have that supx |Fn(x)− F (x)| a.s.→ 0.

Lemma 66: For any x ∈ R.∣∣∣∣∣eix −
n∑

m=0

(ix)n

m!

∣∣∣∣∣ ≤ min

{
|x|n+1

(n+ 1)!
,
2|x|n

n!

}

Proof. Use Taylor’s Theorem.

Theorem 67: If E[X2] <∞ then

φ(t) = 1 + itE[X]− t2E[X2]

2
+ o(t2)

Proof. Use the above lemma with n = 2. The error term becomes ≤ t2E[ |t|·|X|3
6

∧ |X|2]. This
converges to 0 as t → 0 and is bounded by |X2|, which is integrable (since E[X2] < ∞).
Then by dominated convergence, the expectation inside of the expectation goes to 0 as t→ 0
(and is therefore o(1)). Therefore, multiplying this term by t2 we get that the error term is
o(t2).
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Theorem 68. Central Limit Theorem: Let X1, X2, . . . be are i.i.d. random variables
with E[X1] = µ <∞ and Var(X1) = σ2 <∞. Let Sn = X1 + · · ·+Xn, then

Sn − nµ

σ
√
n

d→ Z ∼ N(0, 1) ⇐⇒ Xn − µ

σ/
√
n

d→ Z ∼ N(0, 1)

Proof. Since we can always take X ′
i = Xi − E[Xi], it suffices to prove the result for µ = 0.

From the above theorem, φ(t) = 1− σ2t2

2
+ o(t2) (since we have that E[X ′

i] = 0). Therefore,
we see that

φ Sn
σ
√
n
(t) = E[eit

Sn
σ
√
n ] = φSn(

t
σ
√
n
) = (φ( t

σ
√
n
))n = (1− t2

2n
+ o( t

3

n
))n → e−t

2/2

However, this is the characteristic function of a N(0, 1)! Thus we see that Sn−nµ
σ
√
n

d→ Z ∼
N(0, 1) by the continuity theorem.

Example: Note that if X1, X2, . . .
i.i.d.∼ Bernoulli(p) random variables, then we know that

Sn = X1+· · ·+Xn ∼ Bin(n, p). Note we know that E[X1] = p and Var(X1) = p(1−p). Then,
by the central limit theorem we know that Sn−np√

np(1−p)
d→ Z ∼ N(0, 1). So, Sn−np ≈ N(0, nσ2)

and Sn ≈ N(np, nσ2) (though this isn’t a rigorous argument). Thus, we can approximate a
Binomial(n, p) distribution by an N(np, np(1 − p)) distribution for large n. For example,
when p = 1

2
and so σ2 = 1

4
, we have

P
(
Sn − n

2
1
2

√
n

∈ [a, b]

)
≈ FZ(b)− FZ(a) and P(Sn ∈ [c, d]) ≈ FZ

(
d− n

2
1
2

√
n

)
− FZ

(
c− n

2
1
2

√
n

)
where Z ∼ N(0, 1). If you for instance take n = 10000, c = 4900 and d = 5100, then

P(Sn ∈ [4900, 5100]) ≈ FZ(2)− FZ(−2) ≈ 0.95

Theorem 69. Lindeberg-Feller CLT: Consider a triangular array of random variables

X1,1

X2,1 X2,2

X3,1 X3,2 X3,3
...

...
... . . .

Where for each n = 1, 2, . . . we have that Xn,m for m = 1, 2, . . . , n are independent random
variables with E[Xn,m] = 0. If (1)

∑n
m=1 E[X2

n,m] → σ2 > 0 for all n = 1, 2, . . . and (2)
for any fixed ε > 0, limn→∞

∑n
m=1 E[|Xn,m|2 · 1{|Xn,m>ε}] = 0, then Sn = Xn,1 + · · · + Xn,n

has Sn
d→ Z ∼ N(0, σ2). (1) and (2) are sometimes called the Lindeberg-Feller conditions.

Intuitively, the result of a large number of independent random effects is approximately
normal. Note also that we don’t need independence between rows, and we don’t need all
random variables to have a shared distribution.

Proof. The result is omitted for brevity since it is quite technical.

5 Big Theorems in Probability 51 Lecture 19, 11/26



STAT 901 Fall 2024: Notes Jacob Schnell

Chapter 6 Conditional Expectation

Lecture 20 11/28

Remark: In basic probability courses, we defined conditional expectation

E[Y |X = x] =

{∑
y y · P(Y = y|X = x) when X, Y are discrete∫
yfY |X(y|x)dy when X, Y are absolutely continuous

where P(Y = y|X = x) = P(Y=y,X=x)
P(X=x)

and fY |X(y|x) =
fX,Y (x,y)

fX(x)
. It’s unclear why these

two should match, since P(X = x) = 0 for continuous X. However, how should we define
conditional expectation in the general case (e.g., whenX and Y are singular or not-absolutely
continuous)?

