The True Cost of
Al Assistance to

Programming of
Software

Daniel M. Berry,
University of Waterloo

0 2025 Daniel M. Berry Cost of Al Assistance to Coding A Hypothesis Pg. 1



Cost to Correct Defects



ChatGPT Released

ChatGPT was released to the world in 2022

with much hype.



Used to Help Write Code

Soon after, people began to use ChatGPT and
other LLMs to help write code ...

and to rave about how great the code is.



But ...
But, ...

| saw reports:

About 25% or more of ChatGPT-generated
code is wrong and must be corrected.



I Began to Wonder

| began to wonder about the cost to correct
code generated by ChatGPT,

In response to a human’s prompting.
The code will not be perfect.
So, the prompter will have to correct it, ...

but at what cost?



Historical Correction Cost

Given the historical 10-fold-correction-cost
(10FCC) factor,

If indeed, 25% of ChatGPT-generated code is
wrong, ...

then a human’s correcting the code should
cost 2.5 times

the cost of the human’s writing the code from
scratch.



Factor Will Be Even More

But, the factor to correct ChatGPT-generated
code will be ...

even worse than 10 fold.



Unspoken Assumption

Unspoken assumption of the old data:

Humans are correcting code written by
themselves and others in their development
teams.

So, correctors have some familiarity with the
code they are correcting.

Even if project uses independent quality
assurers, not in project, to find defects,

their correction is left to project members.



Why Unspoken Assumption

Assumption was unspoken because

no one even thought of the possibility that
something other than a person would write
code,

and people corrected their own defects,

because anyone else doing it would have to
spend time studying the code to understand it
well enough to find the origin of any defect.



ChatGPT-Generated Code

Code generated by ChatGPT does not meet
this assumption.

Therefore, the human who prompted for the
code

will have to study the code thoroughly to

even begin considering how to correct its
defects.



Humans Studying
ChatGPT’s Code

Also, when the human starts to study the code
for defects,

E* has no idea what and where the defects In
the code are.

*“E” “em”, and “er” are gender non-specific third-person-singular
pronouns in subjective, objective, and possessive forms, respectively.



Humans Studying, Cont’d
The defects could be anywhere,
Including nowhere,

on slim chance that the code is correct to
begin with.

Only careful study of the code can say.



Reports of Success

Nevertheless, people | respected as honest
scholars were

reporting success at engineering prompts

that persuade ChatGPT to generate correct
code.



Final Conclusion:

ChatGPT could be successfully prompted to
produce code for any set of requirements, ...

but along the way, ...
the generated code would have lots of defects.

These would have to be found, with no idea
what they even are.



Final Conclusion, Cont’d
Only then can they be corrected, and
the correction will be of unfamiliar code,

written by someone or something else.



Final Conclusion, Cont’d

The whole process of finding and correcting
the ChatGPT-generate code

will be significantly more expensive
than finding and correcting code written
by humans in the same development project.

| therefore hypothesized.:



High AI Copiloting Cost
HAICopC Hypothesis:

The cost for a set of humans
to correct the code generated
by an LLM
to implement a set of requirements
Is significantly larger than
the cost for a set of humans
to correct the code programmed
by the same set of humans
to implement the same set of requirements.



Hypothesis is My Theory
The HAICopC Hypothesis is my theory and

It must be subjected to empirical tests to
confirm it.

Very difficult to conduct experiment to
soundly test the hypothesis.



Anecdotal Evidence

Later, | started seeing articles, blogs, and
posting reporting observations consistent
with the HAICopC Hypothesis: E.g.,

https://www.cio.com/article/3540579/devs-gaining-little-if-anything-from-
ai-coding-assistants.html

https://www.linkedin.com/posts/saranyan_lIm-vibecoding-ai-activity-
7329881611460575232-gH5w

https://www.linkedin.com/posts/victor-schwartz_i-went-all-in-on-ai-
coding-tools-to-build-activity-7335676769817001986-DsEL



Vigraham’s Post
Let’s examine one that provides data:

Saranyan Vigraham, Director of Engineering at
Meta, kept data for 8 [sic] different
development tasks,

ranging from feature development to
migration,

that differed also in the level of Vibe-Coding-Al
Involvement, from 10% to 80%



His Data

His graph plots both
1. bugs introduced and

2. percentage of development time spent
correcting these bugs

against the 8 percentages of Al involvement.



Bugs Introduced

10

Al (Vibe) Coding: Bugs vs % Time Spent Fixing

e B N M W W s
o (9 o un o wu o ()
% Dev Time Spent Fixing Al Code

|
U

10

20

30 20 50 60
Al Involvement in Coding (%)

70

80



Vigraham’s Conclusions

He concluded that the “sweet spot ... [was]
40-55% Al involvement. Enough to accelerate
repetitive or structural work, but not so much
that the codebase starts to hallucinate or
drift”.



