CS445 / SE463 / ECE 451 / CS645

Software requirements specification
& analysis

UML state machine diagrams

Fall 2013 — Mike Godfrey, Dan Berry, and Richard
Trefler

UML state machine diagrams

* Shows finely-grained component/program behaviour

e Useful for describing the inner behaviour of a class
that conforms well to the state-transition paradigm:

— Finitely many discernable inner states
* Waiting for input, mid-transaction, idle
— Responses highly dependent on internal state

* Only after all critical data fields filled in will system allow transition
to confirm payment state

* Events only relevant in certain situations
e.g., Only first “walk” button press is significant

UML state machine diagrams

* SM diagrams commonly used in design to describe
object’ s behaviour as a guide to implementation

e Used in RE to model interface specs (e.g. Ul)

e Other RE use of SM diagrams:

— Specify each object’ s contribution to all scenarios of all
use cases

— May be too detailed a model for RE

The state-transition paradigm

 Many programs you have written in previous
programming courses do not conform well to this
paradigm

— They may have infinitely many possible abstract inner
states (defined implicitly by their instance variables)

An example [Fowler p108]

safe closed Transition

Initial pseudo-state
N State
Wait ’ [Open ’/

candle removeéoor' closed]

/ reveal lock key turned[candle lit]
/open safe

Trigger event [Lock]

Guard Final state
\key turned[candle out]
/ /release killer rabbit

Action

A UML state machine

e ...isa hierarchical, concurrent, extended finite state
machine:

— Shows the lifecycle of an instance of an object

* The object starts in a given state, and transitions to other states
based on external “messages” (events detected) received and the
values of its internal variables

— Describes the behaviour of an object across multiple
(perhaps all!) use cases.

— Hierarchical — each state may be broken down into sub-
state machines

— Supports concurrent regions

— Extended — allows variables that augment the state
descriptions

Example FSM

* You might have seen an FSM like
this to represent a grammar in
CS241

— This FSM processes a character
stream to produce a token stream | .eqin
with white space removed

Letter or digit

Otherwise

QOtherwise

* "Finite State Automaton" (FSA) digi
is another term for FSM.

http://www.codeproject.com/KB/recipes/Parser Expression.aspx

FSM — Review

* A=(Q, 2, A, qq, F) where
- Q=1{q,, q,, .-, 4,1 IS a finite set of states.
— 2 ={a,, .., a,,1is a finite set of letters.
— A'is a transition function mapping pairsin
Qx2intoQ,i.e., A:Qx2->Q,
— (, is the start state for A, and
—F € Q, is the set of accepting (i.e., final) states.

FSM Review

 Ais deterministic iff for each state, for each
input letter, there is at most one resulting next
state.

Example

* A= ({qor OFY qz}; {a; b, C}; A, Qo {q1})-
* Ais given by
{(ap, 3, a4), (ag, b, qp), (dg, €, q),
(a4, 3, 9,), (a4, b, a4), (a4, ¢, a,),
(a,, @, dy), (a,, b, 9,), (A, €, a,)}

Language of an Automaton

* GivenA=(Q, 2, A, qy F), letw=w,w,..w,_ be
a sequence of letters (a string) in 2.

* A accepts w if a sequence of states r,r,...r, in Q
exists with the following conditions:

1. ry=4qg,
2. foralliin[0..n-1]: (r, W, 4, Ii,;) iSin A, and
3. ryisinF.

Example

* A= ({qor OFY qz}; {a; b, C}; A, Qo {q1})-
* Ais given by

{(dg, @, d4), (dg, b, dp), (9p, €,),

(a4, 3, 9,), (a4, b, a4), (a4, ¢, a,),

(a,, @, dy), (a,, b, 9,), (A, €, a,)}

 The language of A, L(A) is the set of all strings
in {a, b, c}* that contain exactly one 'a’.

Review

* A set of strings from some alphabet is called
'regular’ if it is the language of some FSM.

