SE463
Software Requirements Specification & Analysis

User Requirements

Readings:

Karl E. Wiegers and Joy Beatty. Software Requirements, 3ed.
Microsoft Press, 2013. Chapter 8: "Understanding user
requirements”

Larman, C., Applying UML and Patterns, 3ed, 2004. Chapter ©6:
"Use Cases"

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Module Objectives

Types of requirements

Use cases, context diagrams, user
stories

Avoiding scope creep

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Types of Requirements

Airline wants
to reduce
counter staff
costs by 25%

Passengers
check in for a
flight using an
airport kiosk

Kiosk prints
boarding
passes upon
successful
Software Requirements Specification check-in

FIGURE 1-1 Relationships among several types of requirements information. Solid arrows mean “are stored in”;
dotted arrows mean “are the origin of” or “influence.”

Karl E. Wiegers and Joy Beatty. Software Requirements, 3ed. Microsoft Press, 2013.
Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Types of Requirements

Airline wants

to reduce
Rules counter staff
costs by 25%

Passengers
check in for a
flight using an

Quality
Attributes
airport kiosk

= = = =| User Requirements Document | =/ = = = =)L = = = = = = = o= = = = = = = =] ~""7"T"ooo-----ooo

External
Interfaces

Kiosk prints
@ boarding
passes upon
successful
Software Requirements Specification check-in

FIGURE 1-1 Relationships among several types of requirements information. Solid arrows mean “are stored in”;
dotted arrows mean “are the origin of” or “influence.”

Karl E. Wiegers and Joy Beatty. Software Requirements, 3ed. Microsoft Press, 2013.
Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Use Cases

Decompose The Work into vertical slices to reduce
complexity.

Each slice is called a use case

o represents some end-to-end functionality

o triggered by an external event (e.g., from adjacent
system)

o captures a complete response to a triggering event

e use cases are (ideally) orthogonal to one #&

another
o g
z.:ﬁ@

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Use Case Diagrams
System: Usecases

Airport check-in Kiosk Check-in for a flight

Print boarding pass
Change seats
Check Luggage

Purchase an upgreade

)
Airport check-in kiosk

e
e

1

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Use Case
[Banking app]

Primary Supporting
Actors name Actors
] - ’ l \
: ! WatBank
UML
stereotype
i ~
customer
(actér)
o Check Bank
communication Balance /
human \
actor nonhuman
notation actor
Make notation
payment
use case

—~—

scope of

the Work (system)

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Actors

o A primary actor is one that initiates a use case
e E.g., Users, Time

o A supporting actor provides services to the use case
(Work)

o May be invoked by the Work, or may monitor the Work and react
to events triggered by the use case

e Same person can play multiple roles

o The actors are the real-world actors — sources of
environmental phenomena, expressed in the requirements,
not the specification.

e So, prefer “Scientist” and “User” to “Ul”

e Focus on roles rather than individuals
e E.g. user, administrator, maintenance

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Time-Triggered Use Case

Time-triggered use cases are activated when a date or time

comes to pass.

Beyhive

Scientist

<<actor>> | _—1

browsing catalog for
bee information

capture beedata f—mm |
analyze collected /
data

\ (actor)

1 Location Service

Time

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019

U Waterloo SE463 (Spring 2019)

Example: Patient Monitoring System

Patients in an intensive-care ward in a hospital are monitored
by electronic analog devices attached to their bodies by
sensors of various kinds.

e Through the sensors, the devices measure the patient’ s
vital factors: pulse rate, temperature, blood pressure, and
SO on.

® A program is needed to read the factors, at a frequency
specified for each patient, and store them in a database.

® The factors read are to be compared with safe ranges
specified for each patient, and readings that exceed the
safe ranges are to be reported by alarm messages
displayed on the screen of the nurse’ s station.

