
SE463
Software Requirements:
Specification & Analysis

Overview and Admin Notes
Fall 2025

Daniel Berry
with Input from Ahmed ElShatshat

Table of Contents

• Introduction
• A Brief History Lesson
• Administrative Details
• Course Motivation
• Testimonials
• Course Deliverables
• A Diversion About Smart Ignoramuses
• Past Students Who Nearly Failed Course

INTRODUCTION

Gender-Nonspecific Third-Person Singular
Pronouns

“E”, “em”, and “er” are gender-nonspecific third-
person singular pronouns in subjective,
objective, and possessive forms, respectively.

Example:
Someone was hungry.
E gave to Joe er last dollar.
Joe gave to em his lunch.

Gender-Nonspecific Third-Person Plural
Pronouns

The more common “they”, “them”, and “their”
are more ambiguous, and ...
ambiguity matters in this course about software
system requirements!

What does
 The teacher gave the students their lunch.
mean?

Gender-Nonspecific Third-Person Plural
Pronouns

The teacher gave the students their lunch.
Does their refer to teacher or to students?
And how many lunches?
consider:
 The teacher gave the students er lunch.
 The teacher gave the students their lunches.
Less ambiguous.

Welcome

• … to Software Requirements: Specification and
Analysis

• This course is known as:
– ECE451
–CS445
–CS645
– SE463
– SE 1 (not an official course, just for

discussing all the courses together)

Welcome

• It is one course of a three-course set on
software engineering:
– ECE452/CS446/SE464 (SE 2): Software

Design and Architecture.
– ECE453/CS447/SE465 (SE 3): Software

Testing, Quality Assurance, and
Maintenance.

A BRIEF HISTORY LESSON

Changes

• Previously, the courses could be taken only in
order, as they shared an incremental project
– SE1 ➔ SE2 ➔ SE3.

• In Fall 2008, the three courses were de-
coupled, so they can be taken (in theory) in
any order.

More Changes

• In the Summer of 2018, SE463 was changed so that
you wrote a requirements spec for your capstone
project (FYDP) that you were working on in SE490 in
the same term.

• In the Summer of 2020, the course was changed so
that the TA you have in SE463 and in SE490 are the
same person; so, you have only one TA to deal with
on what is really one project.

More Changes, Cont’d

• In the Summer of 2021, the course brought in
• some more about Agile development
• requirements for AI and ML systems

• In the Fall of 2024, the course brought in
considerations of the cost of AI assistance to
system development

ADMINISTRATIVE DETAILS

Dan

Dan

Prof. Daniel Berry
–Office hours: by appointment made by e-mail,

but feel free to knock on his room door, if the
door is closed.
– Email: dberry ATT uwaterloo DOTT ca
–Web: http://cs.uwaterloo.ca/~dberry
– Appointments are normally in person, but an

appointment can be via Zoom. (It has to be
Zoom and not Teams so that Berry can read
lips.)

mailto:migod@uwaterloo.ca
http://cs.uwaterloo.ca/~dberry

More about Communicating with Dan

The reason I have no telephone is that I am
nearly deaf. I do not sign, but I do read lips. So I
cannot use a voice-only telephone. I can use a
video communication medium if the bandwidth
of the connection is high enough that the image
gets updated at the frequency of television or
movies and thus, lip movement is smooth
enough to be decipherable.

Still More about Communicating with Dan

This means that you will need to show your face
in any virtual meeting, if you want me to
understand what you are saying.

Dan outside of the classroom

• I have been programming since 1965 when I
became 17.

• I learned FORTRAN at an NSF (USA) Summer
Science Training Program at Illinois Institute of
Technology.

• In 1966, I programmed a matchmaking program
to match each of a group of high school
students with a date for a youth-group
sponsored dance.

• I have been writing software ever since ☺.

Dan outside of the classroom
• I’m a researcher in the field of software engineering

(SE), particularly requirements engineering (RE).
• I specialize in:
– Requirements Elicitation,
– Ambiguity in Natural Language Requirements

Descriptions,
– Creativity in Requirements Elicitation, and
– RE for AI and ML systems.

• I dabble also in Electronic Publishing: formatting,
typography, etc.