* FSMs may be non-deterministic, that is the
transition function returns a set of possible
next states the automaton may enter on
reading a letter.

* Every language recognized by a non-
deterministic FSM is regular.

Review

* There exist non-deterministic FSMs that are
exponentially smaller than the smallest

deterministic FSM accepting the same
language.

Regular Operations

* Let A and B be regular languages. Then:
— (union) A U B is regular.

— (concatenation) AB is regular
where AB={wz | wisin Aand zis in B}
— (star) A* is regular
Where A* = {w,w,...w, | k>0 and each w;, is in A}.

Regular Expressions -- Review

* Ris aregular expression if R is one of:
—a, forsomeain2
— ¢ (the empty string)
— 2 (the empty set)
—R; U R, (union)
— R, R, (sequential composition)
— (Ry)*

* Alanguage is regular if and only if there is
some regular expression that describes it.

where R; and R, are
regular expressions

FSM — Review

* FSM/regular expression constructs appear in
hardware/software/embedded system

description languages.

* Common notations that are widely agreed
upon — therefore useful for describing some
aspects of requirements.

Extended FSMs

* An extended finite state
machine (EFSM) is one
that includes variables.

* Transitions can depend
on the value of conditions
(expressions on
variables).

e Qutputs can be sent
messages or assignments
of values to variables.

—

Turnstile */

@R num_entries : int := 0
coinbuzzer
slug _— _
N “'“‘
o ¥ locked |
.—»[locked [un CC? J

frotated
T‘/num_entties-u

Mistake: “rotated” should not
have a leading “/”

ESFMs and variables

Variables are used to reduce the number of states in the
model.

— In the example, without variables, we'd need a distinct state to
represent different values of the number of entries recorded.

The resulting model may no longer be finite, strictly speaking
— So sometimes we just say “extended state machine”

UML state machines are EFSMs

— i.e., you can use variables within states

Requirements vs. design model

* During requirements engineering, we may build a System-level
State Machine Diagram (SSMD)
— The SUD is the outermost "machine”

— We decompose it into substates (hierarchical and concurrent) that
respond to environmental events

— We progressively merge the semantics of the system-level UCs into our
model, showing how the SUD responds various inputs

* Note that the decomposition of the SSMD starts to resemble a
preliminary design of the system

— In particular, the SSMD may resemble the user interface structure if
the SUD is an info system

— This is normal; note, however, that the eventual design may differ a lot

Requirements vs. design model

* In a design model, we may create state diagrams for
the proposed design classes

— Show how an object's behaviour changes over time
receiving and sending messages (operation calls) to other
objects

— Describe how one object contributes to desired system
behaviour

— Define state diagrams only for classes with complex, hard-
to-describe behaviour.

e However, we won’t address this in SE1.

Requirements vs. design model:
Validation

If you build such a design model, you can subject
it to a very useful kinds of verification or
validation:

Walk thru each scenario, and make sure that the
system's response for each user input is
specified and agrees with what happens in the
scenario

States

* A state normally represents a moment in time when the system
does not change and is waiting for another input before the
system changes — valuation to all program vars (including
program counter).

— In response to events and conditions, the system follows transitions to
change states.

e States partition the behaviour of the system:
— In different states, the system reacts differently (or not at all) to events.
e.g., not being able to check out a borrowed book

— The state an object is in affects what input the object will react to
e.g., ignoring most input in the state OFF

* A state (incl. the values of its variables) represents a partial
history of inputs/outputs so far.

System-level state machine
diagrams (SSMDs)

* For RE, the names of states should be meaningful: a state
represent a “mode” of the system.
— These names should make sense to the customer.

* The partitioning of behaviour provided by the states helps us
to better understand the system.

* A state will sometimes represent an internal computation
(e.g., a state of "Validating Customer") whose result is an
event that triggers an outgoing transition.

States and pseudo-states

* Must be a designated starting/initial state.

 The designator of an initial state is a pseudo-state.
— A pseudo-state is NOT a real state (no time is spent there)
— Later, we will see the History psudo-state

* Often there is a designated final state. This is a real state.

