
Writing code during
requirements determination:
A good head start or
a costly bad bet?

Daniel M. Berry
dberry@uwaterloo.ca

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 1



At the start of many SW developments:

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 2



Boss’s Fateful Order

“You people start the coding while I go find
out what the customer wants.”

Hereinafter, called “the boss’s order”

How many of you have participated in such a
boss’s order?

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 3



Have Participated

You have participated in such a boss’s order!

I am not surprised.

It’s a very common occurrence, arising from
the mistaken assumption that the sooner
coding starts, the sooner it ends.

Did it work as planned — giving your team a
head start on the coding?

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 4



If not, …

If not, then you will learn why!

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 5



If so, …

If so, then:

Did your team have to change any of the
already-written code after the boss learned
what the customer really wanted?

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 6



If not, …

If not, then you were very, very, very lucky,

and you will see why.

We’ll all see what normally happens.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 7



If so, …

If so, what percentage of the already-written
code had to be changed in the end, including
all ripple effects?

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90%, 100%, 110%?

Thanks, we’ll use these data as we answer the
title question!

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 8



Implicit in Boss’s Order

First, there are some assumptions implicit in
the boss’s order.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 9



First Assumption

1. Requirements are easy to learn.

How many of you have found this to be true?

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 10



No

The fact that this is not true in most people’s
experience is probably the reason they prefer
to skip this step and move right to coding.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 11



Yes

Your software was a toy, not operating in the
real world, perhaps solving a purely
mathematical problem.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 12



Second Assumption

2. The customer knows what E wants!

How many of you have found this to be true?

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 13



No

A very common complaint among
programmers is that the idiot customers just
do not know what they want and are always
changing their minds!

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 14



Yes

Wow! you were very, very, very lucky.

Perhaps, your customer was a professional
requirements engineer, who had done er
homework.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 15



Third Assumption

3. One can write code before knowing
knowing its requirements, i.e., what it is
supposed to do.

Since writing any line of code requires
knowing what the line of code is supposed to
do, how can you write SW without knowing its
requirements?

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 16



Ah, but …

A programmer who knows the SW’s domain
can make very educated guesses about what
most of the SW is going to have to do.

And while the code will not be 100% correct, it
won’t be too far off.

In any case, we can fix the imperfections later.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 17



But we’ll see …

We’ll see later how much that imperfection will
cost.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 18



Some Facts

Here are some facts that we need to analyze if
writing code during requirements
determination is a good head start or a costly
bad bet:

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 19



Cost to Fix Errors

Barry Boehm’s (next slide) and Steve
Schach’s (slide after that) summaries of data
over many application areas show that fixing
an error after delivery costs two orders of
magnitude more than fixing it it at
requirements engineering (RE) time.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 20



Phase in which error is detected

1

2

5

10

20

50

100

R
el

at
iv

e 
co

st
 to

 c
or

re
ct

 e
rr

or

Preliminary
design

Detailed
design

Code and
debug

Integrate Validate Operation

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 21



200

150

100

50

0
Reqs Specs Plan Design Code Integ Maint

1 2 3 4 10

30

R
el

at
iv

e 
co

st
 to

 fi
x 

fa
ul

t

Phase in which fault is detected and fixed

200

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 22



Cost to Fix Errors, Cont’d

More specifically,

g requirement defects are harder to fix than
architectural defects,

g which are harder to fix than design defects,
g which are harder to fix than implementation

defects [Allen et al 2008].

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 23



 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 24



Conclusion

Therefore, it pays to find errors during RE.

Also, it pays to spend a lot of time getting the
requirements specification error-free, to avoid
later high-cost error repair, and to speed up
implementation—even 70% of the lifecycle!

The 70% is not a prescription, but a prediction
of what will happen.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 25



Back to the Boss’s Order

If as little as 10% of the code written in
advance of knowing the full requirements has
to be changed after the full requirements are
known, …

the cost of writing the code has doubled:

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 26



Bad Bet

If C is the cost of writing the advance version,
the cost of fixing the advance version when as
little as 10% of it has to be changed is (10 ×
0.1×C), and the total cost of writing the code is

C + (10 × 0.1×C) = 2×C

Oy!

And it gets worse if more than 10% has to be
changed.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 27



It Can Get Much Worse!

Data show that 50–85% of all lifetime defects
in deployed SW can be traced back to
requirement errors:

missing,
wrong, and
extraneous

requirements

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 28



Better Bet

So what’s a better use of the programmers
who would become idle if they are not put to
work starting the coding while the boss goes
to find out what the customer wants?

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 29



Better Bet

So what’s a better use of the programmers?

Have them join the RE team

g to provide more brain power to the RE
effort and

g to help the RE team know when the
requirements specification is complete
enough that it can be programmed without
the programmers’ having to ask questions.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 30



So, obeying the boss’s order amounts to a
very bad bet!

It’s practically guaranteed to end up at least
doubling the cost of writing the code and
developing the system.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 31



Other Implication

This cost says something about how bug fixes
and maintenance should be done.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 32



Start All Over

It’s cheaper in the long run to throw out the
buggy code, redo and finish requirements
analysis, and start coding from scratch.

But, no one is willing to throw out er
investment in written code, even if it’s clearly
buggy, …

even though the data are clear!

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 33



Nature of Most Bugs

About 70% of the bugs arise from missing
easily identified requirements that deal with
exceptions that are inherent in the basic
functions of the SW, e.g.,

ill-formed input, and
denominator of 0,

and not creative new requirements that no one
thought of.

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 34



Nature of Most Bugs, Cont’d

So, a little bit of careful thinking about
exceptions, …

enough to track them all down, …

pays off BIG!

 2022 Daniel M. Berry Programming During RE: Head Start or Bad Bet? Pg. 35




