03/10/2005 14:02

13
The Whole and the Parts

Bug-proofing the design

e Mismatched assumptions cause the worst bugs

* Brooks' strategies for ensuring conceptual
integrity reduce mismatched assumptions

* Vyssotsky of Bell Labs stresses
- Specifying the product completely
- Testing the specification by separate staff

The Whole and the Parts

* Designing the Bugs Out
* Component Debugging
* System Debugging

Top-down design

* Niklaus Wirth described top-down design in 1971
* Brooks applies it to systems, as well as programs
- Design through refinement steps
- Sketch top-level function
- Break function into smaller sub-functions
- Refine the algorithm and data in each step
- Encapsulate related functions as modules
* Modularity determines adaptability to change



03/10/2005 14:02

Benefits of top-down design

¢ Hierarchical structure clarifies the specification
* Modular partitioning reduces system bugs

* Detail suppression exposes high-level faults

* Progressive refinement permits staged testing

¢ Stepwise refinement does not eliminate errors
* But it does reveal gross design faults earlier, and
* Reduces the temptation to sustain a poor design

Structured programming

* Dijkstra applied Bohm and Jacobini's theory that
shows all procedural program control comprises:

- Sequence ~ BLOCK, or semicolon (;)
- Alternation IF-THEN
— Iteration WHILE-DO

* Some authors specifically prohibit use of
unstructured branching, e.g., GOTO

* Brooks emphasizes value of thinking about
control structures instead of control statements

Structured programming

* Dijkstra applied Bohm and Jacobini's theory that
shows all procedural programs are composition of

- Sequence ~ BLOCK, or semicolon (;)
- Alternation IF-THEN
- Iteration WHILE-DO

* Some authors specifically prohibit use of
unstructured branching, e.g., GOTO

* Brooks emphasizes value of thinking about
control structures instead of control statements

Component debugging

¢ Goal: Isolate faults to a few statements

¢ Plan: Correlate the input/output behaviour of the
component under test with the progression of
control flow through the program statements

¢ Strategy: Depends on resource constraints
- Space, i.e., computer memory
- Time, i.e., execution speed, input/output rates
- Control, e.g., breakpoints, single-step
- Effort



03/10/2005 14:02

On-machine debugging

¢ Strategy: Examine machine state (e.g., registers)
at predetermined points in the control flow

* Facilities:

- Navigable object code

- Breakpoint editing; Run control

- Memory monitor
¢ Effort: Planning and inserting the breakpoints
* Today: Print statements and variable monitors
* Exclusions: Real-time control; Concurrency

Snapshots

* Strategy: Examine selected portions of the
machine state at a single predetermined points

* Facilities:
- Snapshot capture
- Memory map
¢ Effort: Interpreting the large machine state
* Today: Stack traces
* Exclusions: Large or distributed applications

Memory dumps

Strategy: Examine the entire machine state at a
single predetermined point in the control flow

Facilities:
- Core dumper with large offline storage
- Hardcopy or interactive memory map
Effort: Interpreting the large machine state

Today: Very rarely used

Exclusions: Large or distributed applications

Interactive debugging

¢ Strategy: Execute the subject program under the
control of a supervisory program

* Facilities:
- Multitasking operating system
- Run/Stop/View controls

¢ Effort: Resisting temptation to not think
(Brooks suggests 1:1 desk-to-lab time)

¢ Today: Symbolic debuggers, Interpreters
* Exclusions: Real-time control; Concurrency



03/10/2005 14:02

System debugging

* Will take longer than expected
* Requires a plan

Build plenty of scaffolding

* Brooks suggests up to half is scaffolding
* Dummy component

- Compliant interface with nonsensical data
* Miniature file

- Compliant but limited data, e.g., handwritten
* Dummy file

- Limiting case for miniature file
- Empty source and sink, e.g., /dev/null on Unix

Use debugged components

* Isolate faults as much as possible
* Resist temptation to:

- Use the system as its own test scaffolding

- Proceed with documented, uncorrected faults
* These are rationalizations for delayed schedules

Control changes

* Centralize the authority for the system build

¢ Stage the version progression from individual
programmers towards the central build

¢ Stage the approval progression from central build
towards release, e.g., DEV, TEST, PROD

* Clearly demarcate the official versions

- E.g., 0.0.0 (major.minor.build) version scheme
- E.g.,, CVS tag



03/10/2005 14:02

Quantize updates

* Balance responsiveness with stability
- Build frequently to include valuable changes
- But not so frequently as to confuse developers



