CS445 / SE463 / ECE 451 / CS645

Software requirements specification
& analysis

A reference model for

requirements engineering

Fall 2015
Mike Godfrey & Daniel Berry & Richard Trefler

Overview

Goal: A clear understanding of how requirements relate
to both their environment and the SUD (System Under
Development)

* Topics:

— Reference model for requirements engineering
— System, environment, interface

— Context diagrams

— Deriving specifications from requirements

— Domain knowledge

[Much of this is based on the work of P. Zave and M. Jackson with C. and E.
Gunter “A Reference Model for Requirements and Specifications” IEEE
Software 17:3, 37-43, 2000]

Reqs, specs, and programs

Hard reality Data structures
(domain model) and algorithms
Environment System (SUD)

@Aj‘hce

"The world”

Reqs, specs, and programs

* We view the hardware / software as building a System
— ... that operates within a specified Environment
— ... interacting with it through a set of Shared Phenomena:

* Sensors sense phenomena in the environment (e.g., keyboard clicks)
* Actuators cause change in the environment (e.g., screen display)

 Both the System and the Environment sit in the World.

— Systems are built to “improve” the Environment.

The system

A System can be any socio-technical artifact that is to be
constructed

— It can be composed of some mix of software and hardware (incl.
humans) and processes

However, in general only the software is easily modifiable,
and that is what we will concentrate on.

— Hence, we will talk about

Software Engineering and Software Requirements,
but we really mean

Systems Engineering and System Requirements.

The environment

 We scope the Environment to include only those aspects of
the real world that are relevant to the particular problem at

hand

 The generalized environment for this kind of system is
sometimes called the application domain
— Examples: travel agency, online stores, telephony systems

— A domain model is a diagram that shows how various kinds of domain
entities relate to each other; it’ s usually drawn as a UML class
diagram

« We’ Il examine domain models in more detail later

Shared phenomena

 Shared Phenomena are visible to both the Environment and
the System, and form the Interface between the two.
— A given interface entity may be sensed or controlled by the
Environment or the System (but generally not by both).
* It serves as a communication bridge from the one to the other.

— Each such entity also has a concrete interface that describes how the
system may interact with it (e.g, an API)

— Anything that has to be in the Interface has to be shared by the
Environment and the System.

— Anything that has to be shared by the Environment and the System
has to be in the Interface.

Requirements

World

Requirements

* Requirements are desired changes to the World

— They are expressed in terms of environmental phenomena:
* No one should enter the park without paying
* Anyone who has paid should be allowed to enter the park

Requirements specification

Specification

* A Requirements Specification (aka “spec”) is a description of
the proposed behaviour of a CBS (Computer-Based System).
— Want to avoid “implementation bias” in describing system.

i.e., the spec should describe what the system is supposed to do, without
indicating how the system will be realized.

Requirements specification

Specification

 Aspecis expressed in terms of shared phenomena:

— It describes how the system should react to various environmental
events that it can sense.

e.g., if the number of coins inserted is greater than the number of times
the turnstile has been pushed, then the turnstile is unlocked.

Requirements vs. specification

* Requirements are statements of desired properties
— Often high level
— May need to be elaborated, organized, analyzed
— Heard during elicitation

* A specification is a description of how the SUD will satisfy
those properties, in terms of the shared phenomena

— Concrete and detailed
— Hammered out later on

Scoping the environment

World

Requirements Specification

e The environment defines our area of discourse
— |tis a subset of the world

— Want to model only as much of the world as is necessary to express
the reqs and the spec

Context diagram

“The Software Chain-link

System” fences

Barrier Park

* A Context Diagram is a graphical model of the environment
plus systems’ s sub-domains.
— A sub-domain is a coherent part of the environment plus system
— Each sub-domain connected to the system shares phenomena with it

— Sometimes need to know about sub-domains that don’ t directly
interact with SUD

Context diagram

“The Software Chain-link

System” fences

Visitors

Barrier

 Something in the Environment but not the System almost
never has direct links to the Software System.

* Instead, it links directly to things in the Interface, which in
turn, link directly to the Software System.

Coin slot

Visitors

SYS

“The Software
System”

Barrier

INTERFACE

Chain-link
fences

ENV

dberry
Polygonal Line

dberry
Polygonal Line

Example: Patient Monitor

 Patients in an intensive-care ward in a hospital are monitored by
electronic analog devices attached to their bodies by sensors of various
kinds. Through the sensors, the devices measure the patient’ s vital
factors: pulse rate, temperature, blood pressure, and so on. A program is
needed to read the factors, at a frequency specified for each patient, and
store them in a database. The factors read are to be compared with safe
ranges specified for each patient, and readings that exceed the safe
ranges are to be reported by alarm messages displayed on the screen of

’ .
the nurse s station.
[Stevens, Myers, and Constantine, "Structured Design", IBM Systems Journal, 13(2), 1974.]