Idea 1: Define the “conditional distribution” rigorously first, and then define the conditional
expectation as the expectation of w.r.t. this conditional distribution. Turns out, this is very
difficult to do rigorously since finding the distribution is not straightforward.

Idea 2: Define the conditional expectation from a different perspective, without conditional
distributions.

Note: Note that E[Y |X = x] (using the non-rigorous definition of condiotional expectation
we usually work with) is a number for each x. Therefore, E[Y |X = x] is a sort of mapping,
sending each possible value of X to a number. Thus, we consider E[Y |X] as a random
variable such that its value at any point ω is E[Y |X = X(ω)]. Moreover, since E[Y |X] is
determined by the value of X, it is a function of X. I.e., E[Y |X] = g(X) for some function
g. In other words, E[Y |X] is a σ(X)-measurable random variable. Formalizing this intuition
yields the following definition.

Definition. Conditional Expectation Given Sub-σ-field: Let (Ω,F,P) be a probability
space and X be a random variable on it, with E[|X|] <∞. Let G be a sub-σ-field of F. Then
the conditional expectation of X given G is denoted by E[X|G] and is a random variable Y
such that

(1) Y is G-measurable.

(2) For any A ∈ G,
∫
A
XdP =

∫
A
Y dP.

Intuitively, E[X|G] is the best estimate of X when we only have the resolution of G. It’s
like looking through mosaic glass, we flatten the depth within each part of the mosaic to a
single color. Similarly, Y lacks the resolution of X and is constant on portions where X is
not constant.

Definition. Absolutely Continuous Measure: Let µ and ν be two measures defined on
the same measurable space (Ω,F). Then ν is said to be absolutely continuous with respect
to µ, denoted by ν ≪ µ, if for any A ∈ F then whenever µ(A) = 0 we also have ν(A) = 0.
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Theorem 70. Radon-Nikodym Theorem: Let µ and ν be σ-finite measure defined on
the same measurable space (Ω,F). If ν ≪ µ, then there exists an F-measurable function f
such that for any measurable set A ∈ F,

∫
A
fdµ = ν(A). This f is often denoted dν

dµ
and is

called the Radon-Nikodym derivative of ν with respect to µ or density of ν with respect to
µ.

Proof. This proof is from real analysis, and thus out-of-scope for this course.

Proposition 71: Let (Ω,F,P) be a probability space and X be a random variable on it,
with E[|X|] < ∞. Let G be a sub-σ-field of F. The conditional expectation Y = E[X|G]
exists.

Proof. (1) When X ≥ 0. Let µ = P|G (the restriction of P to G). Note then that µ is a
probability measure on G with µ(A) = P(A) for all A ∈ G. Now define ν(A) =

∫
A
Xdµ for

any A ∈ G. One can show that ν defined as such is a measure on (Ω,G). Moreover, since
whenever µ(A) = 0 then clearly ν(A) =

∫
A
Xdµ = 0 so that ν ≪ µ. Then, by Radon-

Nikodym theorem, there is a Y = dν
dµ

∈ G such that
∫
A
XdP = ν(A) =

∫
A
Y dµ =

∫
A
Y dP

which follows since Y is G-measurable.

(2) In the general case, we can write X = X+ −X−. Let Y1 = E[X+|G] and Y2 = E[X−|G]
so that Y = Y1 − Y2 ∈ G. Then we can write∫

A

XdP =

∫
A

X+dP−
∫
A

X−dP =

∫
A

Y1dP−
∫
A

Y2dP =

∫
A

Y dP

for all A ∈ G.

Proposition 72: The conditional expectation is unique almost surely. That is, the condi-
tional expectation is unique up to difference on sets of measure of 0.

Proof. Assume both Y and Y ′ satisfy the conditions in the definition of conditional expec-
tation. By way of contradiction, suppose that P(Y ̸= Y ′) > 0. Without loss of generality,
suppose that P(Y > Y ′) > 0. Let A := {Y > Y ′} with P(A) > 0. Since Y and Y ′ are
G-measurable, we have that A ∈ G. Therefore,

∫
A
XdP =

∫
A
Y dP =

∫
A
Y ′dP. It follows

then that
∫
A
(Y − Y ′)dP. However, since Y − Y ′ > 0 on A and P(A) > 0, it must be that∫

A
(Y − Y ′)dP > 0, a contradiction. (Note this follows since if P(Y − Y ′ > 0) > 0, there

must be an ε > 0 > 0 such that P(Y − Y ′ > ε) > 0, and integrating over this area we get
> 0 difference.)