Dan outside of the university
• I swim, skate (both kinds), and ski (downhill & water).
• I am considered a good cook.
• I am even semi-professional as a cook, having catered two

weddings, one not my own!
• I am a “Star Trek” (since 1966!) , “Big Bang Theory”, &

“Young Sheldon” fan.
• I write scientific satire.
• I write Biblical commentary.
• I have 3 grown children & 4 college-aged grandchildren.
• I love programming.
[Now, do I seem human enough? ☺]

The Course TAs
• Ashu Adhikari, a8adhika ATT uwaterloo DOTT ca
• Mehrad Haghshenas, m3haghsh ATT uwaterloo DOTT ca
• Ende Jin, e5jin ATT uwaterloo DOTT ca
• Michael Lapshin, mlapshin ATT uwaterloo DOTT ca
• Gengyi Sun, g25sun ATT uwaterloo DOTT ca

They will be your mentors, one per group.

Grading Scheme

Project 40 %
Assignments 10 %
Final exam 50 %
Total 100 %

Course Web pages

https://outline.uwaterloo.ca/
• This page is the stable official, university-

sanctioned-and-mandated course outline that
describes all the things about the course that
are not expected to change during the term,
such as policies, due dates, grading schemes,
etc.

• It has a link to the dynamic course page at
http://www.student.cs.uwaterloo.ca/~se463.

http://www.student.cs.uwaterloo.ca/~se463

Course Web pages

http://www.student.cs.uwaterloo.ca/~se463
• This is the dynamic course Web page that has

all the things that change during the term.
• It is updated typically before and after each

lecture, based on what is planned for and what
happened in the lecture.

• Watch for the details about what each
deliverable requires on its due date.

• It has a link to the stable course Web page at
https://outline.uwaterloo.ca.

http://www.student.cs.uwaterloo.ca/~se463
https://outline.uwaterloo.ca/
https://outline.uwaterloo.ca/

Course Web pages

https://outline.uwaterloo.ca/
http://www.student.cs.uwaterloo.ca/~se463

These two sites take the place of a textbook, which
the course does not have.

https://outline.uwaterloo.ca/
http://www.student.cs.uwaterloo.ca/~se463

Course email

se463 ATT uwaterloo DOTT ca

• Please send most questions here
– You may send to Dan (dberry ATT uwaterloo

DOTT ca) questions that relate to course
administration or are personal in nature
directly.

mailto:cs445@student.cs.uwaterloo.ca
mailto:migod@uwaterloo.ca
mailto:migod@uwaterloo.ca

Communication

I will communicate with the class by e-mail,
using your watIam, uwaterloo.ca e-mail
addresses, and the dynamic course Web page.
Not reading either and the stable course Web
page in a timely fashion is not an excuse for any
lapses on your part.

uwaterloo.ca

Learn & Piazza

Heretofore, I didn’t use Learn and Piazza
because they do not provide an order of
magnitude improvement over what I am
already using using vi, html, the shell, and
regular e-mail.

There are things that I do using vi, html, the
shell, and regular e-mail that they don’t do.

See https://doi.org/10.1109/MC.2004.247

https://doi.org/10.1109/MC.2004.247

Learn

By popular demand of past students:
I have set up a Learn account for managing the

registration of the SE463 groups of students
working together.

If at least one of you is willing to help me learn
Learn, I will change deliverable submission
from the e-mail-based way it is now to using
Learn’s submission dropboxes.

SE463 Groups and SE490 Teams

If you’re also in SE490 this term, then your SE463
group is the same as your SE490 team, and the
SE463 group’s number is the same as the SE490
team’s number.
If you are not also in SE490, e.g., you are in a
different engineering, then your SE463 group has
no SE490 counterpart team, i.e., there is no
SE490 team whose number is your group’s
number.

SE463 Groups and SE490 Teams

Because there are two streams active now, there
may be other configurations that we’ll have to
wing on the fly.
E.g., if you took SE490 last term with some or no
members of your SE490 team, and this term,
other members of that team are taking SE490,
but not SE463, then your SE463 group’s number
will be the same as that SE490 team’s number,
because it’s the same capstone project, and
should have one TA.

Term Project

If you’re in SE490:
• The term project for SE463 is to write a

requirements specification for your planned
prototype of your SE490 capstone project.

• Your group’s SE463 TA is also your team’s
SE490 TA.

• That is, your TA will be familiar with all aspects
of your capstone project.

Term Project

If you’re in another Engineering, you will either:
1. join another group as one of its smart

ignoramuses that thinks out of the group's box,
or

2. form a group of one, or maybe, two with a smart
ignoramus, to write a requirements specification
of a major part of your non-SE capstone project.

The preference is #2 above.