Hidden slide N

administrator

Patient Hospital patient DB

The System

Monitoring
hardware Doctors

Nurses

Red means “not in problem description, but subsequent analysis
might reveal these subdomains as being of interest”.

Hidden slide

Patients: context diagram not restricted to just
components that interface with software.

— include any sub-domain needed to talk about requirement

— may include sub-domain that is part of the system if part
of the system’ s interface (e.g., database).

* Moreover, database may be a component that is used by other
programs, whose requirements are specified elsewhere and are
needed to satisfy requirements.

Example: Elevator

An elevator passenger who wants to travel from one floor to another
(higher) floor presses the “up” button at his current floor. The light beside
the button must then be lit, if it was not lit before. The elevator must
arrive reasonably soon, travelling in an upwards direction. The direction of
travel is indicated by an arrow illuminated when the elevator arrives. The
doors must open, and stay open long enough for the passenger to enter
the elevator. The doors must never be open except with the elevator is

stationary at a floor.
Michael Jackson, Software Requirements and Specifications, Addison-Wesley, 1995.

Hidden slide

Elevator hardware:

Passenger Button, light,
motor, door

Deriving specifications
World

<)

Requirements Specification

* Deriving specifications is the process of identifying actions,
functions, operations, and constraints on shared phenomena
that achieve each of the requirements such that SR

Domain knowledge

 Requirements are concerned with describing things that we
want the System to help make true.
— The System might not be able to accomplish these things by itself.

— Guarantees of properties of the Environment might be necessary for
the System to meet the Requirements.

* These properties are called Domain Knowledge, D.

 Domain Knowledge is thus the set of properties that we know
(or assume) to be true of the Environment that are relevant
to the problem.

Elevator domain knowledge

The elevator is constrained to move in a shaft, so that it never
goes from one floor to another without passing all the

intermediate floors

If the motor polarity is set to “up ” and the motor is activated,
then the elevator will rise.

If the elevator arrives at a floor travelling upwards, the floor
sensor switch is set on when the elevator is nine centimeters
below the home position at the floor.

The lift doors take 2250 msec to reach the fully closed state
from the fully open state

Domain knowledge

* The elevator specification will be expressed in terms of the
shared phenomena:

— states of the sensor switches, button pressings, setting and activations
of the motor and doors, ...

 Without domain knowledge, you could not ensure that any
system you designed would be capable of satisfying the
stated requirements!

Hidden: Traffic light example

D =drivers behave legally and cars function
correctly

* S =gspec of traffic light that guarantees that
perpendicular directions do not show green at

same time
R =perpendicular traffic does not collide

Problem: make D unnecessary, steel walls pop
up on red, light controls cars by wireless

Reference model

Environment SUD
-

R — Requirements live in ENV (incl. INTF)
S — Spec lives in INTF, describes behaviour of SUD
D — Domain knowledge lives in ENV (incl. INTF)

Reference model

* Thus, if we enlarge our model to include domain knowledge, then the
following relationship must hold:

D,SFR

— Dis domain knowledge
— Sis the specification
— Ris the requirements

* The specification describes the behaviour of a system that realizes the
requirements.

* The domain assumptions are needed to argue that any system that meets
the specification (and that manipulates the interface phenomena) will
satisfy the original requirements.

R, S, D, Design, & Code

R: If the user presses the “K” key, then he sees “K” on
the screen.

S: If the “K” key is pressed, then display “K” on the
screen.

D: The user has fingers with which to press keys and eyes
with which to see.

Design: A press of any key causes emission of an ASCII
code that is used as an index into a table of bitmaps in a
font table, the bit map that is put on screen.

Code: C realization of the Design.

Reqgs that live in only ENV — INTF?

Is there some notion of requirements that live in
only ENV, saying only what is desired in the
world, independent of any system that might

achieve it?

We could call these “high-level requirements” or
“goals”!

Add Goal =G, withR+G

Environment SUD
-

G — High Level Regs, Goals live in ENV — INTF

R — Requirements live in ENV (incl. INTF)

S — Spec lives in INTF, describes behaviour of SUD
D — Domain knowledge lives in ENV (incl. INTF)

Reference model

* |f you can’ t prove this, then at least one of 3 things
must have gone wrong:
— requirements are incorrect / unreasonable
— system doesn’ t do enough
— we aren’ t assuming enough about the environment

* Areal world example: [M.Jackson]

— An airplane overshot the runway on landing. The pilot had
tried to engage reverse thrust, but the system wouldn’ t
permit it. What s wrong?

A real world example

Environment System

wheels_turning D2 M‘hfsee/;.fgffje

can_reverse
D1 R “\._(actuator)
—>0

moving_on_runway

R: An airplane may engage reverse thrust iff it's moving on the runway
DI1: Moving on runway iff wheels turning

D2: Wheel pulses detected iff wheels turning
S: Can reverse iff wheel pulses detected

Hidden slide

The reason for the crash that the runway was wet, and the
wheels were hydroplaning instead of turning.