Stevens, Myers, and Constantine, IBM Systems Journal, 1974

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Actor Generalization

o Use actor generalization when

actors have common O
interesting behaviour j(
.e., they interact with many of the Purchaser
Same use cases
. L AL
e Factor out common behaviour SaleaAsent |~
as an abstract actor @
o Children inherit all relationships %\//‘\
with use cases of the parent Customer

Copvright © Atlee, Berrv. Day. Godfrev 1995-2016 U Waterloo SE463 (Spring 2016)

Actor Generalization

o Use actor generalization when

actors have common o
interesting behaviour - A
.e., they interact with many of the /\ \
Purchaser

Same use Cases

A

e Factor out common behaviour

as an abstract actor Y
e Children inherit all relationships /| /’D

with use cases of the parent Customer SalesAgent

Copvright © Atlee, Berrv. Day. Godfrev 1995-2016 U Waterloo SE463 (Spring 2016)

«include»

o <<include>> - a sub use case that is used within
multiple other use cases (like a procedure call)

e Purpose is to highlight essential functionality that is
part of multiple use cases

e Avoids repetition of the same steps in multiple use
cases, improving readability

o Specify point of inclusion in the base use case

e \When sub use case completes, control returns to the
base use case

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

«extend»

e <<extend>> - a sub use case that extends or
replaces the end of an existing use case

e Purpose is to highlight new functionality that extends
an existing use case (cf. adding a new use case)

e Base use case has hooks where it can be extended

o Unlike «include», base case is complete without
extension use case

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Example

<<include>>
-
/

V)
M

S~
~

<<extend>>
-~

‘ \‘
V)
M

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Example

WatBank

- password

<<include>>

\
i \ A
~
~ ~
Display .

customer <<extend>> Login Error

-

{actor)

Bank

Check
Balance

Verify sufficient
_ funds
<<include>> =

Make
payment

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Use Case Modelling: Goals

e Use case modelling is really as simple as you think. That
way, nontechnical people can understand it.

e A good use case model is simple, without too much detalil.
Be careful and not make this mistake!! Abstraction is your
friend

e The main purpose is “discovery”, mapping out the base-

level of the system with the client
* Tho invention and negotiation are key too, not just
“discovery”

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Bad Example (from the Web)

Use <<include>> and <<extend>> sparingly.
: CoffeeMaker «mcmyb@

down for
pay with credit
@ card
in pr save
mn e] %

<<exl¢nd>> <4 nclude »7
Bank
<<e:«end>> !
<<include>> choose -
X ‘ --------

employee
A
<|nclude>>
; select t of
: S <<exteﬂd>> «enend»
P choose water ,',
. temperature ‘ \ !;:vea rettra
N \ 9
prepare cup B o
enen
product is
unavailable
<<emnd>)
T ave extra mi
A Gextend»

out of supplies
S Gl
switch to maintainance - -------==="-=="< off
mode .

<SJncIude>>
B Main Power off
T qnclude»
- <<|ncludg z)
P =
//

5 % \‘ o <<mc|ude’>> water supply
maintainer
'\ _SAen
\ -~ <<Includ&>>
resume normal _ . Sdinclude>> power on
operation . .

<<|nciudé>> ,'
.

http://www.iai.uni-bonn.de/I1l/lehre/vorlesungen/SWT/OOSCO06/exercises/exercise2.html
Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Use-Case Description

We augment use-case diagrams with use-case
descriptions (a textual description)

“Brief” format:

— UC3: Order blood — Customer submits blood order and

payment info. System processes payment and sends
shipment order to ShippingDept.

“Casual” format:

— UCS3: Order blood — Customer submits blood order and
payment info (invoice or credit card). System verifies
availability of blood. If availability OK, System processes
payment. If payment by CC, then checks with
CCAuthService. If payment by invoice, then verifies
Customer status with AccountingDept. If payment OK then
System sends shipment order to ShippingDept. If availability
or payment problems, then notify customer of details.