Term Project

If you’re in CS, you will either:
1. form a group with other CSers for a project of

your mutual choosing,
2. join another group as one of its smart

ignoramuses that thinks out of the group's box,
or

3. form a group of one, or maybe, two with a smart
ignoramus, to write a spec. of a major part of
your CS capstone project, if you have one.

Term Project
• Your group/team will be assigned a TA, who

will serve as your mentor and will grade all of
your deliverables.
– Thus, you’ll get some consistency in marking.
– E will initially know nothing about the project and

will be learning along with you.
– E will give you feedback on your interaction with

your customer and on your deliverables.
– E will meet with your group/team frequently.

Term Project

• Your job:
– to create detailed models of the various entities and

processes,
– to decide what features should be there,
– to decide the correct functionality of these features,
– to work out all exceptions and variations of these

features,
– eventually, to use these models and decisions to

create a specification describing your prototype.

Final Deliverable

The final deliverable is a specification of your
prototype in the form of a user’s manual
(UM), an SRS, a complete set of scenarios, a
complete set of UML models, velc. (discuss it
with me)

(“vel” = “exclusive or” in Latin; so “velc.” is to “exclusive or” as “etc.” is to
“and”)

Realities About Software
Development Projects

Everyone says,
“We know that we should work out all the
requirements before we start to code,
but we don’t have time!
We gotta get started coding; otherwise we will
not finish in time!”

Wrong!

The problem is that if you start coding before
you work out all the requirements, then …
the cost of correcting the code when a missing
requirement defect is finally discovered is …
10–200 times — depending on when the defect
is found — the cost of writing the code with that
requirement already specified.

The 1980s Data Show

“fault” is often called “defect” or “bug”

The 1980s Data Show
More recent data show larger multipliers, e.g.,
10 → 25.
These multipliers assume that you (plural) are
fixing code that you (plural) wrote.
If one of the authors of the code is an AI, the
multiplier is even higher!
Because before fixing anything you gotta spend
time examining the AI-generated code to
understand WTF the code does. 😟

Start Coding Earlier, Finish Later!

Starting coding before all the requirements are
worked out and specified completely means that
...

you have more defects arising from missing
requirements, and ...

each costs to fix 10 times what doing it right the
first time does, and ...

Start Coding Earlier, Finish Later!

you finish coding much later than if you had
delayed the starting of the coding until after all
the requirements were worked out and specified
completely!

This leads to ...

Start Coding Later, Finish Earlier!

In other words:
• full upfront requirements analysis (Waterfall!)

that is let to run its course until it all
stakeholders say that it’s done,

• then writing a requirements specification (RS)
that is used to drive the downstream
development.

Start Coding Later, Finish Earlier!

In other, other words, you gotta delay
starting implementation until RE has run its
course.

This truth goes against every middle-
through-upper manager’s guts.

Start Coding Later, Finish Earlier!

This truth goes against every middle-through-
upper manager’s guts ...
So, no sane manager delays coding until after the
requirements are completely specified (even
though the data are clear!), for fear of losing er
job if the project with a new-fangled method fails.
If the system fails, but the manager uses the
traditional method, it’s not er fault; that’s life!

Reality of Your Capstone Project

So for your Capstone projects, you have been likely
postponing working out the details of all
requirements, because you don’t have enough time.
You have probably picked a small viable set of
requirements (a.k.a. features) as the scope of your
prototype and are heading into design and coding
without having fleshed out all the requirements’
exceptions.
You don’t have the time!

Example of an Exception

Consider a pocket calculator (PC): with
requirements: +, -, *, and /
This is the scope of the PC.
An exception for the PC’s “/” requirement occurs
when the denominator is “0”.
The requirement for detecting that exception is
“in /, the denominator cannot be 0”.
This requirement specification needs to specify
the response to this exception, e.g., ...

Example of an Exception

Another Example of an Exception

Consider a program MS that inputs two ascendingly
sorted (AS) files of records of varying and
unbounded lengths and outputs a sorted file that is
the merge of the input files.
An exception for MS occurs when an input file is not
AS. In this case, MS’s output file will not be AS.
The requirement for detecting that exception is “no
input file can be not AS”.
This requirement specification needs to specify the
response to this exception.

If You Start Coding Too Soon

So, if you start coding the PC, and you are not
aware of “/”’s exception, you will write code that
will break if ever “/” is presented with a “0”
denominator.

At that point, …

If You Start Coding Too Soon

So, if you start coding MS, and you are not aware
of its exception, you will write code that will
break if ever one of its input files is not AS.

