
CS445/ECE 451/CS645
Software Requirements Specifications

& Analysis

Behavioural Modelling

U Waterloo CS445/ECE451/CS645 Fall 2019 1

Glossary
• System behavior: is how a system acts and reacts.

• Behavior model: a view of a system that emphasizes the behavior of the
system as a whole (as it appears to outside users).

• State-driven behavior: means that the object’s behavior can be divided into
disjoint sets.

U Waterloo CS445/ECE451/CS645 Fall 2019 2

UML state diagrams
• State diagram: Shows data and behavior of a single object throughout its

lifetime.
• set of states (including an initial start state)
• transitions between states
• entire diagram is drawn from that object's perspective

• What objects are best used with state diagrams?
• large, complex objects with a long lifespan
• domain ("model") objects
• not useful to do state diagrams for every class in the system!

• Commonly used in design to describe object’s behavior as a guide to
implementation

• Used in RE to model interface specs (e.g. UI)
• Specify each object’s contribution to all scenarios of all use cases.

U Waterloo CS445/ECE451/CS645 Fall 2019 3

UML state diagrams
• Represented by Finite State Machine (FSM)

• FSA – Finite State Automaton- is another term for FSM

U Waterloo CS445/ECE451/CS645 Fall 2019 4

States
• State: conceptual description of the data in the object

• represented by object's field values

• Entire diagram is drawn from the
central object's perspective

• only include states / concepts that
this object can see and influence

• don't include every possible value
for the fields; only ones that are
conceptually different

U Waterloo CS445/ECE451/CS645 Fall 2019 5

Transitions
• Transition: movement from one state to another

• Event [condition] / action
• event: triggers (potential) state change
• condition: boolean condition that must be true
• action: any behavior executed during transition (optional)

• Transitions must be mutually exclusive (deterministic)
• must be clear what transition to take for an event
• most transitions are instantaneous (existing or measured at a particular instant.) ,

except "do" activities

U Waterloo CS445/ECE451/CS645 Fall 2019 6

Note:
• Event is a noteworthy or significant occurrence in the environment.

• input message from the env. (login request)
• change in the env. (coin inserted, elevator button pressed)
• passage of time
• multiple events on a transition label are alternative triggers

• Condition is a Boolean expression:
• over domain model phenomena
• over state-machine variables

• Action is the system’s response to an event, it is non-interruptible.
• output message
• change to env. phen. (Turnstile.locked := true. AddLoan(m:LibraryMember,

p:Publication, today:Date)
• multiple actions are separated by “;” and execute sequentially

U Waterloo CS445/ECE451/CS645 Fall 2019 7

Examples

U Waterloo CS445/ECE451/CS645 Fall 2019 8

U Waterloo CS445/ECE451/CS645 Fall 2019 9

How are transactions handled?
• If an object is in a state S that responds to an event evX, then it acts upon

that event.
• It transitions to the specified state, if the event triggers a transition and the condition

(if any) on that transition evaluates to TRUE.
• It executes any actions associated with that transition.

• Events are quietly discarded if:
• A transition is triggered, but the transition’s condition evaluates to FALSE.
• The event does not explicitly trigger a transition or reaction.

U Waterloo CS445/ECE451/CS645 Fall 2019 10

Internal activities
• Internal activity: actions that the

central object takes on itself
• sometimes drawn as self-transitions

(events that stay in same state)

• entry/exit activities
• reasons to start/stop being in that state

• Take time, interruptible, may require computation.

U Waterloo CS445/ECE451/CS645 Fall 2019 11

Interruptable

UML terminology
• Actions are known as “regular activities”
• Activities are known as “do-activities”

U Waterloo CS445/ECE451/CS645 Fall 2019 12

Interruptable

Non-interruptable

Example: Stopwatch

U Waterloo CS445/ECE451/CS645 Fall 2019 13

1. Watch should be able to toggle between time and stopwatch mode
2. Watch should be able to toggle between 12h and 24h display
3. User should be able to start/stop timer; beep for 0.25 seconds

when in stopwatch mode
4. User should be able to turn light on for 3 seconds when watch in

time mode
5. Watch should record laptime; display laptime, and turn light on for

3 seconds when watch is in stopwatch mode, the timer is running
and displayed.

6. Watch should reset timer, and turn light on for 3 seconds when
watch is in stopwatch mode, the timer stopped and displayed.

7. Watch should display timer, and turn light on for 3 seconds when
watch is in stopwatch mode, laptime is displayed.

U Waterloo CS445/ECE451/CS645 Fall 2019 14

State diagram for Stopwatch

U Waterloo CS445/ECE451/CS645 Fall 2019 15

Composite state
• Combines states and transitions that work together towards a

common goal. There are two kinds:
1. Hierarchical (simple / or-states)
2. Concurrent (orthogonal / and-states)

U Waterloo CS445/ECE451/CS645 Fall 2019 16

Hierarchical states
Hierarchy is used to cluster states that have some similar behaviors / exiting
transitions.

• One transition leaving a superstate represents a transition from each of the
superstate’s descendent states.

U Waterloo CS445/ECE451/CS645 Fall 2019 17

Test your self

U Waterloo CS445/ECE451/CS645 Fall 2019

1.What happens if
event z occurs
when in state D?

2.What happens if
event y occurs
when in state D?

3.Can the execution
ever leave state C?