\ L -

-

Y
7 "_
X (@

X is the initial State Bullseye is a final state

Events and transitions

An event is “a significant or noteworthy occurrence” [Larman]
— An event may make an object transition to a different state
— An event may cause the object / system to perform an action
— An event is considered to occur instantaneously — it doesn’t persist.

— Multiple events on a transition label are alternative triggers. That is,
any of the listed events can trigger the transition.

In a requirements model, an event is often a message from
the environment that something of interest has occurred

e.g., “off-hook”, “coin”, user enters info through Ul, timer goes off, API call
from external software system

In a design model, an event can be a message/method call
from another object within the system

Transitions

~
' \ Y r'd Y
X e[c]/a y
\. J \ J
Semantics:

* When in state X, if event e occurs and condition c is true, carry
out and complete action a and move to state Y.

* Ifin a state and there is not an outgoing transition triggered
by a received event, the event is ignored.

Transitions

H’ e] event{args) [guard]/action | e

J [

Each of these parts of the transition is optional.
— event(args) — event / message that triggers the transition

— [condition] — (boolean) guard condition; the transition cannot fire unless
the guard condition is true (can use args in guard expression)

— Jaction — a simple, fast, non-interruptible action (can use args in action
body),

e.g., variable assignment,
send a message to an object: Object.event (args)

Tool nit: Transition labels

* A transition might also have a label (or name), tho we won't use it much;
the full format for a transition is thus actually:

label: event [guard] / action

e.g., L1: push [OKtoEnter] / startEntry
* In MagicDraw, if you name your transition by typing text onto the arrow,
you are changing the transition's label, not naming the trigger event!
— By default, labels aren't shown in MD (but you probably don’ t want to use

transition labels anyway)
— To edit the trigger event, bring up the transition specification, set SignalEvent

as the trigger event type, and name the transition

A

Transition - <>

E %R =

History : [/" Transition:r{flattenedHierachicalState::::A - flattene... -]

/" Transition:r[flattenedHierachica

| Constraints

<>
u 2i E ®$ B Properties: | Standard 3| [‘X Customize |

Bl Transition

Owner
Applied Stereotype
Guard
Target
Source
To Do

Bl Trigger
Event Type
Trigger
Event Element
Name
Signal

B Effect
Behavior Type
Behavior Element

k= [flattenedHierachicalState]

O B [flattenedH
O A [flattenedH

erachicalState::]
erachicalState::]

Transition label;

SignalEvent <

B Trigger:r [flattenedHierachicalSt
™ s gnalEvent r [flattenedHierachic
r

<UNSPECIFIED>

Select “SignalEvent”

Fi

Il in trigger event name

Name

The name of the NamedElement.

" Back |

' Forward |
N —

Conditions

* A condition is a Boolean expression whose value depends
on the value of variables.

* The value of a condition persists until the variables
involved in the condition change their values, e.g.,
— x>10
— DoorlsClosed

* Conditions on transitions leaving the same state should
be mutually exclusive

— ... so that no two transitions can be simultaneously enabled

State actions and activities

A state can have actions and activities associated with it.
— State actions and activities can manipulate object attributes or other variables.

Action: instantaneous, non-interruptible, simple. It can be:
— associated with a transition, or
— performed on state entry or exit.

Activity: takes time, interruptible, may require computation. It can be:
— associated with a state, and
— can be interrupted by a transition.

In UML 2.0, the terminology is different. As defined above:
— Actions are known as “regular activities”
— Activities are known as “do-activities”

Actions

Actions are what the system does in response to events
— ... in addition to changing state

Most common actions:

— Send a message/event to the environment
e.g., setTone(...)

— Change the value of a variable
e.g., x:=5

An action is non-interruptible (i.e., atomic)
— It completes before the destination state of the transition is entered.

b4

Multiple actions on a transition are separated by “” and
executed sequentially.

