02/21/2005 13:33

11

Plan to Throw One Away Plan to Throw One Away

Pilot Plants and Scaling Up
The Only Constancy Is Change Itself
Plan the System for Change

Plan the Organization for Change

Two Steps Forward and One Step Back

One Step Forward and One Step Back

Pilot plants and scaling up The only constancy is change itself

* Chemical engineers use a pilot plant to bridge the * Accept change as a way of life

lab bench and the production system * Cosgrove: programmers deliver user satisfaction,

- Le., deal with scale before commiting capital i.e., the new program will affect
* Programmers have not learned this lesson — The user's needs, and
- Schedules do not account for incorrect design - The user's perception of their needs
— First systems are slow, big and awkward * Software's tractability and invisibility incite users
- (Ever heard of, or seen, Windows 1.0?) to expect flexibility

e Plan to throw one away; you will, anyhow * Designers also learn from initial designs



02/21/2005 13:33

Plan the system for change Plan the organization for change
* Modularization * The designer's reluctance to document reflects a
e Subroutines genuine lack of confidence in the design itself

— Written designs are exposed to criticism

- A threatening organization structure
discourages tentative documentation

Interface definitions
¢ Documentation of the same

Standard calling sequences * Structuring an organization for change is harder
Table-driven design than designing a system for change

High-level languages; Self-documenting code * Why?

* Version control, with schedules and freeze dates

Parallel career paths Surgical team strategy

* Maximize flexibility through interchangeable * Reduces social obstacles to the joy of the craft

parallel technical and managerial career paths ~ILe., The surgeon does not demean himself

* Socialogical factors undermine this strategy when building programs
— Seniority devalues technical skill * Reduces the organizational interfaces

- Mana?gement jobs carry higher Prestlge * Increases organizational flexibility by defining
— Prestige comes from more than just salary the structural unit in the surgical team

' 1 . q 1.
* Norm's observation: it doesn't work * “It is really the long-run answer to the problem of

- Le., power lies in budget and head count the flexible organization.”
- Technologists control neither



02/21/2005 13:33

Software maintenance is different

* Hardware maintenance comprises three activities
- Preventive, e.g., cleaning, lubricating
- Supportive, i.e., replacing deteriorated parts
- Corrective, i.e., adjusting defective designs

* Software maintenance has no physical aspect

Five types of software maintenance

* Corrective: Remove faults
* Perfective: Improve capabilities

- E.g., functionality, efficiency, maintainability

Adaptive: Adapt to a different environment

- E.g., hardware, operating system, middleware

Emergency: Correct urgent faults
— Increases risk due to reduced testing

* Preventive: Remove latent faults

Software reliability definitions

Failure

- The software's deviation in behaviour from the
specification

Fault
- The software's deviation from correct design
- A.k.a “bug”

Error
- The human activity that created the fault

Maintenance demands

User demands increase with usage
Increased usage increases system longevity
Increased longevity risks hardware obsolescence

Hardware obsolescence requires adaptation
The act of maintaining software introduces faults

Software maintenance gets harder over time



02/21/2005 13:33

Two steps forward — One step back Positive feedback

* Betty Campbell of MIT conjectures that * Correcting a fault has a finite probability of
introducing a new fault (e.g., Brooks 20~50%)

- Initial usage exposes
many faults quickly Failure - The correction itself has non-obvious effects in

rate
- Corrective maintenance other parts of the system

reduces fault density - The maintainer is often a different person from

- Extended usage reveals the design

new user demands and - The maintainer often has limited experience
increases the failure rate

* Maintenance requires regression testing
Months since installation

One step forward — One step back

Lehman and Belady; Large operating systems
- Module count increases linearly with time

- Modules affected increases exponentially

Repairs tend to undermine conceptual integrity
— Less effort goes to original faults
- More effort goes to introduced faults

Systems programming decreases entropy

Software maintenance increases entropy