Addressing Hypothesis?

Vigraham’s data do not address the HAICopC
Hypothesis:

He uses percentage of Al involvement as the
Independent variable.

View the same data with task as the
Independent variable:

Then they indirectly address the HAICopC
Hypothesis.



Change Independent Variable

Vigraham designed the sequence of 8
development tasks, T1, ..., T8

to involve the Al in approximately 10%, ...,
80%, respectively, of the task.

Vigraham reveals the tasks for the
percentages:



Tasks

“Where Al shines:

1.

2.

3.

Boilerplate and framework code
Large-scale refactors
Migration scaffolds

Test case generation



Tasks, Cont’d

Where it stumbles:
1. Complex logic paths
2. Context-heavy features

3. Anything requiring real systems thinking
[and new architectures etc.]

4. Anything stateful or edge-case-heavy”



Change Variable, Cont’d

There are 8 task categories, one for each
percentage of Al involvement.
Vigraham’s sweet spot is right there

between the last Al-shining task
(10% — 40% Al involvement)

and the first Al-stumbling task
(50% — 80% Al involvement).



Change Variable, Cont’d

Traditionally,

the first 4 tasks are done at the beginning of a
CBS development

In preparation for

the second 4 tasks, which constitute the meat
of the development.



In the Past

In the past, none of the first 4 tasks were
considered programming.

It was called building the platform with
modules from an artifact library (AL).



In the Past, Cont’d

Any serious programming shop had debugged
boilerplate and framework code, migration
scaffolds, and test cases for its suite of CBSs
In its AL.

No one would program these from scratch if E
could find what E needed in the AL, ...

and in any serious shop, E could find what E
needed.



First 4 Tasks

Thus, none of these first 4 tasks would be
Introducing defects that would be subject to
the 10FCC factor.

Traditionally, search engines are used to help
In these tasks,

and ChatGPT's recall is known to exceed the
recall of all traditional search engines.



Last 4 Tasks

The 10FCC factor would show up only in the
last 4 tasks, ...

which involve
complex logic paths,
context-heavy features,
real systems thinking [and new
architectures etc.], and
statefulness or edge-case heaviness,

In short, which involve real programming,



Real Programming
Therefore, the part of Vigraham’s data

that is from what Is considered real
programming,

can be seen as indirectly addressing the
HAICopC Hypothesis.



Bugs Introduced

10

Al (Vibe) Coding: Bugs vs % Time Spent Fixing

e B N M W W s
o (9 o un o wu o ()
% Dev Time Spent Fixing Al Code

|
U

10

20

30 20 50 60
Al Involvement in Coding (%)

70

80



Addressing the Hypothesis

In this part,

as Al involvement grows from 50% through
80% Al,

the number of bugs and
the time to correct the bugs
are growing,

thus, beginning to address the HAICopC
Hypothesis.



Schwartz’s Post

Victor Schwartz, with a CS degree and years
of programming experience from an early age,
does not consider himself to be a production
engineer that builds large-scale CBSs.

He reports that when he started to build his
most recent product, Al tools were magical.

With them, he was able to build working front-
ends in minutes and prototype complex
features in hours.



Schwartz’s Post, Cont’d

He “Went from zero to demo faster than ever.”

For building prototypes he found Al tools be
be “genuinely transformative”.

Once the demo yielded a go-ahead, he would
normally turn the working prototype over to
production engineers to build the production
version.



Schwartz’s Post, Cont’d

But this time, he thought that he could push
ahead, prompting the Al to build the
production version.

Then he hit the brick wall of reality.



Schwartz’s Post, Cont’d

Now that he needed to [write real, hairy code],
the Al tools started hallucinating.

He realized too late, after many months of
refactoring, that these activities have a steep
learning curve that is way beyond the Al tools’
capabilities.



Conclusions

Many people are jJumping on to the Al coding
bandwagon, ...

and are prompting ChatGPT and other LLMs to
generate for their requirements.

But, these generated programs are chock full
of defects that must be manually found and
fixed.



Conclusions, Cont’d

That correcting a program costs 10 times what
writing it correctly from the beginning costs,
IS long and well established.

Unlike with code written by humans in the
same project, correcting ChatGPT-generated
code requires the correcting humans to study
the code first in order to even begin to incur
the 10FCC



Conclusions, Cont’d

So | hypothesize that the HAICopC factor will
be significantly larger than the 10FCC.

Empirical studies are needed to validate or
falsify the hypothesis.

In the meantime, ...



Conclusions, Cont’d

Those programmers who are having lots of
fun engineering prompts to coax their favorite
LLMs to finally generate code that meets their
requirements

need to consider the cost of what they are
doing and

whether it is cheaper and more reliable to do
all but the preparatory platform building
manually.





