
Temporal Logic

Notes:Jo Anne Atlee, Dan Berry
and Richard Trefler

Fall 2012

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-0

Prescriptive vs. Descriptive Specifications

So far, the specification notations used in this class have been
model-based and are said to be prescriptive. Prescriptive
specifications describe how a system behaves from one input to
the next. System behaviour is decomposed into states, and the
specification describes for each state what input the system is
ready to react to in that state and what the system’s response to
that input event will be.

If you want to know about longer-term system behaviour, longer
than the response to a single input event, you have to examine
paths through the specification, and you may have to examine
several paths.

What if you wanted to specify that dialing a valid number always
results in either the call being connected or a busy-tone?

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-1

What if you wanted to specify in a specification of an elevator
that the elevator never moves with its doors open?

What if you wanted to specify in a traffic-light specification that
if a car approaches the intersection, the light in its direction will
eventually be green? If you used only a model-based notation
like SDL or UML, you’d have to try to write state diagrams that
covered each case in which a car approaches the intersection.

Another approach is to use a notation that is designed for
expressing system-wide properties, such as propositional,
predicate, or temporal logic.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-2

Constraint Specifications

When are constraint specifications useful?

They are useful when it is desired to:

• expresses additional constraints on a model-based
specification and

• emphasize, non-obvious, system properties of specification.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-3

These are very different uses.

In one case, the constraint specifies new behaviour not expressed
in the model-based specification. In this case, the system
behaviour is a conjunction of the model-based specification and
the constraint.

In the second case, the constraint does not add new behaviour,
but instead reiterates behaviour already specified by the
model-based specification. Such specifications may be easier to
read and recognize when expressed as a constraint, so the
document adds them. Such specifications can be used also when
reviewing the model-based specification. The reviewer can check
whether or not the model satisfies the constraint.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-4

Review Predicate Logic

Predicate logic is for expressing properties about fixed-valued
variables

With fixed-valued variables, a logic formula is evaluated with
respect to a particular assignment of values to variables. This
will be in contrast to temporal and time-dependent logics, in
which a formula may be evaluated over variables that change
value over time.

1. Set of typed variables
Booleans, Integers, Sets.
If our system is object-oriented, then we may have variables
for object instantiations, attributes, etc.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-5

2. Functions on typed variables
+,−, ∗, / for integer variables
∪, ∩ for set variables
∧, ∨, ¬ for boolean variables

3. Predicates
<, > for integers
⊂, ∈ for sets

4. Equivalence
= for comparing two values of

the same type

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-6

5. Propositional logic connectives
¬,∧,∨,→,↔
Cond1→ Cond2≡ ¬ Cond1∨ Cond2
IF Cond1 THEN Cond2 ELSE Cond3≡

(Cond1→ Cond2)∧
(¬ Cond1→ Cond3)

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-7

6. Quantifiers∀ x ∈ T : f (x), ∃ x ∈ T : f (x)
∀ x ∈ T : f (x)

for all t ∈ T: the interpretation off with t substituted for
x evaluates totrue.
∃ x ∈ T : f (x)

there existst ∈ T: the interpretation off with t
substituted forx evaluates totrue.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-8

Examples:

money: Student→ Boolean
movies: Student→ Boolean

• Every student who has money goes to the movies
∀ s∈ Student: (money(s) → movies(s))

movies

money subset of
values of x

• Some student has money and goes to the movies
∃ s∈ Student: (money(s) ∧ movies(s))

moviesmoney

subset of
values of x

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-9

Time-Dependent Logic

Time-dependent logic is for expressing time-dependent
properties

Can think of variables as time-functions whose value depends on
time.

Variables as time-functions

coin : time→ boolean
locked: time→ boolean
push: time→ boolean
enter: time→ boolean
rotating : time→ boolean
#entries: time→ integer
#coins: time→ integer

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-10

Given a variablex, you can ask what its value is only at some
time t. When writing formulae, you must specify for every
variable named in the formula the time that the variable’s value is
referenced.

#coins(0) = 0
coin(1) → ¬locked(2)

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-11

It’s hard to write specifications in terms of what the variable
values will be at a particular point in time. More often, one is
interested in expressing the relationships between variable
values. For example, anytime a coin is inserted, the barrier will
be unlocked at a later time.

