CS445 / SE463 / ECE 451 / CS645

Software requirements specification
& analysis

8. Non-Functional Requirements (NFRs)

Fall 2010 — Mike Godfrey and Dan Berry

Non-Functional Requirements

Non-Functional Requirements (NFRs) of a system
are attributes and characteristics of the system.

Think of functional requirements as verbs, and NFRs
or attributes as adjectives or adverbs.

Two products could have exactly the same
functions, but their attributes can make them
entirely different products. A Rolls Royce has
more or less the same functions as a Yugo, but
many, many different attributes.

Overview

* Non-functional requirements
[aka NFRs aka “quality attributes” aka “the -ilities”]
— Types of NFRs
— Quantifying NFRs
— Assessing compliance

NFRs: Quality requirements

* Functional requirements describe what the software is
supposed to do

— What services or tasks the software should provide
— Black box input/output behaviour

* Non-functional requirements describe (extra) constraints on
the way in which the SUD should satisfy the functional
requirements

e.g., How fast system should respond
What deployment platforms should be supported
What security / authentication goals should be met

NFRs: Quality requirements

e ...are properties that the sw system must possess, but don’t
correspond to “buttons on a black box”

e.g., performance, reliability, maintainability

e NFRs often measured in relative terms.
— “How much XXX?”, not “Add feature XXX”.

 NFRs strongly affect how a product is experienced by the user,
esp. when base functionality is similar to other products
— Rolls Royce, OS X, Firefox

Customers and requirements

* During elicitation interviews, customers naturally tend to
focus on functional requirements

— Expectations about NFRs may be implicit or just unknown as yet ... but
they’re out there somewhere, eventually ...

* Since NFRs strongly affect the “user experience”, it makes

sense to address them carefully
— Get explicit models of acceptable and unacceptable quality values
where possible

— But often, this is hard or even impossible to do directly, so we must be
creative.

NFRs: Quality requirements

* Performance * Reliability
— execution speed — fault-tolerant
— response time — mean-time to failure
— throughput — data backups
e.g., “up to 30 simul. calls”
* Security
* Usability — controlled access to system
— how easy to learn / use or data
— user productivity e.g., Amazon browse vs. buy

— isolation of data, programs

— protect against theft,
vandalism

NFRs: Quality requirements

Robustness * Scalability

— tolerates invalid input — workload

— fault-tolerant — number of users

— fail-safe / -secure — size of data sets

— degrades gracefully under — peak use

stress
e Efficiency (capacity)

Adaptability — user productivity

— ease of adding new — utilization of resources

functionality (e.g., plugins)
— reusable in other environments
— self-optimizing
— self-healing

e Accuracy / precision

— tolerance of computation
errors

— precision of computation
results

Other types of NFRs

* Process requirements are restrictions on the techniques or
resources that can be used to build the software

e.g., development process, personnel

* Design constraints are design decisions that have already
been made and that restrict the set of acceptable software
solutions

e.g., choice of platform, interface components

* Product family requirements concern how a particular
product must integrate into a larger family of products

e.g., Nokia phones, Sony electronics, iOS apps

Other types of NFRs

* Process Requirements

— Resources — Comp|eXIty (Of COde)
» personnel development * comments / KLOC
e costs * max LOC / fcn or

« development schedule cyclomatic complexity

e use of multinh,

overloading, templates
— Documentation

* audience :
— Standards compliance

e.g., testing coverage

e conventions

* readability

Other types of NFRs

Design constraints * QOperating Constraints

— interfaces to other systems — location

— COTS components — Size, power consumption
— programming language — temperature, humidity

— operating costs

— accessibility (for

Product-family maintenance)

requirements
— modifiability
— portability
— reusability
— Ul

Other NFRs

 What about fun? Is fun an attribute? It can be -
especially if the product is a computer game. But you
are not likely to find "fun" on any checklist of non-
functional requirements to consider. So while lists of
possible attributes are useful and may prompt a
customer to reveal an important requirement, the
analyst may be better off having the customer
brainstorm his or her own non-functional
requirements.

 See ACM Interactions Volume XI, Number 5, September
+ October 2004, for an issue on Funology!

Other NFRs

* For years this class had used Rational's Rose UML Tool.
Then, in 2003, Rational was bought out by IBM. By the
time the Fall term began, IBM had not succeeded to
get the licensing act together, and we could not renew
the license for the software we had on our machines in
time for the students to use Rational Rose to do the
UML diagrams for the project.

