
SE463
Software Requirements:
Specification & Analysis

Overview and Admin Notes
Spring/Summer 2023

Daniel Berry

“E”, “em”, and “er” are gender non-specific
third-person singular pronouns in subjective,
objective, and possessive forms, respectively.

Example:
Someone was hungry.
E gave to Joe er last dollar.
Joe gave to em his lunch.

Welcome

• … to Software Requirements: Specification
and Analysis

• This course is known as:
– ECE451
–CS445
–CS645
– SE463
– SE 1 (not an official course, just for

discussing all the courses together)

Welcome

• It is one course of a three-course set on
software engineering:
– ECE452/CS446/SE464 (SE 2): Software

Design and Architecture.
– ECE453/CS447/SE465 (SE 3): Software

Testing, Quality Assurance, and
Maintenance.

Changes

• Previously, the courses could be taken only in
order, as they shared an incremental project
– SE1 ! SE2 ! SE3.

• In Fall 2008, the three courses were de-
coupled, so they can be taken (in theory) in
any order.

More Changes

• In the Summer of 2018, SE463 was changed so
that you wrote a requirements spec for your
capstone project (FYDP) that you were working
on in SE490 in the same term.

• In the Summer of 2020, the course was changed
so that the TA you have in SE463 and in SE490 are
the same person; so, you have only one TA to
deal with on what is really one project.

More Changes, Cont’d

• In the Summer of 2021, the course brought in
• some more about Agile development
• requirements for AI and ML systems

More Changes, Cont’d

In the Summer of 2023,
• the course will integrate CS445 and
• I will revise all the out-of-date lectures.

Dan

Dan

Prof. Daniel Berry
–Office hours: by appointment made by e-mail,

but feel free to knock on his room door, if the
door is closed.

– Email: dberry ATT uwaterloo DOTT ca
–Web: http://cs.uwaterloo.ca/~dberry
– Appointments are normally in person, but an

appointment can be via Zoom. (It has to be
Zoom and not Teams so that Berry can read
lips.)

mailto:migod@uwaterloo.ca
http://cs.uwaterloo.ca/~dberry

More about Communicating with
Dan

The reason I have no telephone is that I am
nearly deaf. I do not sign, but I do read lips. So I
cannot use a voice-only telephone. I can use a
video communication medium if the bandwidth
of the connection is high enough that the image
gets updated at the frequency of television or
movies and thus, lip movement is smooth
enough to be decipherable.

Still More about Communicating
with Dan

This means that you will need to show your face
in any virtual meeting, if you want me to
understand what you are saying.

Dan outside of the classroom

• I have been programming since 1965 when I
became 17.

• I learned FORTRAN at an NSF (USA) Summer
Science Training Program at Illinois Institute of
Technology.

• In 1966, I programmed a matchmaking
program to match each of a group of high
school students with a date for a youth-group
sponsored dance.

• I have been writing software ever since ".

Dan outside of the classroom

• I’m a researcher in the field of software
engineering (SE), particularly requirements
engineering (RE).

• I specialize in:
– Requirements Elicitation,
– Ambiguity in Natural Language Requirements

Descriptions,
– Creativity in Requirements Elicitation, and
– RE for AI and ML systems.

• I dabble also in Electronic Publishing: formatting,
typography, etc.

Dan outside of the university
• I swim, skate (both kinds), and ski (downhill snow and

water).
• I am considered a good cook.
• I am even semi-professional as a cook, having catered

two weddings, one not my own!
• I am a “Star Trek” and a “Big Bang Theory” fan.
• I write scientific satire.
• I write Biblical commentary.
• I have 3 grown children & 4 college-aged grandchildren.
• I love programming.
[Now, do I seem human enough? "]

The Course TAs
• Frédéric Bouchard, fbouchar ATT uwaterloo DOTT ca
• Anurag Chakraborty, a8chakra ATT uwaterloo DOTT ca
• Kamyar Ghajar, kghajar ATT uwaterloo DOTT ca
• Aditya Shankar Narayanan, a8shanka ATT uwaterloo

DOTT ca
• Zhenyang Xu, z473xu ATT uwaterloo DOTT ca
• Max Zhang, m492zhan ATT uwaterloo DOTT ca
• Owen Zila, owen.zila ATT uwaterloo DOTT ca

They will be your mentors, one per group.