∀ t ∈ Time: (coin(t) → ¬locked(t + 1))

∀ t1 ∈ Time: (coin(t1) →
∃ t2 ∈ Time: (t2 > t1 ∧ ¬locked(t2)))

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-12

Examples

• It’s always the case that the number of entries into the park
is less than or equal to the number of coins received.
∀ t ∈ Time: (#entries(t) ≤ #coins(t))

• If a visitor pushes the turnstile and the turnstile is unlocked,
then eventually the visitor (someone) will enter the park.
∀ t ∈ Time: ((push(t) ∧ ¬locked(t)) →

∃ t1 ∈ Time: (t1 > t ∧ enter(t1)))

• If a visitor pushes the turnstile when the turnstile is
unlocked then the turnstile rotates until the visitor enters the
park.
∀ t ∈ Time: ((push(t) ∧ ¬locked(t)) →

∃ t1 ∈ Time: (t1 > t ∧ enter(t1)∧
∀ t2 ∈ Time: (t < t2 < t1 → rotating(t2))))

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-13

Notice that we often don’t care about the values of variables at
specific points in time. With the possible exception of time t=0,
when we might care about the initial values of the variables.
Mostly, we care about the temporal ordering of events and
variable values. We want to express constraints on variable
values in terms of when they change value.

• If a coin is inserted, the barrier will become unlocked.

• If a caller picks up the telephone handset, he will hear a
dialtone.

• If I push the elevator button, the elevator will eventually
arrive at my floor and open its doors.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-14

Sometimes we care about the timing of those events

• If a train comes within 200 meters of a railroad crossing,
the gate will be lowered within 10 seconds.

But for the most part, we’re concerned only with the order in
which events occur.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-15

Linear Temporal Logic

Linear Temporal Logic was designed for expressing the temporal
ordering of events and variable values

In temporal logic, time progresses, but the notion of exact time is
abstracted away. Instead, we keep track of changes to variable
values, and the order in which they occur.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-16

System State

The system state is an assignment of values to the model’s
variables.

Intuitively, the system state is a snapshot of the system’s
execution. In this snapshot, every variable has some value.

If we’re working with an OO or UML system, then looking at a
snapshot of the system, there is an explicit number of instantiated
objects that are executing, each object is in exactly one state of
its state diagram, and each of its attributes has some value.

This is one system state. If the system then executes an
assignment statement, the value of one of its variables changes.
The system enters a new system state.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-17

0
S

1
S

2
S

There is some initial state of the system, defined by the initial
values of all the variables.

As the system executes, the values of the variables change. Each
state represents a change from the previous state in the value of
some variable. More than one variable can change value between
two consecutive states.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-18

Executions

A sequence of system states represents a particular execution of
the system, and obviously, time progresses during the execution,
but there is no keeping track of how long the system is in any
particular state.

An execution or a computation is a sequence of system states

σ = s0, s1, s2,

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-19

Base Formulae of LTL

In linear temporal logic (LTL), formulae are evaluated with
respect to a particular execution and a particular state in that
execution

Formulae evaluated wrt a state in an execution.

(σ, j) |= f iff f is true in state sj of σ
iff sj ||= f

|= f iff f is true in state s0

of all executions σ

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-20

(σ, j) |= f

S0 Sj

f

|= f

S0

f

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-21

LINEAR Temporal Logic (LTL)

Time is totally ordered.

∀ x, y ∈ Time: (x < y ∨ x = y ∨ y < x)

yx

x

y

xy

OR

OR

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-22

Boundedness

Time is usually bounded in the past and unbounded in the future.

∃ x : Time.(¬∃ z : Time.(z < x))

∀ y : Time.(∃ z : Time.(y < z))
x y z

Density

∀ x, y : Time.(x < y → ∃ z : Time.(x < z < y))
yx z

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-23

Discreteness

∀ x, y ∈ Time:
(x < y → ∃w ∈ Time:

(x < w ≤ y ∧ ¬∃u ∈ Time:
(x < u < w)))∧

∀ x, y ∈ Time:
(x < y → ∃ z∈ Time:

(x ≤ z < y ∧ ¬∃ u ∈ Time:
(z < u < y)))

S0

S0

Representation
unless
discreteness is
important

S1 2 S3S Realityx z yw

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-24

Variables, Functions, Predicates

coin : time→ boolean
locked: time→ boolean
push: time→ boolean
enter: time→ boolean
rotating : time→ boolean
#entries: time→ integer
#coins: time→ integer

A function onTimeis a mathematical model for a computer
variable that really varies over time.

A mathematical variable is really a constant. When you say “Let
x = 5,” and you continue to usex in the sentences thereafter, that
x is 5 and it does not change until you happen to introduce
anotherx in what is another scope.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-25

Temporal Connectives

Connectives are shorthand notations that quantify over future
system states — future worlds.

• henceforth:2

• eventually:3

• next state:©
• until: U
• unless:W

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-26

Henceforth

2f =



T if f is true in the current and
all future system states

F otherwise

(σ, j) |= 2 f iff
for all i ≥ j : (σ, i) |= f

S0

f

T

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-27

Ex: 2(#entries≤ #coins)

S0

#entries <= #coins

T

Shorthand for:

∀ t ∈ Time.(#entries(t) ≤ #coins(t)), which is a shorthand for:

∀ t ∈ Time.(t ≥ t0 → (#entries(t) ≤ #coins(t)))

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-28

Eventually

3f =



T if f is true in the current or
somefuture system state

F otherwise

(σ, j) |= 3 f iff
there existsi ≥ j such that(σ, i) |= f

∃ i.(j ≤ i ∧ (σ, i) |= f))

S0

S0

T

T

OR

f

f

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-29

Thus,2(3f) means thatf happens infinitely often.