An example

—— activity
[Update hardware window [[Searching l action

/V {do / search for new har'dwar'e >
W \Nohfy Redmond

Dlsplay new hardware wmdow]

[Fowler p110]

States (again)

» States make the requirements easier to understand by
partitioning the behaviour of the system into modes:

— The reaction of the system to the same event may be different in
different states.

— In some states, there may be no response to certain events.

 Modes you may already know and love:
— Setting up a clock radio or DVR

— Moded editors like vi/vim (versus modeless like emacs and most IDE
editors)

— Navigating through Uls (what happens if you hit return?)

Recall stopwatch example

=

Bl
On off
® mode
@ but2: 12/24hr
start/stop
® but3: light
lap
reset

on
off
mode

but2 [time]

but2 [stopwatch]

but3 [time]

but3 [stopwatch,
timer running,
display timer]

but3 [stopwatch,
timer stopped,
display timer]

but3 [stopwatch,
display laptime]

Turn watch on

Turn watch off

Toggle between time and stopwatch
Toggle between 12h and 24h display
Start / stop timer; beep for 0.25 sec
Turn light on for 3 sec

Record laptime; display laptime; turn
light on for 3 sec

Reset timer; turn light on for 3 sec

Display timer; turn light on for 3 sec

Recall stopwatch example

Stopwatch starts in off state

When “off”,

— Display is turned off

— Battery continues to power an internal “wall clock”

— Last value of timer is kept in memory, but timer is turned off (if it was running)
When powered on,

— Display is turned on

— The timer is off (but not reset)

— Default initial display is 12 hour wall clock time
Hardware has built-in timer mechanism

— Can start/stop/reset/get value

Starting/stopping the timer should cause an audible beep for 0.25s
— Hw supports “beep”, but is not tied to start/stop by default

Variables:

var laptime : int
var timerRunning : boolean

on

Y Showing
Nothing

off

but3
\ight

Showing
12hr
clock

but2 put2

Showing
24hr
clock

but3
\light

but3 [!timerRunning]
but2 [timerRunning] but2 [timarRunning]
\atartTimar ‘stopTimer
\Deap ‘besp
mods i G i -
mode Showing . conn
Timer \regstTimer
off \light
mode mods
fji“‘:t but3 [timerRunning]
9 ighe
laptime := getTimer ()
Showing
Laptime
but2 ["timarlunning] but2 [timarlunning]
\startTimer ‘stopTimer
‘basp

‘beap

Validation

Given the list of possible events, for each state X, consider
whether each event e is possible. It could be the case:

1. There is a transition on e from state X

2. Event e cannot physically occur in state X
* no transition on e is needed from X
e.g., doorOpened cannot occur when the door is already open

3. Event e is possible but the system should ignore it
* no transition on e is needed from X
Self loop on X...i.e., the system does not change if event e occurs in state X

e.g., multiple “door close” button presses; only first one is significant

4. Event e is possible in state X, but the system should report as error
e atransition is needed to report error

Common problems

* QOver-specification:
— Specifying a response to an event that can't occur in the state
e ...inan attempt to ensure that the specification is complete

— Trying to maintain enough state information (e.g., by variables) to
always know the system's exact response to an input.

* Keeping track of the number of active phone calls, so that the state
machine model can detect when a set limit has been reached

* Under-specification:

— Not specifying a response to an event that is relevant at a state,
thereby leaving out requirements of the system.

State machine vs.
sequence diagrams

State machine diagrams Sequence diagrams
specifies behaviour lllustrates behaviour
all allowable scenarios one allowable scenario, showing end-to-

end behaviour (better feel for overall
system behaviour)

models system inputs and shows the sources and sinks of system
outputs inputs and outputs
developer oriented customer oriented

identifies system states, that
represent equivalent input
histories

can help developer validate state diagrams

Composite states

* A composite state combines states and transitions that work together
towards a common goal. There are two kinds:

1. Hierarchical (aka “simple” / “OR-states”)
2. Concurrent (aka “orthogonal” / “AND-states”)

e A state that does not contain other states is called a basic state

Hierarchical Concurrent

On

desiredTemp(val)
\dtemp := val

e

actualTemp(val)
\temp := val

Hierarchical states

* If a transition leaves a composite

state (aka "submachine"), the
transition applies to all substates.