— Reverse thrust could only be engaged if pulses from the wheel
sensors indicated that the wheels were turning.

The developers made domain assumptions, but D1 was
wrong.

— If airplane is hydroplaning, then MOVING_ON_RUNWAY is true (and
would like to engage reverse thrust), but WHEELS _TURNING is false.

— The error was in the step from requirements to specification.

Correctness
Trivia: What' s this
symbol called?

* To evaluate a specification:

D, R

— Must be able to argue that the SUD spec plus the domain
assumptions are enough to satisfy the requirements.

* If you can’ t make this argument successfully, then
you need to do one (or more) of:
1.
2.
3.

Hidden slide

1. strengthen the specification
2. strengthen the domain knowledge
3. weaken the requirements

Example: Train crossing

Req: train is in crossing = gate must be down

S1:if approaching train is 200m away, lower gate

Hidden slide

* |sS1enough? (no), then give D1, then D2.
— D1: gate can be lowered in 10 sec
— D2: trains move more slowly that 200m/10s

* Yes, this is enough now ... but ...
— Is this enough to be safe? Is the requirement reasonable?

— What about speed of cars/humans who might be crossing tracks? Do
they have enough time to clear? Will the crossing coming down

interfere with their leaving?

Park example

* Suppose that that the city of Waterloo decides to raise funds
by instituting users fees for public parks.

— Must implement a complete system of money collection, security, etc.

* Informal requirement:

— Collect S1 fee from each human park user on entry to park.
* Ensure that no one may enter park without paying.
* Ensure that anyone who has paid may enter the park.

11 7 .
 These are "pure’ requirements:

i.e., high-level goals, not stated in terms of interface of system

Park example: Possible solutions

Solution #1:
* Employ human fee collectors.

* Enforce perimeter security by instituting the Waterloo Park
Militia, armed guards who ensure no one uses a park w/o
paying a user fee.

Solution #2:

e Use chain link fences for security, use turnstiles with
automated coin collection.

e After some research, we find appropriate turnstile hardware,
but it’ s brand new technology so we must create the
embedded software system.

— There is a barrier through which to enter a park.

— A person inserts a coin, the barrier unlocks, allowing the person
to push the barrier and enter the park.

Park turnstile details

The turnstile consists of a rotating barrier and a coin slot, and is fitted with
an electrical interface.

This mechanical apparatus has already been chosen, and the development
job is to write the controlling software.

— The software will run on a small computer; this is the SUD.

— The environment is the turnstile mechanism itself and its use by visitors to the park.

To enter the park, a visitor must first insert a coin and then push on the
turnstile barrier, moving it to an intermediate position from which it will
continue rotating of its own accord, returning to its initial position and
gently pushing the visitor into the park.

The turnstile is equipped with a locking device: when locked, it prevents
the barrier from being pushed to the intermediate position. (It’ s not clear
whether system is to lock the turnstile OR the turnstile locks itself after
turning far enough to let one person in!)

Park example

* Problem:
— The requirements talk about visitors, coins, and the park
— ... but the system will interact only with the shared phenomena

i.e., turnstile hardware: coin slot, barrier, including: lock, rotation detector,

* Goal: Analyze the requirements that we have and “refine”
them to a spec that we can (eventually) implement

— Need to make assumptions about the environmental phenomena and
how they can relate to system directly

e.g., turnstile rotation detected means human entering park

Park / turnstile context diagram

“The Software Chain-link
System” fences

Coin slot

Visitors Barrier

Hidden slide

“The Software Chain-link
System” fences

Coin slot

Visitors Barrier

Park / turnstile example

* How do important events in the environment relate
to events of the interface?

— What are the important input events that the system
needs to detect?

— What are the important output events that the system
needs to generate?

Designhations

 Adesignation is a mapping between a term in the reqs or
spec and the environmental phenomenon it represents

— We are getting precise about terminology and what each term
represents wrt the environment and SUD

Assuming that system is to lock the turnstile

_Term | Kind | Meaing

Push input event visitor pushes the barrier to its intermediate position
Enter input event visitor gains entry to park (barrier rotation complete)
Coin input event a valid coin is inserted into the coin slot
Lock output event turnstile instructed to lock barrier
Unlock output event turnstile instructed to unlock barrier
locked internal barrier is locked and cannot be pushed
state
unlocked internal barrier is unlocked and can be pushed

state

Designhations

* A designation is a mapping between a term in the reqs or
spec and the environmental phenomenon it represents

— We are getting precise about terminology and what each term
represents wrt the environment and SUD