Your Term Project

If you’re in SE490:
• The term project for SE463 is to write a

requirements spec for your planned prototype
of your SE490 capstone project.

• Your group’s SE463 TA is also your group’s
(team’s) SE490 TA.

• That is, your TA will be familiar with all aspects
of your capstone project.

Your Term Project

If you’re in CS or another Engr., you will either:
• form a group for a project of your mutual

choosing,
• join another group as one of its smart

ignoramuses that thinks out of the group's box,
or

• form a group of one, maybe with a smart
ignoramus, to write a spec of a major part of
your non-SE capstone project.

Your Term Project

The TA of your group serves as the
group's mentor and evaluates the
group’s project-related work.

Grading Scheme

Project 40 %
Assignments 10 %
Final exam 50 %
Total 100 %

Course Web page

http://www.student.cs.uwaterloo.ca/~se463

• Lots of details will appear there over the term,
especially the lecture slides, supplemental
readings, and occasional stuff about the
project. This site takes the place of a textbook,
which the course does not have.

• Watch for announcements too.

http://www.student.cs.uwaterloo.ca/~se463

Course email

se463 ATT uwaterloo DOTT ca

• Please send most questions here
– You may send to Dan (dberry ATT uwaterloo

DOTT ca) questions that relate to course
administration or are personal in nature
directly.

mailto:cs445@student.cs.uwaterloo.ca
mailto:migod@uwaterloo.ca

Course project

The term project for SE463 is to write a
requirements spec for your planned prototype
of your SE490 capstone project, if you are in
SE490; or of some other system, if you are not in
SE490.

Course project
• Your group will be assigned a TA, who will

serve as your mentor and will grade all of your
deliverables.
– Thus, you’ll get some consistency in marking.
– He or she will initially know nothing about the

project and will be learning along with you.
– He or she will give you feedback on your

interaction with your customer and on your
deliverables.

– He or she will meet with your group frequently.

Course project

• Your job:
– to create detailed models of the various entities

and processes,
– to decide what features should be there,
– to decide the correct functionality of these

features,
– to work out all exceptions and variations of these

features,
– eventually, to use these models and decisions to

create a specification describing your prototype.

Final Deliverable

The final deliverable is a specification of your
prototype in the form of a user’s manual
(UM), an SRS, a complete set of scenarios, a
complete set of UML models, velc. (discuss it
with me)

(“vel” = “exclusive or” in Latin; so “velc.” is to “exclusive or” as “etc.” is to
“and”)

More Details About Project

• Everyone says
• “We know that we should work out all the

requirements before we start to code,
• but we don’t have time!
• We gotta get started coding; otherwise we will

not finish in time!”

Wrong!

The problem is that if you start coding before
you work out all the requirements, then …
the cost of correcting the code when a missing
requirement defect is finally discovered is …
10–200 times — depending on when the defect
is found — the cost of writing the code with that
requirement already specified.

The Data Show

Phenomenon A:
Start Coding Earlier, Finish Later!

Starting coding before all the requirements are
worked out and specified completely means that
…

you finish coding much later than if you had
delayed the starting of the coding until after all
the requirements were worked out and
specified completely!

Phenomenon A:
Start Coding Later, Finish Earlier!

In other words:
• Start coding earlier, finish later.
• Start coding later, finish earlier.
This truth goes against every manager’s guts;
so no sane manager delays coding until after the
requirements are completely specified (even
though the data are clear!), for fear of losing job
if the project with a new-fangled method fails.

Phenomenon B: But But But…

“But but but.. requirements keep coming with
no end in sight.
Users think of new requirements all the time.
So what difference does it make?
We’re going to have to deal with new
requirements after the coding is done anyway?”

That’s absolutely right!

Phenomena A and B

That’s absolutely right!

In fact, empirical studies go both ways or are
inconclusive.

In fact, both A and B are right! So, now what?

Two Different Kinds of
Requirements

You see, the Phenomena A and B are talking
about entirely different sets of requirements!
• Scope DetermininG Requirements (G

requirements) that keep coming and are
Phenomenon B.

• Scope DetermineD Requirements (D
requirements) that are expensive to fix and
are Phenomenon A.

Pocket Calculator Example

Pocket calculator (PC): with scope +, -, *, and /
This is the scope of the PC.
• G requirements: **, log

Adding them would determine a new scope
for the PC.