— The substates “inherit” the
transitions of the superstate.

* If atransition ends at a composite
state, the transition is continued

by the default initial state in the

submachine.

— Usually have a default initial state at
every level in the hierarchy.

Another example

off hook / play dial tone

[valid subscriber]

T Active \

CPIayingDialTone) Talking

digit digit connected

Dialing complete Connecting
[Larman 29.3] _ J

On hOo/r

Hierarchical states

 Hierarchy can be used to abbreviate a “flat” state machine.

— One transition leaving a superstate can represent many transitionsin a
flat state machine.

Priority

Q: What if the machine is in
state A and event g occurs?

A: UML gives priority to
transitions leaving a state
lower in the hierarchy

i.e., sub-machines can override
the behaviour of their
ancestor states.

e Conceptually, can think of
this like an inheritance child
overriding its parent’ s
default behaviour in OOP

More to worry about

What if two things (e.g., events) happen at the same time?

What if one scenario happens while another part of the
system is in a particular state?

What if the callee picks up the headset just as a connection is
being completed to that callee?

What if automated maintenance tests are activated while the
phone is being used?

What if a caller picks up the headset while the phone is
undergoing automated maintenance?

Final state

* A final state represents the end of computation within a
composite state.
— Recall that a final state is a real state.

A | ’\i:
] x
L Nay——
r B D
k,/. ‘“‘-. ‘y/ '
S I
Y |
B !
Z /

——

Final state

* Atransition leaving a basic state that has no event or
condition in its label is always enabled.

— If a composite state has a final state, a transition leaving a
composite state that has no event or condition in its label
is enabled when the state is in its final state.

* Transitions based on events and/or conditions are
enabled from any state within a composite state.

History

e History is a pseudo-state that desighates the
immediate sub-state at this level in the hierarchy that
the system was in when the parent state was last
exited.

r—\

- B
D\ . =,

History

* A history pseudo-state can be the destination state of a
transition or a default arrow.

* A transition leaving a history state indicates what state to
enter if the system has never been in this superstate before.

— If no transition is provided, then the default initial state is used.

e Usually transitions entering a history state and leaving a
history state are not labelled.

Deep history: H*

If a deep history pseudo-state is the destination of a transition
or a default arrow, then at all levels in the hierarchy below this
one the system should enter the substate that it was last in
when that state was exited

i.e., apply history at all levels in the hierarchy below this one

— In other words, deep history recursively applies the history construct
until a basic state is reached.

Notes:
— History and deep history states are pseudo-states — no time is spent in
them; they are just the continuation of a transition.

— Don'tuse “H” as a state name yourself!

Deep history

’——>ZJ‘ “Ne— ()
1 %T |

Composition issues

* The details of a composite state can be shown in a separate
diagram.

— Can use the composition icon in the state, which means "has real
content but is defined somewhere else"

"'Somewhere else"

entry pseudostate
S

Composition issues

A composite state whose internal details are defined
elsewhere can't have transitions going to/from its internal
states arbitrarily ...

— So we use entry and exit points (which are pseudo states) to make non-
standard entry/exit into submachine easier to specify

state machine EntryExitPoints[= Examplel]J

Review: Actions and activities

* Actions are considered to be instantaneous (non-interruptible)
e Activities occur inside states (usually)

— Activities are computations that "take time" and can be interrupted

— States with activities are called ... activity states

sear'ch activity

// \

Update hardware wmdow Searching 1

action

/\\\ \do / search for new hardware ’ >
\-__\gg_ncel __,.f// / Notify Redmond

‘Display new hardware window ’

State actions

e States can also be annotated with entry or exit
actions, and with internal actions.

