02/23/2005 13:40

12
Sharp Tools Sharp Tools
* Target Machines
* Vehicle Machines and Data Services
* High-Level Language and Interactive
Programming
Tool support

Programming cycle

* The toolmaker role supports common tools * Tools accelerate one or more stages in the

- Aim for global optimization through sharing programming cycle
* Individual programers create specialized tools

. C e L. . Edit Compile
- Aim for local optimization through expedience ' P
* Essential tools include

— Computer facility, with scheduling policy
- Programming language, with usage policy Debug Run
- Utilities; Debuggers; Test case generators

- Text-processing system



02/23/2005 13:40

Target machines

* The target machine executes the program
* Vehicle machines contribute to preparation

* Most contemporary application development uses
the same machine for vehicle as for target

¢ Common counter-examples include

- Embedded controllers, mobile devices and
embedded (software) interpreters

- For example, anti-lock brakes, cell phones and
web plugins (e.g., Macromedia Flash)

Scheduling

* Target machine time is scarce for new hardware
* Brooks tried two scheduling strategies
- 4 runs per day @ 2%z hour turnaround each
- 5-hour blocks, each dedicated to a single team
* Dedicated blocks of time were more productive
- 10 runs in a 6-hour block are better than
- 10 runs spaced 3 hours apart
* How does this relate to the programming cycle?

Target facilities

* Target machine operators and/or hardware
specialists, especially for new designs

¢ Excessive machine capabilities, to achieve
function before optimizing for efficiency

¢ Instrumented hardware and/or software, to allow
for controlled execution (e.g., single-step) and
state analysis (e.g., stack and memory dump)

* For example, see commercial in-circuit emulators
at http://www.isystem.com/

Simulators

¢ Simulators substitute for target machines
* Dependability is more valuable than accuracy
¢ Lab-built, preproduction and early hardware
- Often does not work reliably
- Often changes from day to day

* A dependable simulator is useful, even after the
production hardware becomes available

* How does this relate to the programming cycle?



02/23/2005 13:40

Compiler and assembler vehicles

* Cross-compilers
- Execute on one machine architecture
- Output object code for a different architecture
* For example, the GNU C compiler (gcc) compiles
- From C, C++, Objective C, Fortran, Java, Ada
- To about 30 architectures (including S/390)
- On about 10 major architectures
* See http://gcc.gnu.org/

Documentation system

Electronic documentation allows for
- Version synchronization with source code
- Indexes, cross-references and searching

Design and user documentation can be stored
using the same repository tools as the source code

Analysis tools can extract commentary text from
source code and generate indexed documents

For example, Knuth's literate programming
unifies the document with the program

Program libraries and accounting

* Brooks description covers both
- Source code version control

- Integrated release control

Individuals use separate working areas

* Project uses a common central repository

Changes progress from individuals to repository

Integrated results progress through approval from
development through test to production release

High-level languages

* Modern compilers overcome original objections
- Execution efficiency
- Code size
- Expressiveness
* Assembly programming still finds applications on

- Resource-constrained platforms such as
embedded controllers or mobile processors

- Operating systems; Compilers



02/23/2005 13:40

Interactive programming

* Interactivity and concurrent multiuser access
were novel innovations in the 1960's

* The modern programmer still chooses between
compiled and interpreted languages

¢ E.g., C++ and Java versus Python and PHP

e How does this
decision relate to the
programming cycle?

Edit Compile

Debug Run