“Fully dressed” format: scenario (in another lecture)

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Context Diagram

Flow Line

Giving or receiving / (data)
information

There is only one process that
Flow Line represents the entire system

(Information)

A context diagram is a graphical representation of
* the boundary between the Solution and external entities
* information flows between them

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Context Diagram
[Rockit]

App formatted query
/

App
User freeform

K query

App response

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Context Diagram:Exercise

Patients in an intensive-care ward in a hospital are monitored by
sensors of various kinds (i.e., by electronic analog devices
attached to their bodies). Through the sensors, the devices
measure the patient's vital factors: pulse rate, temperature,
blood pressure, and so on. A program is needed to read the
factors, at a frequency specified for each patient, and store them
in a database. The factors read are to be compared with safe
ranges specified for each patient, and readings that exceed the
safe ranges are to be reported by alarm messages displayed on
the screen of the nurse's station.

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Context Diagram: Exercise

Users learn about important bee facts. They contribute to the
repository of bee information with pictures of bees.
Scientist can access the repository to view aggregated data.

Beyhive

browsing catalog for
bee information

\ (actor)

4+ —— Location Service

7

capture bee data

analyze collected
data

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Scientist

User Stories

User stories are an alternative approach to describing use
cases.

Each user story is a short simple “story” (description) of
one thing that the user wants to be able to do.

functional

. requirements 7
Use i i
conversations use case analysis /> 7

Case P e
specification o\
p <. {iid
tests |
ﬁ y
User conversations > refined user conversations > acceptance
Story stories tests

FIGURE 8-1 How user requirements lead to functional requirements and tests with the use case approach and the
user story approach.

Karl E. Wiegers and Joy Beatty. Software Requirements, 3ed. Microsoft Press, 2013.

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

User Stories

User stories provide a light-weight approach to
managing requirements:
o Short statement of new functionality or feature
o Written from the point of view of the user

o |ts details are fleshed out just in time before the
story is placed in the sprint.

EXTREME PROGRAMMING

e, Inc

OKAY ,HERE'S A

AND EACH FEATURE

I CAN'T GIVE YOU NEEDS TO HAVE g STORY: YOU GIVE
ALL OF THESE WHAT WE CALL A 5 ME ALL OF MY
FEATURES IN THE "USER STORY." ¢ FEATURES OR T'LL

FIRST VERSION. RUIN YOUR LIFE.

www.dilbert.com scottadams®aol.com

r]m,’c 3 © 2002 United Featur

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Three C’s of User Stories

.

o Card - stories are traditionally written on
note cards, using a structured syntax: =
As a <role>, | want <something>, so that <benefit is achieved>

AsS a vacation traveller, As a user, | want to cancel a
| want to see photos of hotels, reservation, so that my credit
So that | can get a sense of the card is not charged

quality of the hotel

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Three C’s of User Stories

.

—
~S— —]

o Card - stories are traditionally written on
note cards, using a structured syntax:
As a <role>, | want <something>, so that <benefit is achieveu-~

AsS a vacation traveller, As a user, | want to cancel a
| want to see photos of hotels, reservation, so that my credit
So that | can get a sense of the card is not charged

quality of the hotel

e Conversation — discussions with the product owner
reveal details of the requirements

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

AT IR YRR R R AR AR R R
The product backlog iceberg

| Sprint

l / Priority

Release / \
© Copyrigh

7 - -

t Mountain Goat Software

Three C’s of User Stories

.
—

o Card - stories are traditionally written on —
note cards, using a structured syntax: ==
As a <role>, | want <something>, so that <benefit is achiex=

i

AsS a vacation traveller, As a user, | want to cancel a
| want to see photos of hotels, reservation, so that my credit
So that | can get a sense of the card is not charged

quality of the hotel

e Conversation — discussions with the product owner
reveal details of the requirements

o Confirmations — acceptance criteria for objectively

determining whether an implementation meets the
requirements.