— Entry actions — actions that occur every time the state is
entered by an explicit transition.

— Exit actions — actions that occur every time the state is
exited by an explicit transition.

— Internal actions on events A

entry /action
exit /action

event [condition] / action

Entry actions

* entry /x is equivalent to adding action x onto
all incoming transitions
— incl. self-transitions and the initial pseudo-state

evi
E

dlld

L entry /x

Exit actions

e exit/x is equivalent to adding action x onto all
outgoing transitions (incl. self-transitions)

evi p
A E

B L exit /X

Internal actions

* |nternal action y/x is equivalent to a single self-
transition, if we ignore entry / exit actions

i.e., entry / exit actions are NOT performed as part of an
internal action.

evi

B 2 | yx

State activities

* Because activities take time, they can be interrupted by
transitions with triggers and/or conditions

— If there are no interruptions, then the outgoing transition from the
activity state is likely to have no trigger or condition ("naked")

[A]

L do / computeBill

t / \
t2:[on]
}

D

| B

{

A

Note that t1, t2, and t3 are simply transition labels;
they are not events, conditions, or actions.

Synchrony hypothesis

* The synchrony hypothesis is the assumption that the
system can respond to an input faster than another
input can be provided.

— It’ s usually a reasonable and valid assumption during
requirements modelling.

— |t simplifies state machine models because actions can be
used rather than activities.

[Due to Gerard Berry, creator of the specification notation Esterel]

Actions vs. activities

* If there are no other transitions leaving A, these two models
are equivalent, and the second is shorter!

" C

ltZ:x

A
do / computeBill()

\ t3: x/computeBill()

B

t1

Note that t1, t2, and t3 are simply transition labels;
they are not events, conditions, or actions.

Actions vs. activities

In an actual implementation, every task will take time

— Just because we consider actions to occur instantaneously in a
state machine model does not mean that their implementation
will be instantaneous.

In thinking about whether to make something an action or
an activity, consider whether it is interruptible by another
input, rather than whether it takes time.

e.g., “Creating a user account” can probably be cancelled in the

middle, therefore it is a good candidate to make into an activity
rather than an action.

Actions vs. activities

* UML 2.0 has dropped actions

— This is too bad because the synchrony hypothesis
is a very useful, valid, and reasonable simplifying
assumption for requirements modelling.

— Therefore, we will use actions in our state
machine models anyway.

State actions and activities

» States can be annotated with entry or exit actions, internal
actions, and activities:
— entry / action [red means “keyword”]
— event / action
— exit/ action
— do / activity

* A “naked” transition exiting a state (i.e., having no event or
condition associated with it) fires as soon as any activity
associated with the state is complete.

— If there’s no internal activity, it fires immediately

— Naked transitions are commonly used to exit from activity states and
concurrent states

State actions and activities

* In an explicit transition (including self-looping transitions!),
the order of effects is:

1. exit actions of source state, then
transition actions (in listed order), then

2
3. entry actions of destination state, then
4

state activities.

* If you want a self-looping transition that does not activate exit
and entry events, use an internal action instead of a transition

Modelling alternatives

* A system response can be modeled as:
— an action in state
— an activity in state

— an activity in another, special state

1 2 3 4
A R L O O B
ev;
ev/alert ev =
B8 | (B | [B
entry/

| |
do/ I l
alert

o i

alert

Q: Which of the above are equivalent? Under what conditions?

Modelling alternatives

* A system response that does not cause a change in
state can be modelled as:
— an action on a self-transition
— an action on an internal transition
— an activity in an intermediate state

 StateA ~ StateA | ~ StateA |
req/reply()
g) 5 ‘
L | reg
reg/reply() “do/
_reply()

Q: Which of the above are equivalent? Under what conditions?

Junction points

* Ajunction point is a pseudo-state that reduces
clutter by combining common transition segments.

— Conditions are evaluated at the start of the compound
transition.