Definition. Conditional Expectation: Let (Ω,F,P) be a probability space and X, Y be
random variables on it, with E[|Y |] < ∞. Define E[Y |X] := E[Y |σ(X)] = E[Y |G] where
G = {{ω ∈ F : X ∈ A} : A ∈ B}.

Proposition 73. Properties of Conditional Expectation:
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(1) Linearity: For a ∈ R, E[aX + Y |F] = aE[X|F] + E[Y |F].

(2) Monotonicity: If X ≤ Y then E[X|F] ≤ E[Y |F].

(3) Continuity: If Xn ≥ 0 and Xn → X from below and E[|X| < ∞], then E[Xn|F] →
E[X|F] from below.

Proof. (1) Follows trivially from the definition of conditional expectation and the linearity
of integration.

(2) Can be proved using the same as idea as we used to show the uniqueness of conditional
expectation. More precisely, define A := {E[X|F] > E[Y |F]}. Then A ∈ F and∫

A

E[X|F]dP =

∫
A

XdP ≤
∫
A

≤ Y dP =

∫
A

E[Y |F]dP

This implies that it must be that P(A) = 0.

(3) Define Yn := X − Xn and Zn := E[Yn|F] = E[X|F] − E[Xn|F] by linearity. Then we
clearly have that Yn → 0 from above. Since |Yn| ≤ |X| (and |X| is integrable), then
by the dominated convergence theorem, we have that

∫
A
YndP → 0 from above for any

A ∈ F. But then,
∫
A
YndP =

∫
A
ZndP and so this implies that

∫
A
ZndP → 0 from

above. On the other hand, by property (2) we know that Zn is decreasing. Denote
the limit Z∞ := limn→∞ Zn. Then by monotone convergence theorem we know that∫
A
ZndP →

∫
A
Z∞dP. However, we showed that

∫
A
ZndP → 0, which implies that we

must have
∫
A
Z∞dP = 0 for all A ∈ F. Now since Z∞ is non-negative, it must be that

Z∞ = 0 almost surely. Therefore, E[Xn|F] → E[X|F] from below.

Note: If X ∈ F is F-measurable, then E[X|F] = X almost surely.

Theorem 74: If F1 ⊆ F2 are σ-fields, then

(1) E[E[X|F1]|F2] = E[X|F1].

(2) E[E[X|F2]|F1] = E[X|F1].

Proof. (1) This holds trivially since E[X|F1] ∈ F1 ⊆ F2.

(2) For any A ∈ F1 ⊆ F2, then∫
A

E[X|F1]︸ ︷︷ ︸
F1-measurable

dP =

∫
A

XdP =

∫
A

E[X|F2]︸ ︷︷ ︸
F2-measurable

dP

This implies that E[E[X|F2]|F1] = E[X|F1].
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Remark: Note that by the above result, we have E[E[X|F]] = E[E[X|F]|{∅,Ω}] = E[X].

Theorem 75: Suppose X and Y are random variables. If X is F-measurable and E[|X|] <
∞, and E[|XY |] <∞, then E[XY |F] = XE[Y |F].

Proof. We use the definition of conditional expectation and check conditions (1) and (2).
First, we check that XE[Y |F] is F measurable. But since X is F measurable and E[Y |F] is
necessarily F measurable this holds trivially. First, for X = 1B with B ∈ F, and A ∈ F has∫
A

XE[Y |F]dP =

∫
A

1BE[Y |F]dP =

∫
A∩B

E[Y |F]dP =

∫
A ∩B︸ ︷︷ ︸

∈F

Y dP =

∫
A

1BY dP =

∫
A

XY dP

so we see that this holds for X = 1B. By the linearity of integration, this also holds for
any simple function. Now, by taking an increasing limit Xn → X, which is non-negative
and integrable, the result also holds. Finally, we can generalize to any random variable
by decomposing it into its positive and negative parts. We’re basically following the same
method we used for Lebesgue integration.

Theorem 76: Let X and Y be independent random variables with E[|Y |] < ∞. Then
E[Y |X] = E[Y ].

Proof. We know that any set in σ(X) has the form {X ∈ B} for some B ∈ B. Then, for
any A ∈ σ(X) we have ∫

A

Y dP =

∫
Y · 1AdP

Since A = {X ∈ B} for some B. Thus, 1A is a function of X, and so 1A and Y are
independent. Then by independence, we have

E[Y · 1A] = E[Y ] · E[1A] =
∫
A

E[Y ]dP

We see then that
∫
A
Y dP =

∫
A
E[Y ]dP for all A ∈ X. This, in turn, implies that E[Y |X] =

E[Y ], as desired.

