02/01/2005 16:28

5

The Second-System Effect The Second-System Effect

* Interactive Discipline for the Architect
* Self-Discipline — The Second-System Effect

Negotiation Self-discipline
* Architects propose projects * First system requires humility from ignorance
* Implementers propose bids * Second system is the most dangerous
* Architects negotiate function up and cost down - Confidence from first success dominates
* Implementers are the implementation authority — Designer attempts all former forgone features
e Architects * Third and subsequent gain wisdom from second

- Only suggests implementation
- Must accept viable alternatives
- Should deal quietly; Forego credit



02/01/2005 16:28

Contrast with Extreme Programming

* All programmers participate in all technical roles
* Programmers work in pairs, i.e., one screen
* Function is developed incrementally

* Refactoring addresses architectural issues

The scenario

e Larger team project, but focus on ...
* Two programmers, Kent (/) and Beck (You)
* One task, Export Quarter-to-date Witholding

¢ After the daily morning stand-up meeting (that all
programmers attend), Kent asks Beck, “Can you
help me on the Export task?”

* Beck says “Yes,”

— All programmers help when asked

A Development Episode in XP

* From Chapter 2 of Kent Beck's Extreme
Programming Explained (1% ed.)

¢ “Day-to-day programming proceeds from a task
clearly connected to a feature the customer wants,
to test, to implementation, to design, and through
to integration. A little of each of the activities of
software development are packed into each
episode.”

New test cases

* Beck asks, “What are the test cases?”

¢ Kent answers, “The values in the export record
should match the values in the bins.”

* Beck asks, “Which fields have to be populated?”

¢ Interrupting briefly, Eddie explains the five fields
related to quarter-to-date



02/01/2005 16:28

Existing test cases Further improvements
¢ Kent and Beck examine existing export test cases * They
* They - See other export test cases that could use the

new superclass
- Record “Refactor AbstractExportTest” on their

- Find one that is almost what they need
- Abstract a superclass

to-do card
- Refactor the dependent code
- Run all existing test cases successfully
New test case for the new code New code for the new test case

* They * Kent writes the new code

- Use the new superclass * They

- Create a new test case for the new code - Notice a few more applicable test cases
e Kent suggests, “I thought of an implementation.” - Record them on the to-do card
* Beck answers, “Let's finish the test case.” - Run the first test case; It passes
¢ Kent records three ideas on the to-do card * Kent writes new code for each new test case
* They - Each case successively passes

- Run the new test case; It fails



02/01/2005 16:28

Refactoring new code

* Beck observes opportunities to simplify
¢ Kent hands Beck the keyboard
* Beck
- Refactors the new code
- Reruns the existing test cases; They all pass

- Continues to implement code for each new test
case

Integration

* They
- Notice that the integration machine is free
- Load the latest release from the repository
- Load their changes
- Run all test cases, old and new; One fails

* Beck remarks, “It's been a month since a test case
failed at integration.”

* They isolate and correct the faulty code

Refactoring old test cases

* The to-do card eventually only shows “Refactor
AbstractExportTest”

* They

- Restructure the existing test cases to use the
AbstractExportTest class

- Run the restructured test cases; All pass

Release

* They
- Rerun all test cases; All Pass

— Release the new code and test cases into the
central repository



02/01/2005 16:28

Extreme programming summary

* Pairs programming

Test-driven development
- Create test cases, which fail until code exists
- Code until all test cases pass
- Design until test cases cover all functionality

Refactoring

- Simplify old and new code and test cases

Immediate integration

IEEE Std 1058 (cont. 2 of 3)

Front matter Managerial process plans
Start-up plan
Project summary Estimation plan
Purpose, scope, objectives Staffing plan
Assumptions and constraints Resource acquisition plan
Project deliverables Project staff training plan

Schedule and budget summary Work plan
Work activities

Project organization Schedule allocation
External interfaces Resource allocation
Internal structure Budget allocation

Roles and responsibilities

IEEE Std 1058 Project Management

e IEEE Std 1058-1998 IEEE Standard for Software
Project Management Plans (SPMP)

- “may be applied to any type of project”

- “not restricted by the size, complexity or
criticality”

- “identifies the elements that should be in all
SPMP's”

IEEE Std 1058 (cont. 3 of 3)

Managerial process plans (cont.) Technical process plans

Control plan Process models

Requirements control plan Methods, tools and techniques

Schedule control plan Infrastructure plan

Budget control plan Product acceptance plan

Quality control plan

Reporting plan Supporting process plans

Metrics collection plan Configuration management plan
Risk management plan Verification and validation plan
Closeout plan Documentation plan

Quality assurance plan

Reviews and audits

Problem resolution plan

Subcontractor management plan
Section 8. Additional plans Process improvement plan



02/01/2005 16:28

Waterfall lifecycle stages
Analysis
Specification
Design

Implementation

Integration

Testing
Release

Maintenance