Change events

* Achange event is the event of a condition becoming true.
— Think of like a hardware sensor

* The event "occurs" when the condition goes from false to true
because the values of some variables used in the condition
change their values. For example:

— when (temperature > 100 degrees) [red means “keyword”]
— when (on)

e The event does not reoccur unless the condition turns to false
and then returns to true.

when(X) vs. [X]

* A change event is what you want if the process is
sitting in a state waiting for a condition to become
true

— A change event implicitly polls the condition regularly for a
status change

* Don't use a guard on a naked transition (called a
"completion transition"” in UML)

— The semantics of that is, check the condition once (e.g.,
when the activity is done), and fire if the guard is true

— The guard is never checked again after that initial check.

Time event

* A time event is the occurrence of a specific date/
time or the passage of time.

— Absolute time:
* at (9:00 am, 9 Oct 2010) [red means “keyword”]

— Relative time:
e after (10 seconds since exit from state A)
 after (10 seconds since x)

 after (20 minutes)
[Since execution entered the transition’s source state]

Event summary

e An eventis instantaneous.

 Kinds of events:

— external — change in the environment (external signal)
e.g., “off-hook”

— external/internal — change events, occurrence of a
condition becoming true

— internal —a message from a concurrent region

— time events — occurrence of relative or absolute passage of
time

Summary

aState

entry/action event[guard]/action
do/activity /[anotherState]

exit/action

event/action

Each event, guard, action, and activity may have arguments.

Can also combine multiple events, actions, etc. into one
“slot” using a semi-colon.

Creating an SSMD

* |Inputs to this process:
— Use cases
— System sequence diagrams
— Input events
— Output events

* Qutput:
— System state machine diagram (SSMD)

* Possibly with concurrent components

Creating an SSMD: Process

1. Identify input and output events

2. Think of a natural partitioning into states activities waiting on an event
— Activity states — system performs activity or operation
— Idle states — system waits for input
— System modes — use different states to distinguish between different
reactions to an event
3. Consider the behaviour of the system for each input at each state.
4.

Revise (using hierarchy, concurrency, state events)
Use concurrency to separate orthogonal behaviour

Use hierarchy, and entry/exit actions, to abbreviate common behaviour

Creating an SSMD

* Two states are equivalent if they wait on the same event and
they have outgoing transitions to equivalent states

* Every scenario of the use cases (and system sequence
diagrams) must be a possible behaviour of the system state
diagram.

* This can also be done for major subsystems rather than the
whole system.

Modelling decisions

e Choose a natural set of basic states

— Think of the modes of the system; i.e., when the system waits for input
from the environment (or the passage of time) before it can change

* Avoid flower diagrams!

state machine flowerDiagram[= flowerDiagram]J

ll 'll ||| ||| 'l' |||
L \ W \V___)
E:ZIZ::% %::ziii
— L

Validating state machine diagrams

e Avoid inconsistency: don’t have multiple transitions leave
the same state under the same event.

* FEnsure completeness: a reaction is specified for every
possible input at a state.
— This is an issue particularly when transitions are conditional.

— If there are transitions triggered by an event conditioned on
some guard, what happens if the guard is false?

 Walkthrough: compare the behaviour of your state
diagrams with the sequence diagrams.

— All paths through the sequence diagrams should be paths in the
collection of state machines.

Good style

 The best state machine model is usually the one that
is the clearest. What does this mean?

— Fewer transitions are better
* i.e., Use hierarchy to reduce the number of transitions

— Don't over,specify! If an event is not relevant leaving a
state, don t have a transition based on that event.

e Occasionally this is OK because of the clarity provided by hierarchy.
— Use history + deep history

— (Use concurrency to recognize orthogonal aspects of the
problem --- useful in modeling distributed systems).

— Use variables to model state information that does not
reflect flow of control

CS445 / SE463 / ECE 451 / CS645

Software requirements specification
& analysis

UML state machine diagrams

Fall 2013 — Mike Godfrey, Dan Berry, and Richard
Trefler