S0 T

ffff f f f f f

3(2f) means that eventually,f is true forever.

S0

S0

T

f

T

OR f

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-30

Ex: push→ 3enter

Ex: 2(push→ 3enter)

S0

S0

T

T

enterpush ->

enterpush ->

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-31

Next State

©f =



T if f is true in the next
system state

F otherwise

(σ, j) |= © f iff
(σ, j + 1) |= f))

S0 T

f

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-32

Ex: 2(coin→ ©¬Locked)

Ex: (2(coin→ ©¬Locked)) →
(2(coin→ 3¬Locked))

S0

coin -> ~locked

T Si Si+1

Consider a temporal logic formula that has no Boolean operator
at the outermost syntactic level.

As you scan the formula from left to right, each temporal
operator introduces a new implied bound time variable which is
at the same time or later than the previous.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-33

In the following, the shaded rectangle is a temporal logic
formula, each T is some temporal operator, eachx is implicitly a
function on time.

T T T T T T Tx x x x x x x x x x x x

t1 t2 t3 t4 t5 t6 t7 t8

same time potentially different times

formula

time line

t1 ≤ t2, t2 ≤ t3, etc.

Thus, in between two consecutive temporal operators, all
variables are evaluated at the same time, but variables separated
by at least one temporal operator are evaluated at potentially
different times.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-34

Until

f U g =



T if g is eventually true, and
f is true until then

F otherwise

(σ, j) |= f U g iff
there existsk ≥ j such that(σ, k) |= g and for alli such that
j ≤ i < k, (σ, i) |= f .

S0

f

T

g

?

Sj Sk

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-35

Note thatf U g → 3g

t1 t1+1 t2 t1+1≥

Ex: 2(push→ ©(rotatingU enter))

S0 T

push

T

rotating
enter

Si Si+1

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-36

Unless

f W g =


T if f holds indefinitely or
until g holds

F otherwise

f W g iff (f U g) ∨ (2f)

Unless is like Until, without the guarantee thatg might happen.

S0

S0

f

T

f

T

g

?

OR

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-37

Ex: 2(locked→ (lockedW coin))

S0

S0

TT

locked
coin

locked ->

TT

lockedlocked ->
OR

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-38

More on Variables

Recall:

A function on (discrete)Timeis a mathematical model for a
computer variable that really varies over time.

A mathematical variable is really a constant. When you say “Let
x = 5,” and you continue to usex in the sentences thereafter, that
x is 5 and it does not change until you happen to introduce
anotherx in what is another scope.

Temporal logic does its magic only on true variables, i.e.,
functions onTime.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-39

Thus,

∀ t ∈ Time: (t > t0 → x(t) > 5) is a longhand for2(x > 5)

and

∃ t ∈ Time: (t > t0 ∧ x(t) > 5) is a longhand for3(x > 5)

Note that a mathematical variable that is not onTimeis a
constant, not only in fact, but also to a temporal logic formula.

Thus, ify = 5, then

2(x > 5) is the same as2(x > y),

and this is a shorthand for

∀ t ∈ Time: x(t) > y

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-40

Also tautologies and theorems are true independent of the
temporal operator. Thus,

T → 2T and

T → 3T,

but something that is true henceforth is not necessarily a
tautology or theorem.

Thus, the theorem
∑n

i=1 i = n×(n+1)
2

holds independently of time,
and

2(
∑n

i=1 i = n×(n+1)
2

), and

3(
∑n

i=1 i = n×(n+1)
2

).

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-41

It is usually incorrect to write2z(t).

It is incorrect to have(t) afterzafter a temporal operator such as
2 and3 unless zhas two time parameters, i.e.,

z : Time× Time,

in which case, one of theTimes is implicit in the temporal logic
and the other is left explicit.

In other words,2z(t) is a shorthand for
∀ t1 ∈ Time: (t1 > t0 → z(t1, t))

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-42

Describing Behaviour of Finite State Machines

You can use these connectives to describe the behaviour of a
finite state machine.

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-43

unlocked

rotating

locked

coin

pushenter

2(locked→ (lockedW coin))
2((locked∧ coin) → ©(unlocked))
2(unlocked→ (unlockedW push))
2((unlocked∧ push) → ©(rotating))
2(rotating→ (rotatingU enter))
2((rotating∧ enter) → ©(locked))

Note: unlocked6≡ ¬lockedand¬locked≡ rotating∨ unlocked

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-44

a

b

B

A

X

2(X → (X W (a∨ b)))
2((X ∧ a) → ©(A))
2((X ∧ b) → ©(B))

CS445/CS645/ECE451/SE463 —TEMP.LOGIC 0-45