At that point, …

If You Start Coding Too Soon

At that point,
depending on when the discovery is made,
fixing the code will cost 10–200 times what it
would have cost to have specified the exception
upfront so that coding took it into account from
the beginning.
Sometimes, fixing a missing exception handling
requirement requires restructuring, e.g., as in
MS, in which more of its unbounded-length
input will have to be kept for later comparisons.

Inescapable Fact Affecting
Exceptions

The basic fact is that there is no way that you can
write any code without knowing what its
requirements are, i.e., what it is supposed to do,
even if you have to decide what the
requirements are as you are coding.

It’s inevitable, like death and taxes.

So the nature of exceptions is:

Once you have picked a scope for your next sprint
or iteration, i.e., a particular set of requirements,
the exception detection and handling
requirements associated with the chosen scope
are there, even if you have not written them
down.

The Nature of Exceptions:

If you start coding with exception-handling
requirements missing from the specification, and
you discover their existence during coding, you
will have to specify the missing exception-handling
requirements before you can finish the coding, at
10 times the cost of having determined them
before coding.

This is major technical debt from postponing full
RE!

The Nature of Exceptions:

This is a stupidly expensive way to discover and
specify exception-handling requirements,
because they were already apparent when
specifying them was much cheaper.

Worse Comes to Worst

If worse comes to worst, and as very typically,
you deliver the code before an exception-
handling requirement is discovered, then a user
— the best defect finder in the universe — will
eventually discover it, …

and it will cost 200 times more to fix it than
having written it down up front.

The Gift of SE463!

OK.. So, what SE463 is going to do is give you the
gift of time, time that you must spend to pass
SE463, to work out all the requirements for your
chosen scope your capstone project, including
for handling all their exceptions!

So thank me! ☺

No applause yet? ☺

How The Gift Will Be Given

And the way I am going to give you this time is to
take advantage of my dictatorial powers of not
giving you a passing grade in SE463 unless you
satisfy the course requirements, which includes
writing a specification of the selected set of
requirements, the selected scope, of your capstone
prototype, in which each of the exceptions of the
scope’s requirements has been identified and a
response for it is specified.

To Be Clear

• I accept that you may think that what I am
forcing you to do is a colossal waste of time!

• No one writes these specifications any more,
not in real life where everything is Agile, and
not even full Agile with writing of a full set of
test cases upfront for each story.

• “Hey man! get with the times!” ☺

Double Whammy

• This writing of a specification for SE463 has
always been a colossal waste of time,
especially when I concoct a system for you to
specify; the system is totally useless and
boring to you.

• Once the term is over, you’ll never touch it
again in your life!

• Double whammy: useless work for a useless
system.

But Now!

• But now, the system is your own capstone!!!
• I hope that it’s not boring to you!
• So at most, the specification is useless!
• You’ll at least have learned something about

the capstone project that you did not know
before, even it it’s only some potential bugs
that you did not think of before!

But Now!

• However, it could be different from in the past.
• The specification just could end up being

interesting and useful.
• It could end up improving your capstone

system immensely!!!
• Wow, a useful class project!!!
• Will miracles never cease!!!

Maybe Not!

• If you believe that what you produced is indeed
useless to your capstone, then at the end of the
term, just ignore the specification and continue
as before!

• Regardless, if you do a good job on the stupid
inane requirements spec that I force you to
write, you’ll get a good grade in this course!

• No different from when the spec is of my
system!

But It’s Not Agile!

But but but …
Nobody does it this way any more!
We’re Agile!
No upfront requirements engineering (RE)!
It’s in the Agile Manifesto!!!
Get with the times!

Agility Works!

Yes.. Agility works, but it’s a hideously expensive
way to discover all the exceptions and
implement their detection and responses.
In Agile developments, an exception to a
requirement is typically discovered only during
the sprint that implements the requirement,
when implementation costs 10 times what it
would have cost if it were discovered earlier…

Costs

The cost to fix the code to handle the discovered
exception is

at least 10 times

the cost to write the code with the handling of
the discovered exception already specified, …
so that nothing needs to be fixed later.

Data Are Clear

The data are clear.
Spend more time figuring out reqs upfront
→
• implementation is faster and
• the resulting code has fewer defects.

But, But, But...

New requirements keep coming and coming,
and even after the system is deployed.
So, it’s impossible to specify all requirements.

So why bother writing a specification?

A Big But to the But, But, But...