• D requirement: ...

Pocket Calculator Example

Pocket calculator (PC): with scope +, -, *, and /
• D requirement: NZD: “in /, the denominator

cannot be 0”

Its presence determined by the presence of /
in the PC’s scope.

In a sense, NZD is already in the PC’s scope.

Completion of a Scope

Thus, there is a notion of
the completion of a scope
to contain all its D requirements.

If You Start Coding Too Soon

So if you start coding the requirement /, and you
are not aware of its D requirement, NZD, you
will write code that will break if ever / is
presented with a 0 denominator.

At that point, …

If You Start Coding Too Soon

At that point,
depending on when the discovery is made,
fixing the code will cost 10–200 times what it
would have cost to have specified NZD upfront
so that coding took it into account from the
beginning.
Sometimes, fixing a missing D requirement
requires restructuring.

The G Requirements Are Different

• Yes, if you now add a new G requirement,
particularly one that is not anticipated, there
is a chance that it will clash with the existing
architecture, and you’ll have to do an
expensive restructuring.

• But that’s unavoidable. And that’s the sort of
thing iterative and agile methods are designed
to deal with.

The G Requirements Are Different

• And, if you have to restructure, it will cost 10–
200 times more than it would have cost if you
had included the G requirement from the
beginning.

• There is evidence that throwing out the code
and starting all over with all the requirements
is much cheaper.

• But no manager’s guts permits doing that!

Inescapable Fact Affecting D
Requirements

The basic fact is that there is no way that you
can write any code without knowing what its
requirements are, i.e., what it is supposed to do,
even if you have to decide what the
requirements are as you are coding.

It’s inevitable, like death and taxes.

So the nature of D requirements is:

Once you have picked a scope for your next
sprint or iteration, i.e., a particular set of G
requirements w.r.t. the empty scope, the D
requirements associated with the chosen scope
are there even if you have not written them
down.
I.e., every requirement in a scope’s completion
is there, even if you have not written it down!

The Nature of D Requirements:

If you start coding with them missing from the
specification, and you discover their existence
during coding, you will have to specify the
missing D requirements before you can finish
the coding, at 10 times the cost of having
determined them before coding.

This is major technical debt from postponing full
RE!

So the nature of D requirements is:

This is a stupidly expensive way to discover and
specify D requirements, because they were
already apparent when specifying them was
much cheaper.

Worse Comes to Worst

If worse comes to worst, and as very typically,
you deliver the code before a D requirement is
discovered, then a user — the best defect finder
in the universe — will eventually discover it, …

and it will cost 200 times more to fix it than
having written it down up front.

Reality of Your Capstone Project

So for your Capstone projects, you have been likely
postponing working out the details of all
requirements, because you don’t have enough
time.
You have probably picked a small viable set of G
requirements as the scope of your prototype and
are heading into design and coding without having
fleshed out the G requirements’ D requirements.
You don’t have the time!

The Gift of SE463!

OK.. So what SE463 is going to do is give you the
gift of time, time that you have to spend to pass
SE463, to work out the D requirements for your
capstone project!

So thank me! "

No applause yet? "

How The Gift Will Be Given

And the way I am going to give you this time is to
take advantage of my dictatorial powers of not
giving you a passing grade in SE463 unless you
satisfy the course requirements, which is to write a
requirements specification of the selected set of G
requirements, the selected scope, of your capstone
prototype, in which each of the scope’s D
requirements has been worked out and a response
for it is specified.

To Be Clear

• I accept that you may think that what I am
forcing you to do is a colossal waste of time!

• No one writes these specifications any more,
not in real life where everything is Agile, and
not even full agile with writing of a full set of
test cases upfront for each story.

• “Hey man! get with the times!” "

Double Whammy

• This has always been the case with the SE1
project, especially when I concoct a system for
you to specify; the system is totally useless
and boring to you.

• Once the term is over, you’ll never touch it
again in your life!

• Double whammy: useless work for a useless
system.

But Now!

• But now, the system is your own capstone!!!
• I hope that it’s not boring to you!
• So at most, the specification is useless!

But Now!

• However, it could be different from in the
past.

• The specification just could end up being
interesting and useful.

• It could end up improving your capstone
system immensely!!!

• Wow, a useful class project!!!
• Will miracles never cease!!!

Maybe Not!