* |nresponse to our inquiries, IBM kept sending
automated form responses telling us, e.g., to register at
a web site, which was "NOT FOUND", and thanking us

for continued use of IBM products!

Other NFRs

It had become Irrational Rose for us!

In exasperation, we ended up switching to other, open
source software, which was actually much better!

You can have the best software in the world, but if no
one can license it, no one can use it, and customers will
leave you for competitors!

Moreover, they might learn that your competitors have
better products!

Other NFRs

What about "earthquake-proof"?

Remember the 1989 San Francisco earthquake that
was seen alive on TV at 5:01 pm by everyone tuned in
for the beginning of the first game of the 1989 World
Series baseball championship?

The epicenter was under Scotts Valley, CA just
underneath Borland's world headquarters.

One of the two buildings collapsed.

No one was hurt because everyone had gone home to
watch the World Series.

Other NFRs

In the collapsed building, most of the computers were
destroyed, but the software in the building still worked,
when the diskettes were put into other computers!

Surpriselll

So Borland issued T-shirts that said in front,
"Borland, the epicenter of software development!”
and in back,

"The only software that has been tested to be
earthquake proof up to 7.2 on the Richter scale!"

Other NFRs

* How many of you have tested that your software is
earthquake proof?

* |s being earthquake proof an important NFR?

Nu?

“Motherhood” requirements

* Terms such as “reliable”, “user-friendly”, and “maintainable”
are motherhood requirements.
— No one would explicitly ask their opposite
e.g., slow, unreliable, user-hostile, unmaintainable, ...

e (Virtually) every software system must have attributes such as

n u

“reliable”, “user-friendly”, and “maintainable”; what differs
from product to product is:

* the degree to which each attribute is required, and

* the relative importance of one attribute over another.

Fit for use

e “Quality” is not a measure of intrinsic value; rather, software
quality is a measure of how well the software fits its intended
purpose:

— What is the system’s purpose?
— What environment will it run in?
— What quality attributes will matter the most?

* Itis not so much a question of the software being good, but of
it being good enough.

Fithess criteria

* A fitness criterion quantifies the extent to which a
qguality requirement must be met.

For example:

— 75% of users shall judge the system to be as usable as the
existing system

— After training, 90% of users shall be able to process a new
account within 4 minutes

— A module will encapsulate the data representation of at
most one data type

— Computation errors shall be fixed within 3 weeks of being
reported

Fithess criteria

* Fitness criteria express quality requirements in a way that
makes it possible — objectively — to divide solutions into
those that are acceptable and those that are not.

Quality

Attribute Metric Test

run software in environment with limited

Efficiency maximum allowed load on resouces resources

run software and measure time
between faiulres

rate the documentation on the average
Readability Flesh Reading Ease Score number if syllable per word and words
per sentence.

Reliability mean-time to failure

906,876 — 1.015 (total words) 846 (t.ot.al sylla.bles)

total sentences total words

Measurable metrics

Quality Attribute Metric

response time
Performance |throughput
capacity
Efficiency maximum allowed load on resouces
Reliability mean-time to failure (MTTF)
categories of users
Securfly percentage of attacks that are successful
percentage of failures on invalid input
Robusiness minimum performance under heavy loads
Scalability |size of input data sets
Cost maximum costs to buy, install, or operate
Portability | collection of target platforms
Readability | Flesh Reading Ease Score
Maintainability | mean-time to fix bugs, add features
amount of training needed to perform tasks on own
time to perform tasks at expected speed
Usabili number of calls to help desk
ty rate at which users adopt software
approval rating
user error rates

Example: Usability

I'M THINKING YOU SHOULD OFFER I THINK THAT MIGHT OVERWHELM

(siau) REQUIREMENTS.
ERS THE POWER TO CHOOSE
EXACTLY WHAT THEY WANT. | | ALRIGHT THEN .. \

A FEW CHOICES: MANUAL V5. THEM... UNLESS THEY ARE ALL
AUTONATIC AND THE COLOR. ENGINEERS... i
HEY! WE HIRED You TO |

UNACCEPTABLE. THE TECH- -

NOLOGY CAN SUPPORT IT, / BUILD A USABLE INTER- |

50 WE WILL GIVE CUSTOM- FACE, NOT CHANGE OUR :

|

Example: Measuring reliability

Reliability can be defined in terms of a percentage likelihood of
success, downtime, absolute number of failures, ...

Reliability may have different meanings for different kinds of
applications

e.g., Telephone network:

* The entire network can fail no more than, on average, 1 hour per year,
but failures of individual switches can occur much more frequently

e.g., Patient monitoring system:

* The system may fail for up to 1 hour per year, but in those cases
doctors or nurses should be alerted of the failure. More frequent
failure of individual components is unacceptable.