That’s no excuse for not dealing with the
exceptions to the requirements that you have
decided are in the scope of what you are
building,
especially if the scope will be deployed to users,
who have this annoying habit of discovering and
even exploiting all the exceptions ...
Damn them!

A Coop Job is Not Quite Real Life
Note that what happens in a coop term is not
quite real life.
Your employer has you for only 4 months.
So, to squeeze the max utility out of you, your
employer gives to you, on a silver platter, full
specs of your scope, …
worked out the hard way (like you’re gonna do in
this course), in advance of your arrival, by its
regular staff.

A Coop Job is Not Quite Real Life
The real irony is that the employer’s regular staff
do not learn that what they did for you to save
time would save time also for them.

Maybe it’s because they would need to notice that
the sum of (1) the time to prepare complete specs
for you and (2) your implementation time is less
than the time that they spend implementing
without having prepared complete specs.

An Aside About Agile Methods

I have been talking about Agile methods as I
believe most are actually doing it (assuming my
observations are representative):
A sprint:
• Pick a backlog item.
• Write a user story for it.
• Implement it.

An Aside About Agile Methods, Cont’d

Actually, according to the manifesto, there
should be two more steps to a sprint:
• Pick a backlog item.
• Write a user story for it.
• Write thorough test cases for the user story.
• Implement it.
• Test it against the test cases.

An Aside About Agile Methods, Cont’d

Many skip the additional steps.

After all, a set of upfront test cases is effectively
and really a requirements specification ☹

Bleah… more paper work!

An Aside About Agile Methods, Cont’d

But think about it!
Doing these extra steps requires identifying the
exceptions to the requirements for the sprint!

So actually, a properly done full Agile method
will not suffer the cost disadvantage I
described,…

but who does a proper full Agile method??

BOBW (Best of Both Worlds)

Making you do upfront RE for your capstone’s
scope as another, required course’s main
deliverable is a way to allow you allow you to
• try both Agile and upfront methods on the

same project
• and compare the outcomes
• without taking any time away from the agile

work you’re doing in the capstone.

Can Make a Rational Decision

Based on what happens with this
comparison, you can decide rationally,
based on real experience, what you
will do in the future!

Wow!!!!!

TESTIMONIALS

Surprise Discovery in S’20 – S’21

• In Summers of ’20 – ’21, we found that about
1/2 of the teams actually changed their
capstone systems for what they thought was
the better, using what they learned in the
SE463 specifications. Wow!!!

Surprise Discovery in S’20 – S’21

• A few of the teams even began to consider
SE463/SE490 as one course …

Is that a good thing?

Surprise Discovery in S’20 – S’21

• A few of the teams even began to consider
SE463/SE490 as one course …

• and complained that writing the spec was
taking time away from implementation! ☹

• Whoa!!! They never had that extra time in
SE490 in the first place.

• I could have assigned a concocted system
totally unrelated to the capstone.

So Let’s Keep it a Gift
• The SE463 assignment to produce a

specification of your SE490 project is a gift of
time to the SE490 project.

• As with any other gift, you may or may not find
it useful.

• If it is, ENJOY its fruits.
• If it is not, well… at least you satisfied your

SE463 requirements in a more interesting way
than it used to be!

Ain’t the Gift Nice?

Aren’t I nice? ☺

You may now applaud! ☺

Some Caveats

You will note that the description of each
deliverable is rather vague, …
stating what is to be delivered in a way that is
independent of the system being described.

This is intentional for two reasons:
• Each capstone project is different, …
• It’s like in a real-life RFP: …

Each Capstone Project is Different

Each capstone project is different, and the
description has to work for any project.

In RE terms, the description describes WHAT you
must deliver without describing anything about
HOW to deliver it 😀.

It’s Like in a Real-Life RFP

It’s like in a real-life RFP: Your client and users
don’t know enough about the system to describe
it in more detail.

If they did, they would not be asking you to build
the system.

Double Learning Experiences

Thus, the deliverables will be double learning
experiences:
• learning what the description asks for, and
• learning what you are supposed to learn from

what it asks for, …

perhaps not in that order and
perhaps in several iterations.

COURSE DELIVERABLES

Before First Deliverable

You and your group need to self register as an
SE463 group at the SE490 or SE463 Learn site
and to prepare an abstract of your project by 10
September:
If your SE463 group is also an SE490 team, the
self registration you must do at the SE490 Learn
site by the same date for SE490 suffices. I will
copy that over to SE463’s Learn site.

Before First Deliverable

If your SE463 group is not also an SE490 team,
your group will self register at SE463’s Learn site.