Assuming that the turnstile locks itself after turning enough to let one

person in
Crem | ki | e
Push input event visitor pushes the barrier to its intermediate position
Enter input event visitor gains entry to park (barrier rotation complete)
Coin input event a valid coin is inserted into the coin slot
Unlock output event turnstile instructed to unlock barrier
locked internal barrier is locked and cannot be pushed
state
unlocked internal barrier is unlocked and can be pushed

state

Park / turnstile system interface

* Acoinslot
— system observes and
— env controls and observes
coin entering the coin slot (Coin)

A barrier
— locking and unlocking

* system controls and observes and

* env observes

whether the barrier is locked or unlocked (Lock / Unlock)
— motion

* env controls and observes and

* system observes
the pushing of barrier (Push, Enter)

Specification

* The specification describes what needs to occur in terms of
the shared phenomena

Spec & Env M Sys (= Intf)

 The proper way to read this is that the vocabulary in which
the specification is written must be a subset of the vocabulary
of the interface, i.e., a subset of the vocabularies shared by
the environment and the system.

Specification

* The specification describes what needs to occur in terms of
the shared phenomena

Spec & Env N Sys (= Intf)

 Example Specification:

— If a coin has been inserted into the coin slot, then barrier is unlocked
in a way that it can be pushed one rotation.

Note that this doesn’ t say:

— |If a visitor puts a coin into the coin slot, then (s)he can push the barrier
one rotation.

 That references parts of Env that aren’ t in Intf and is a requirement!

Examples

Requirements:
1. No one should enter the park without paying
2. Anyone who has paid should be allowed to enter the park
Specifications:
1. Barrieris locked if
coins inserted so far < # of enters so far

2. Barrier is unlocked if
coins inserted so far >= # of enters so far

— How can we detect payments?
— How can we detect/control entry? [Not done yet!]

Domain knowledge

The domain assumptions include the following facts and
assumptions about the environment.

1. coin = entrance fee.

2. if someone pushes thru the barrier, (s)he will eventually enter the
park (push leads to enter)

3. if barrier is unlocked and pushed, it rotates enough to allow 1 visitor
to pass, and then it locks (If barrier locks itself)

Thus, we realize requirements in two ways:

1. building a system that performs the specified actions, and
2. making assumptions about how the environment will behave.

Domain knowledge

For every event / action, need to decide:

1. Can the system observe the event / action?
(i.e., is this event / action part of the interface)

2. If part of the intf, is the event / action is controlled by
 thesystem, or
e the environment?

3. If part of the environment, are there any domain
assumptions about the event / action?

Uncertainty in "D, S+ R”

* The formula D, S+ R tries to be formal in the
sense of describing what happens completely.

* One would expect computers and software
and their combination to be formal in this
sense.

 But, the real world intervenes to make this

formula only a guideline and not an accurate,
precise model.

Hidden: Uncertainty in “D, SFR”

First, the real world never behaves as any model.
Any model D is only an approximation.

Generally, the simpler the model, the more of an
approximation the model is, but the easier it is to
prove things about the model.

Modeling the real world accurately requires
complexity to deal with all the weird exceptions.

A mechanistic description generally has to be
replaced by or tempered with a probabilistic model,
e.g., 99.99% of drivers stop at a red light.

Hidden: Uncertainty in “D, SFR”

* At the lowest level, a CBS is mechanistic, e.g., a
traffic light, the sqgrt function, and can be modeled
with a consistent S that is mechanistic, that always
gives for any input the same answer that the CBS
does.

* But floating point arithmetic is not the same as real
numbers, and integer arithmetic suffers over &
underflow.

* At higher levels, e.g., MS Word, an operating system,
process control, etc., the CBS is so large that we
cannot understand all of its code and all of its

behavior. So, we begin to give probabilistic models of
what the CRS does.

Hidden: Uncertainty in “D, SFR”

* All that applies to D, applies to R, because both are
models of the real world, one as is, and the other as

it is to be.

* Ris always an approximation of what we want,
because if we overlook something in the real world
and it turns out to be relevant to the CBS’ s behavior,
e.g., a gaggle of Canadian geese that fly near a jet
engine, then R may not be correct.

Uncertainty in "D, S+ R”

* The formula D, S+ R tries to be formal in the
sense of describing what happens completely.

* But, as we have seen, it cannot be completely
formal because at least D and R have to
describe the real world, which is not formal

What does this do to the hope of formally
modeling computer systems?

Molecular Software

Molecular SW, e.g., DNA, RNA, Proteins,
Catalysts

Molecules designed specifically to achieve a
desired effect

Molecule is shown empirically to behave as
specified in S, with 99.95% certainty

In this case, in D, SF R, also S is informal!

CS445 / SE463 / ECE 451 / CS645

Software requirements specification
& analysis

A reference model for

requirements engineering

Fall 2015
Mike Godfrey & Daniel Berry & Richard Trefler