• If you believe that what you produced is
indeed useless to your capstone, then at the
end of the term, just ignore the specification
and continue as before!

• Regardless, if you do a good job on the stupid
inane requirements spec that I force you to
write, you’ll get a good grade in this course!

• No different from when the spec is of my
system!

But It’s Not Agile!

But but but …
Nobody does it this way any more!
We’re agile!
No upfront requirements engineering (RE)!
It’s in the Agile Manifesto!!!
Get with the times!

Agility Works!

Yes.. Agility works,
but it’s a hideously expensive way to discover
and implement D reqs.

A G req’s D reqs are discovered only during the
sprint that implements the G req …

or even later.

Costs

The cost to fix this code to handle the D reqs is

at least 10 times

the cost to write the code for the G req with the
D reqs already specified, …
so that nothing needs to be fixed.

Data Are Clear

The data are clear.
Spend more time figuring out reqs upfront
→
• implementation is faster and
• the resulting code has fewer defects (bugs).

Project Managers Don’t Gamble

No manager is willing to buck the trend and to
delay the start of implementation to do upfront
RE to identify D reqs
• If E bucks the trend, and the project fails, er

head will roll.
• If E does the accepted agile method, a failure

is regarded as the inevitable occasional shit
that happens.

An Aside About Agile Methods

I have been talking about Agile methods as I
believe most are actually doing it (assuming my
observations are representative):
A sprint:
• Pick a backlog item.
• Write a user story for it.
• Implement it.

An Aside About Agile Methods,
Cont’d

Actually, according to the manifesto, there
should be two more steps to a sprint:
• Pick a backlog item.
• Write a user story for it.
• Write thorough test cases for the user story.
• Implement it.
• Test it against the test cases.

An Aside About Agile Methods,
Cont’d

Many skip the additional steps.

After all, a set of upfront test cases is effectively
and really a requirements specification #

Bleah… more paper work!

An Aside About Agile Methods,
Cont’d

But think about it!
Doing this step requires identifying D
requirements for the sprint!

So actually, a properly done agile method will
not suffer the cost disadvantage I described,…

but who does that??

BOBW (Best of Both Worlds)

Making you do upfront RE for your capstone as
another, required course’s main deliverable is a
way to allow you allow you to
• try both agile and upfront on the same project
• and compare the outcomes
• without taking away any time from what

you’re doing in the capstone.

Can Make a Rational Decision

Based on what happens with this
comparison, you can decide rationally,
based on real experience, what you
will do in the future!

Wow!!!!!

Two Separate Courses

• Note that SE463 and SE490 are separate.
• This gives you the right to ignore in SE490

what you produce in SE463, to throw it out as
useless make work that the SE463 prof made
you do for a good grade in SE463…

• just as it used to be in the past, and still is in
some sections of CS445 and ECE451.

Surprise Discovery in S’20 – S’21

• In Summers of ’20 – ’21, we found that about
1/2 of the teams actually changed their
capstone systems for what they thought was
the better, using what they learned in the
SE463 specifications. Wow!!!

Surprise Discovery in S’20 – S’21

• A few of the teams even began to consider
SE463/SE490 as one course …

Is that a good thing?

Surprise Discovery in S’20 – S’21

• A few of the teams even began to consider
SE463/SE490 as one course …

• and complained that writing the spec was
taking time away from implementation! #

• Whoa!!! They never had that extra time in
SE490 in the first place.

• I could have assigned a concocted system
totally unrelated to the capstone.

So Let’s Keep it a Gift
• The SE463 assignment to produce a

specification of your SE490 project is a gift of
time to the SE490 project.

• As with any other gift, you may or may not
find it useful.

• If it is, ENJOY its fruits.
• If it is not, well… at least you satisfied your

SE463 requirements in a more interesting way
than it used to be!

Ain’t the Gift Nice?

Aren’t I nice? "

You may now applaud! "

Some Caveats

You will note that the description of each
deliverable is rather vague, …
stating what is to be delivered in a way that is
independent of the system being described.

This is intentional for two reasons:
• Each capstone project is different, …
• It’s like in a real-life RFP: …

Each Capstone Project is Different

Each capstone project is different, and the
description has to work for any project.

In RE terms, the description describes WHAT you
must deliver without describing anything about
HOW to deliver it 😀.