Theorem 77. Conditional Jensen’s inequality: Let φ be a convex function, and X be
a random variable such that E[|X|] <∞ and E[|φ(X)|] <∞. Then φ(E[X|f ]) ≤ E[φ(X)|F]

Proof. Follows by applying Jensen’s inequality to the conditional distribution.

Corollary 78: E[X|F] has a small or equal Lp norm than X for any p ≥ 1.

Proof. Note that |x|p is a convex function. Hence, by Jensen’s inequality we have that

|E[X|F]|p ≤ E[|X|p|F]

Thus, taking the expectation again on both sides we get that

∥E[X|F]∥pp = E[|E[X|F]|p] ≤ E[E[|X|p|F]] = E[|X|p] = ∥X∥pp
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Proposition 79. Orthogonality: Let X be a random variable such that E[X2] < ∞ and
F be a σ-field. Let Y be a random variable such that E[Y 2] < ∞ and Y is F-measurable.
Then X−E[X|F] and Y are uncorrelated (i.e., Cov(X−E[X|F], Y ) = 0). This in particular
implies that E[X|F] and X − E[X|F] are uncorrelated.

Proof. Note that E[X −E[X|F]] = 0. Hence, it suffices to show that E[(X −E[X|F])Y ] = 0
(since Cov(X, y) = E[XY ]−E[X]E[Y ]). We see that by adding another layer of conditional
expectation gives us

E[(X − E[X|F]) · Y ] = E[E[(X − E[X|F]) · Y ]|F] = E[Y · E[X − E[X|F]|F]︸ ︷︷ ︸
=0

] = E[Y · 0] = 0

Theorem 80. Minimal Distance: Let X be a random variable with E[X2] < ∞. Then
for any F-measurable random variable Z with E[Z2] <∞ we have that

E[(X − E[X|F])2] ≤ E[(X − Z)2].

Proof. Note that
E[(X − Z)2] = E[(X − E[X|F] + E[X|F]− Z)2]

We have seen that X − E[X|F] and E[X|F]− Z are uncorrelated, however, and so

E[(X−Z)2] = E[(X−E[X|F]+E[X|F]−Z)2] = E[(X−E[X|F])2]+E[(E[X|F]−Z)2] ≥ E[(X−E[X|F])2]

Example. Wald’s Identity: Let X1, X2, . . . be i.i.d. random variables with E[|X1|] <
∞. Let N be a non-negative, integer-valued random variable with with E[|N |] < ∞ and
independent of X1, X2, . . .. Then,

E

[
N∑
n=1

Xn

]
= E[N ] · E[X1]

Proof.

E

[
N∑
n=1

Xn

]
= E

[
E

[
N∑
n=1

Xn|N

]]
= E[N · E[X1]] = E[N ] · E[X1]

since for N = k the inner expectation is

= E

[
N∑
n=1

Xn|N = k

]
= E

[
k∑

n=1

Xn|N = k

]
= E

[
k∑

n=1

Xn

]
= kE[X1]
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Definition. Conditional Variance: Let X, Y be random variables such that E[X2] <∞.
Define the conditional variance as Var(X|Y ) = E[(X − E[X|Y ])2|Y .

Example. EVVE’s Law: Let X, Y be random variables such that E[X2] < ∞. Then,
Var(X) = E[Var(X|Y )] + Var(E[X|Y ]).

Proof.

Var(X) = E[(X − E[X])2]

= E[((X − E[X|Y ]) + (E[X|Y ]− E[X]))2]

= E[(X − E[X|Y ])2] + E[(E[X|Y ]− E[X])2]

= E[E[(X − E[X − Y ])2|Y ]] + E[(E[X|Y ]− E[E[X|Y ]])2]

= E[Var(X|Y )] + Var(E[X|Y ])

This can be interpreted as grouping our observations according to the value of Y . Then the
overall variance is the sum of the intra-group variance E[Var(Y |X)] and inter-group variance
Var(E[X|Y ]).

Note: In STAT 902 (Theory of Probability 2) is the continuation of this course but towards
stochastic calculus. Particularly, learning about stochastic processes Xt which change ac-
cording to time t. You will learn about stochastic differential equations XtdBt where Bt is
the Brownian motion. This allows us to integrate w.r.t. other stochastic calculus

∫
XtdBt via

Ito integration. This will also involve learning about Martingales, and particular stochastic
calculus with continuous semi-martingales. In order the topics are

• Discrete and continuous martingale theory. A martingale is a stochastic process
E[Xt|Fs] = Xs.

• Brownian motion.

• Itô integration w.r.t. Brownian motion.

• Semi-martingales and Itô integration w.r.t continuous semi-martingales.

• SDEs, local times, etc.
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