02/09/2005 13:28

8 .
Calling the Shot Calling the Shot

* Portman's data: Jobs take twice estimated
* Aron's data: Complexity dominates productivity
* Harr's data: Corroborates Aron's data
* 0OS/360 data: Corroborates Aron's and Harr's data
¢ Corbato's data

- Productivity appears constant w.r.t. elements

- High-level languages hold promise

Estimating Time for a System

Programming Job Measuring effort

Programming Effort as a function of program size

¢ Naive estimation o000
9000 -

Man-Months

Thousands of machine instructions

6000 -
- Extrapolate based on ratios 5000 -
* E.g. Sackman, Erikson, and Grant report
2000 -
1000
programmer, 1.e., annual productivity = 35,800
statements per year.

- Estimate coding time, or 2000 1
- Estimate based on small-program experience 7000 |
4000 -
3000 -
- For a certain size of program, average coding
and debugging took 178 hours for a single 0 S
0 100 200 300 400 5S00 600 700 800
— For a program of 2 size, time required was less
than Y4, i.e., annual productivity = 80,000



02/09/2005 13:28

Estimating effort

The above graph shows an exponent of 1.5

Effort = (constant) x (number of instructions)!~

Effort increases with a power of program size

I.e., not linearly

Aron’s data

* Joel Aron, manager at IBM, Maryland studied
programmer productivity of nine large systems

¢ Large: defined as more than 25 programmers and
30,000 deliverable instructions

¢ Related productivity to program complexity as
follows (in instructions per person-year)

- Very few interactions: 10,000 instructions
- Some interactions: 5,000 instructions
- Many interactions: 1,500 instructions

* Only for design and programming; Not test

Portman’s Data

* Charles Portman, manager at ICL, Manchester
* Teams took ~ 2x estimates

* Estimates were done very carefully

Each programmer to kept daily logs

Logs showed that only 50% of the working week
was spent in actual programming and debugging

Rest of the time was spent in high priority, short,
unrelated jobs, e.g., meetings, paperwork,
personal time etc.

Harr’s data

Prog. No. of Years Man- Program | Words/man-yr
Units | Programmers Years ‘Words
Operational 50 83 4 101 52,000 515
Maintenance 36 60 4 81 51,000 630
Compiler 13 9 225 17 38,000 2230
Translator 15 13 2.5 11 25,000 2270
(Data assembler)




02/09/2005 13:28

Analyzing Harr’s data

* First two jobs: Control Programs
¢ Second two jobs: language translators
* Productivity: Debugged words per person-year

* For control programs
Productivity ~ 600 words per person-year

* For translators
Productivity ~ 2200 words per person-year

¢ All four programs are of similar size

0S/360 Data

* Productivities for control program ~ 600 — 800
debugged instructions per person-year

* Productivities for language translators ~ 2000 —
3000 debugged instructions per person-year

¢ Include planning, coding, component test, system
test and some support activities

Analyzing Harr’s data

* There were variations in size of work groups,
length of time, and number of modules

* Open questions
— Which is cause and which is effect?

- Did control programs require more modules
and more man-months because they were
assigned more people?

- Did they take longer because of complexity?
* Control programs were definitely more complex

0S/360 data observations

* Supports Harr’s Data

e Aron’s, Harr’s and OS/360 data all show
differences in productivity related to complexity
and difficulty of the task

* Brooks suggests the following related to the
complexity

- Compilers are 3 times as bad as normal batch
application programs, and operating systems
are 3 times as bad as compilers



02/09/2005 13:28

Corbato’s data

* System programming productivity data for high
level language (Harr’s data and OS/360 data were
for assembly language programming)

* Corbato’s data is for MIT’s project MAC

* Productivity of 1200 /ines of debugged PL/1
statements per man-yr on MULTICS system (1 —
2 million words)

* MULTICS includes control programs and
language translators

Analyzing Corbato’s Data

* Corbato’s number is in /ines per person-year
i.e., not words (each statement corresponds to 3 to
5 words of handwritten code)

* Two important conclusions

- Productivity is constant in terms of elementary
statements; Reasonable in terms of thought a
statement requires and errors it may have

- Programming productivity may be increased
by as much as 5 times when a suitable high-
level language is used