Richer fitness criteria

Response time 0.1s

CPU utilization 20% 25% 30%

Usability 20 tasks/hr 30 tasks/hr 40 tasks/hr

Measurements

What gets measured gets done!

— Therefore, unless a quantified requirement is unrealistic, it will
probably be met.

Its value will:

— determine how hard the developer will have to work to achieve
the requirement, and

— may determine how many design alternatives from which the
developer has to choose and still meet the requirements.

There is a danger of focusing on what is measurable, and
not on the true requirement

e.g., industry benchmarks (sometimes)

When you can’t test before delivery

* Fitness criteria that cannot be evaluated before the final
product is delivered are harder to assess. For example:

— The system shall not be unavailable for more than a total of 3
minutes each year

— The mean-time-to-failure shall be no less than 1 year

* Possible approaches:
— Measure the attributes of a prototype.

— Measure secondary indicators
e.g., number of user errors to assess usability

— Estimate a system’s quality attributes
— Deliver system and pay penalty if requirements are not met

Monte Carlo techniques

unknown
__— area

* Monte Carlo techniques: estimate an unknown
guantity using a known quantity.
— For example, calculate the area of the above

Monte Carlo techniques

We don’t know the equation of the shape ®

However, if we surround this area with a shape whose area is
known, and randomly drop points into the picture, counting
the number that fall within the shape out of the number of

total points.

Number of points in shape = Area of Shape

Total number of points Known Area of Rectangle

Monte Carlo techniques

* We can use Monte Carlo techniques to estimate number of
bugs remaining in a program (reliability).

— Plant a known number of errors into the program, which the testing
team does not know about.

— Then compare the number of seeded errors the team detects with the
number of total errors it detects, to arrive at an estimate of the total

number of bugs in the program. unknown

errors

known # of
seeded errors

detected seeded errors = # detected errors

seeded errors # errors in program

Quality—Function Deployment
(QFD)

Quality-Function Deployment (QFD) is a way to
relate an unmeasurable or hard-to-measure
NFR to one or more functional requirements.

Quality—-Function Deployment

WIMP On-Line Comman d
F User Help Line
Q Interface System Interfac
Easy
To +++ ++
Use

Prioritizing NFRs

"Anyone can build a bridge. It takes an engineer to build a bridge
that barely stands."

[unknown source]

Prioritizing NFRs

 Many NFRs conflict with one another:
— maintainability vs. robustness

* simple design vs. design that monitors run-time / error recovery
— performance vs. security
— performance vs. reuse
— performance vs. portability
— robustness vs. testability

* Also, some NFRs can conflict with functional requirements

— performance vs. particular features (e.g., unlimited undo)

Typical NFR conflicts

Availability

d:ﬁcieﬂ-:v > — = L - =1=
Flexibdlity - 14|+ it
Inbegrity - = N fia 5 [
Interoperability -+ |- +
Mainfai_mth - + + +
Portability - + + | - + + | -
Reliability -l + -+ |+ | +
Reusability —N+l=|+|+]|+]|- +
Robustness - | + +
Testability 7 =[| +* - + +
Usabality &+ | -

from Software Requirements, by Karl Wiegers (MS Press)

The golden triangle

Cost

Schedule Features

» Simplified version of previous chart ©
— Could add “quality” or other NFRs

* See also http://en.wikipedia.org/wiki/Project triangle

Prioritizing NFRs

* Most stakeholders can’t easily questions such as:
— How important is inter-operability?
— What mean-time-to-failure rate is acceptable?

* Soinstead, we often rank requirements by priority helps make
decisions when there are trade-offs.

* Also, different parts of the same system may have different
priorities for NFRs, and different stakeholders may have
differing answers depending on how they perceive the system

e.g., aircraft avionics vs. entertainment system

Example quality grid

Critical

Importance

As usual

Unimportant

Ignore

Product-oriented

Performance

Security

Usability

Family-oriented

Portability

Modifiability

Reuse

Process-oriented

Maintainability

Readability

Testability

NFRs: Summary

NFRs affect how a system accomplishes its functional
(“what”) goals

Often NFRs are highly important to user experience
NFRs can be hard to measure

NFRs often conflict with each other

CS445 / SE463 / ECE 451 / CS645

Software requirements specification
& analysis

8. Non-Functional Requirements (NFRs)

Fall 2010 — Mike Godfrey and Dan Berry