No matter what, look at the course Web site for
instructions on how to self register your group.

Before First Deliverable: the Abstract

RE: the abstract:
It’s a not-more-than-one-page elevator pitch
that tells a potential investor enough detail
about the use of the features of your capstone
project that E can decide whether to invest.
Many SE490 teams will have an abstract from
before.
In that case, use it; if you want to update it,
please do so!

Before First Deliverable: the Abstract

RE: the abstract:
If you don’t have an abstract, then make one up.
It doesn’t matter that it will change, because, it’s
the basis for the first three deliverables.
Historically, what is learned doing these first
deliverables ends up causing changes to the
abstract.

First Three Deliverables

The first three deliverables have you describe
your capstone system from three different key
viewpoints:
• structure (domain model),
• functionality (use-case model), and
• exceptions.

Fourth and Fifth Deliverables

The fourth deliverable is a first draft of the final
specification of your system, which is the fifth
deliverable.

These are informed by what you learned in the
first three deliverables.

Making Learning Safe

• Each of the first three deliverables counts only
1 out of 50 for the whole set of deliverables.

• Even the fourth deliverable counts only 7 out
of the 50.

• So you can afford to let each of these first four
deliverables be learning experiences towards
the last deliverable that counts 40 out of the
50.

We Can Adjust Deliverables to Your
Project

• All this said, if you cannot relate a deliverable
description to your capstone system, please
approach your TA and me.

• The TA and I will work with you to find an
alternative description or even an alternative
deliverable that fits your system and achieves
the objectives of the original deliverable.

Is anyone not in a capstone?

Is anyone not in some capstone team, either in
SE or in another engineering?
If so, →

A Diversion About
Smart Ignoramuses

PAST STUDENTS WHO
NEARLY FAILED COURSE

Two Teams In S’21

Two teams did total BS for each deliverable.
Always their reasons were that
1. They will figure all this stuff out when they

need to (i.e., thinking Agilely).
2. Besides, it’s a waste of time that is better

spent on solving more immediate problems in
the implementation.

Two Teams In S’21, Cont’d

The immediate flaw in Reason #2 is that the
SE463 project is neither removing nor adding
time from or to the SE490 project.
They are two different courses.

BASIC FACT: No matter what, you have to do
SE463’s assignments to pass it, and it is part of
the design core for your SE degree.

Two Teams In S’21, Cont’d

It’s only a lucky — or unlucky — accident that
the project for SE463 happens to be relevant to
your SE490 project.

It could have been some useless, boring piece of
dreck that I invented.

Two Teams In S’21, Cont’d

W.r.t. Reason #1, they did not see any reason that
they needed to figure this stuff out now.
• I accept that not everyone agrees with the RE

field’s message that the earlier you figure the
requirements out, the faster your implementation
will go and the better your software will be.

• So I said, cognizant of the BASIC FACT, “Just for a
decent grade in this class, humor me!”

Two Teams In S’21, Cont’d

While the BS did not affect the mark received on
the 1-mark deliverables, they lost many marks on
the last two deliverables, that accounted for
almost all of the deliverables’ half of the grade.

I instruct the TAs to deduct many points for any
ignored comment or request from a previous
deliverable.
Do not waste your TA’s valuable time!!!!

Two Teams In S’21, Cont’d

Each team ended up with about 35/100 in the
project portion of its total grade, ...
when almost every other team got 70/100 or
better for the same.

Each team member did fairly well on the final
exam.
So, each barely passed the course.

Two Teams In S’21, Cont’d

Their capstone projects came out OK, not
superb.

However, with all the usual excitement near the
deadline.

So in the end, they passed everything they
needed to.

Two Teams In S’21, Cont’d

Note that agile methods do work.
But our data say that a method with upfront RE
is faster and better.
You may not believe it, especially coming from
an old-fart prof who is so not with it.

That’s fine. (I remember thinking the same way
55 years ago. :-))

Two Teams In S’21, Cont’d

But these teams lost an opportunity to see what
happens if they figure out requirements up
front,
• in a low-risk way,

(My assignments are not in the real project’s
schedule.)

• without any pressure on the real project.
(Since it’s something you gotta do for another
class.)

Remember

It’s not like I’m asking you to do something
totally useless, like my concocted problems.

Eventually, you will have to consider the issues
covered by the deliverables.

SE463
Software Requirements:
Specification & Analysis

Overview and Admin Notes
Fall 2025

Daniel Berry
with Input from Ahmed ElShatshat

