03/10/2005 14:04

15
The Other Face

A program's two faces

* Programs
- Instruct computers
- Inform humans

* Space and time
separate authors, Space
maintainers and
readers

, Multiple authors
Similar time

Multiple authors
Different time

Same author
Different time

Time

The Other Face

* What Documentation is Required?

* The Flow-Chart Curse
¢ Self-Documenting Programs

Documentation failures

* Many program readers want better documentation

* Laziness, schedule pressure and incompetence
discourage more thorough documentation

* Brooks says we have failed
— Instructing programmers hasn't worked
- Showing programmers should work



03/10/2005 14:04

User documentation weaknesses

* Brooks says typical documents describe the bark
the leaves but do not map the forest

* Program authors document features, not function

- E.g., Automobile owners manuals outline the
car's features, but not how to drive

* Most first-time users need documentation on how
the program gets them to where they want to go

Test cases as documentation

* Users need to confirm the program's correct
operation with known input/output conditions

* Maintainers need regression tests
- Mainline cases for primary function
- Barely legal cases to probe valid edge cases
- Barely illegal cases to test error diagnostics

* Contemporary testing theory offers various
rational for selecting test cases

User documentation outline

1.Purpose 5.Input-output formats
2.Environment 6.(System) operating
3.Domain & range 7.Options

4.Functions realized 8.Running time

(and algorithms used) 9 Accuracy and checking

* Three or four pages
* Drafted before the program is written

* l.e., embodying important design decisions

Maintenance documentation

* Source comments provide details
* Introductory documentation summarizes structure
1.Subprogram structure
2.Algorithm descriptions or references
3.File layouts
4.Pass structure (in reading tape and disk)

5.Suggested improvements in functionality and
warnings about obscure design elements



03/10/2005 14:04

Program structure chart

* Shows the caller-callee relation among

- Subprocedures, or

- Modules that contain calling subprocedures
* Useful for summarzing large programs

¢ Ideally fits on a single page

Self-documenting programs

* Practise commonly attempts to maintain
documents separately from the program

* Brooks says this causes poor documentation

- “Changes to the program do not promptly,
accurately and invariably appear in the paper”

* Merging the program and documentation
- Improves the incentive to write documentation

- Ensures accessiblity to the programmer

The flowchart curse

* Flowcharts show the control structure among
predicate (if) and assignment (:=) statements

* Brooks calls (preparing) flowcharts
- “Obsolete”
- “A tedious, space-hogging drafting exercise”
- “More preached than practised”

* Why?

* Parnas has a similar view of UML; Why?

Brooks' approach

* Use labels, declaration statements and symbolic
names to convey as much meaning as possible

* Use space and formatting to improve readability,
and show structure and subordination

¢ Use prose comments, especially for overviews

* Norm suggests a hiearchy of overviews to assist
in large-scale source navigation



03/10/2005 14:04

Example techniques Example techniques (cont.)
1.Mnemonic job (program) name 8.Statement group labels (summarizing purpose)
2.Version number (in the source listing) 9.Indenting to show structure and grouping
3.Prose descriptions for procedures 10.Logical flow arrows
4.Standard literature references 11.Line comments for non-obvious aspects
5.Changes from the standard references, e.g., 12.Multiple-assignment statements showing

specialization and (data) representation thought-grouping or algorithm correspondence

6.Variable declarations with line comments

7.Initialization label