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Examples

o As a first time book buyer | want to find the perfect mystery novel by
reading staff reviews so | won't waste my money reading bad books

e As a staff member | want to enter book reviews so | can delight book
buyers

e As a first time book buyer | want to see only books that get five star
reviews so | don’t waste my time reading reviews about weaker
books

o As a first time book buyer | want to select a single book for purchase
so that | can read it (Mark L. — the team have elegantly avoided
solving the whole shopping cart problem for the moment by handling
just a single book. Clearly they will later need to handle multiple
books but if they can’t get one book home they can’t get more
home).

e As a first time book buyer | want to ship my book home within two
days so that | can get it before my next flight

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Where are the details?

> As a user, | can cancel a reservation.
> Does the user get a full or partial refund?
> |s the refund to her credit card or is it site credit?

> How far ahead must the reservation be cancelled?

~ |s that the same for all hotels?

® For all site visitors? Can frequent travelers cancel later?
= Is a confirmation provided to the user?

> How?

-—— 4 e T e e ———
(fg ® © Copyright Mountain Goat Software

Details as Conditions of Satisfaction

User stories are told from the point of the user, and
represent user requirements

Conditions of Satisfaction are told from the point of
the system. They represent functional requirements
of the system that help to ensure that the system

meets the user requirements.
- we’ll cover functional requirements later in the term

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Why User Stories?

o Easy for stakeholders to understand, and to
remember.

e Shift the focus from written requirements
documentation to discussion.

e Encourage iterative development, with stories
being appropriate sized increments for planning

e Delay the elicitation of requirements details until
just before development.

e Support participatory elicitation

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Changing Requirements

Customer Needs Are Constantly Changing

) 4 - b —> o o o© — by > t; I

Y
Document
Reqt’s

Design <

v

Y

Coding 1
and Unit Test
Requirements
System

M |SmatCh Integration

Delivery at Time t;

—> of System that Meets
Requirements from
Time ty

Customer Needs Are Constantly Changing

. fo » 4 > ty > o o o© —_— iy - t I
Analysis
P r | | ¥ ¥ v ¥ ¥
ara yS S Document Document Document 5 o o Document Document
Reqt's Reqt's Reqt's ' Reqt's Reqt’s

Documented Requirements Are Constantly Changing

Alan Davis, Great Software Debates, Wiley, 2004
Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Changing Requirements

Three aides for dealing with changing requirements

1) Requirements baseline ’i\
* Good enough to proceed to design with an acceptable level of risk
* Formally reviewed and agreed on
* Subsequent changes managed through change-control process
* Rough guide: limit changes to < 0.5% per month (6% per year)

3) Project scope)@ %ti'& .
ﬁ 7 3

2) Unique Value Proposition

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Keeping the Scope in Focus

Unique value proposition, project priorities, and
project scope should be used to vet each new
requirement:

® |f out of scope, then should file away for a future release or
project

® |f in scope, then can consider incorporating it, if it is high
priority relative to already-committed requirements

® |f out of scope but too good to ignore or defer, can consider
broadening the project scope, and make updates to

® Project objectives and scope
® Project budget, schedule, and/or staff

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Scope in Agile Projects

In agile projects, scope creep is addressed by keeping
prioritized requirements in the backlog (future topic) and
allocating a few requirements to each release.

Product Vision

\
[\

Project Scope Project Scope Project Scope Project Scope
for Release 1.0 for Release 1.1 for Release 2.0 vt for Release n

FIGURE 5-1 The product vision encompasses the scope for each planned release, which is less well defined the
farther out you look.

Karl E. Wiegers and Joy Beatty. Software Requirements, 3ed. Microsoft Press, 2013.

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

Summary

Use Cases — decompose the work into work-pieces to
manage complexity

Use-Case Diagram — expresses use cases in a
manner that is easy for all stakeholders to visualize

e Big picture view of the problem

Context Diagrams — shows information flow between
the Solution and external entities

User Stories — express user requirements from the
perspective of the user and their motivations

Copyright © Rodriguez, Atlee, Berry, Day, Godfrey 1995-2019 U Waterloo SE463 (Spring 2019)