It’s Like in a Real-Life RFP

It’s like in a real-life RFP: Your client and users
don’t know enough about the system to
describe it in more detail.

If they did, they would not be asking you to
build the system.

A Coop Job is Not Quite Real Life
Note that what happens in a coop term is not
quite real life.
Your employer has you for only 4 months.
So, to squeeze the max utility out of you, your
employer gives to you, on a silver platter, full
specs of your scope, …
worked out the hard way (like you’re gonna do
in this course), in advance of your arrival, by its
regular staff.

Double Learning Experiences

Thus, the deliverables will be double learning
experiences:
• learning what the description asks for, and
• learning what you are supposed to learn from

what it asks for, …

perhaps not in that order and
perhaps in several iterations.

First Three Deliverables

The first three deliverables have you describe
your capstone system from three different key
view points:
• structure (domain model),
• functionality (use-case model), and
• exceptions.

Fourth and Fifth Deliverables

The fourth deliverable is a first draft of the final
specification of your system, which is the fifth
deliverable.

These are informed by what you learned in the
first three deliverables.

Making Learning Safe

• Each of the first three deliverables counts only
1 out of 50 for the whole set of deliverables.

• Even the fourth deliverable counts only 7 out
of the 50.

• So you can afford to let each of these first four
deliverables be learning experiences towards
the last deliverable that counts 40 out of the
50.

We Can Adjust Deliverables to Your
Project

• All this said, if you cannot relate a deliverable
description to your capstone system, please
approach your TA and me.

• The TA and I will work with you to find an
alternative description or even an alternative
deliverable that fits your system and achieves
the objectives of the original deliverable.

A Diversion About
Smart Ignoramuses

Two Teams In S’21

Two teams did total BS for each deliverable.
Always their reasons were that
1. They will figure all this stuff out when they

need to (i.e., thinking agilely).
2. Besides, it’s a waste of time that is better

spent on solving more immediate problems
in the implementation.

Two Teams In S’21, Cont’d

The immediate flaw in Reason #2 is that the
SE463 project is neither removing nor adding
time from or to the SE490 project.
They are two different courses.

BASIC FACT: No matter what, you have to do
SE463’s assignments to pass it, and it is part of
the design core for your SE degree.

Two Teams In S’21, Cont’d

It’s only a lucky — or unlucky — accident that
the project for SE463 happens to be relevant to
your SE490 project.

It could have been some useless, boring piece of
dreck that I invented.

Two Teams In S’21, Cont’d

W.r.t. Reason #1, they did not see any reason
that they needed to figure this stuff out now.
• I accept that not everyone agrees with the RE

field’s message that the earlier you figure the
requirements out, the faster your
implementation will go and the better your
software will be.

• So I said, cognizant of the BASIC FACT, “Just
for a decent grade in this class, humor me!”

Two Teams In S’21, Cont’d

While the BS did not affect the mark received on
the 1-mark deliverables, they lost many marks
on the last two deliverables, that accounted for
almost all of the deliverables’ half of the grade.

I instruct the TAs to deduct many points for
any ignored comment or request from a
previous deliverable.
Do not waste your TA’s valuable time!!!!

Two Teams In S’21, Cont’d

Each team ended up with about 35/100 in the
project portion of its total grade, ...
when almost every other team got 70/100 or
better for the same.

Each team member did fairly well on the final
exam.
So, each barely passed the course.

Two Teams In S’21, Cont’d

Their capstone projects came out OK, not
superb.

However, with all the usual excitement near the
deadline.

So in the end, they passed everything they
needed to.

Two Teams In S’21, Cont’d

Note that agile methods do work.
But our data say that a method with upfront RE
is faster and better.
You may not believe it, especially coming from
an old-fart prof who is so not with it.

That’s fine. (I remember thinking the same way
55 years ago. :-))

Two Teams In S’21, Cont’d

But these teams lost an opportunity to see what
happens if they figure out requirements up
front,
• in a low-risk way,

(My assignments are not in the real project’s
schedule.)

• without any pressure on the real project.
(Since it’s something you gotta do for another
class.)

Remember

It’s not like I’m asking you to do something
totally useless, like my concocted problems.

Eventually, you will have to consider the issues
covered by the deliverables.

SE463
Software Requirements:
Specification & Analysis

Overview and Admin Notes
Spring/Summer 2023

Daniel Berry