18

Concurrent regions
Some systems have orthogonal behaviors that are best modelled as
concurrent state machines

• Regions within a concurrent state execute in parallel.
• Each has its own thread of control.
• Each can “see” and react to events /conditions in the world

U Waterloo CS445/ECE451/CS645 Fall 2019 19

U Waterloo CS445/ECE451/CS645 Fall 2019 20

Final State

U Waterloo CS445/ECE451/CS645 Fall 2019

A transition that has no
event or condition in its
label is enabled when its
• source state is basic

and idle, or
• source superstate

entered its final state,
or

• source basic state has
finished internal
activity

21

Concurrency and Final States

U Waterloo CS445/ECE451/CS645 Fall 2019 22

Priority

U Waterloo CS445/ECE451/CS645 Fall 2019 23

Priority

U Waterloo CS445/ECE451/CS645 Fall 2019 24

Determinism

U Waterloo CS445/ECE451/CS645 Fall 2019 25

History
• Provides a way of entering a group of states based on the

system’s history in that group.
• That is, the state entered is the most recently visited state in

that group.
• In the next slide when event 5 occurs and state A is entered the

history mechanism is used to determine the next state within A.
• This is read as ‘enter the most recently visited state in the group (B, C,

D, E) or enter state B if this is the first visit to the state’.

U Waterloo CS445/ECE451/CS645 Fall 2019 26

U Waterloo CS445/ECE451/CS645 Fall 2019 27

History mechanism usage
• The history of a system overrides the default start state.
• A default start state must be specified for a group that uses the history

mechanism for when the group is entered for the first time.

• The history of a system is applied only to the level in the hierarchy in which
it appears.

• To apply the history mechanism at a lower level in the state hierarchy it is
necessary to use a history symbol in the lower levels.

U Waterloo CS445/ECE451/CS645 Fall 2019 28

Deep history
• An asterisk can be

attached to the history
symbol to indicate that
the history of the system
should be applied all the
way down to the lowest
level in the state
hierarchy.

U Waterloo CS445/ECE451/CS645 Fall 2019 29

Termination

U Waterloo CS445/ECE451/CS645 Fall 2019 30

Time event
A time event is the occurrence of a specific date/time or the passage
of time.
• Absolute time:

• at (12:12 pm, 12 Dec 2012)
• Relative time:

• after (10 seconds since exit from state A)
• after (10 seconds since x)
• after (20 minutes) // since the transition’s source state was entered

U Waterloo CS445/ECE451/CS645 Fall 2019 31

Change events
A change event is the event of a condition becoming true.
• The event “occurs” when the condition changes value from false to

true.
• when (temperature > 100 degrees)
• when (on)

• The event does not reoccur unless the value of the condition
becomes false and then returns to true.

• when(X) vs. [X]

U Waterloo CS445/ECE451/CS645 Fall 2019 32

Traffic light example

U Waterloo CS445/ECE451/CS645 Fall 2019 33

State Activities
• An activity is computation of the system that takes time, and can be

interrupted.
• c.f., an action, which is uninterruptible
• An activity may be associated with a state.
• States with activities are called activity states.

U Waterloo CS445/ECE451/CS645 Fall 2019 34

U Waterloo CS445/ECE451/CS645 Fall 2019 35

Creating a Behavior Model
1. Identify input and output events
2. Think of a natural partitioning into states

• Activity states – system performs activity or operation
• Idle states – system waits for input
• System modes – use different states to distinguish between different reactions to an
event

3. Consider the behavior of the system for each input at each state.
4. Revise (using hierarchy, concurrency, state events)

• Use concurrency to separate orthogonal behavior
• Use hierarchy, and entry/exit actions, to abbreviate common behavior

U Waterloo CS445/ECE451/CS645 Fall 2019 36

Behavioral Models Validation
• Avoid inconsistency: multiple transitions that leave the same state under the

same event/conditions.
• Ensure completeness: specify a reaction for every possible input at a state.

• If there are transitions triggered by an event conditioned on some guard, what
happens if the guard is false?

• Walkthrough: compare the behaviour of your state diagrams with the use-
case scenarios.

• All paths through the scenarios should be pathed in the state machines.

U Waterloo CS445/ECE451/CS645 Fall 2019 37

Improve the State diagram for Stopwatch

U Waterloo CS445/ECE451/CS645 Fall 2019 38

Practice exercise:
You are to create a state-machine model for an elevator that has the
following domain model

U Waterloo CS445/ECE451/CS645 Fall 2019 39

• There is one button on each floor just outside of the elevator that
passengers can press to summon the elevator to come pick them
up. There two buttons inside of the elevator, one button for each
floor that passengers can press to instruct the elevator to deliver
them to the associated floor.

• When idle, the elevator sits stationary at the last floor serviced,
with its doors closed. When there is a request to service a
particular floor (i.e., to deliver a passenger to that floor, or to pick
up a passenger from that floor), the elevator moves to that floor (if
necessary) and opens its doors.

U Waterloo CS445/ECE451/CS645 Fall 2019 40

• A request to service a floor remains outstanding until the elevator
reaches the requested floor and opens its doors; at which point, all
outstanding requests for that floor are considered serviced. If the
elevator is stationary, then requests to service the floor that the
elevator is currently on have priority over requests to service the
other floor.

• For simplicity, your model should have only one door for the
elevator (i.e., don’t model the outside doors on each floor). When
the elevator door is opened, it remains open for 5 seconds. If the
door sensors detect some blockage on closing the doors, the doors
will reopen and again try to close after 5 seconds.

U Waterloo CS445/ECE451/CS645 Fall 2019 41

The End!

U Waterloo CS445/ECE451/CS645 Fall 2019 42

	CS445/ECE 451/CS645
	Glossary
	UML state diagrams
	UML state diagrams
	States
	Transitions
	Note:
	Examples
	Slide Number 9
	How are transactions handled?
	Internal activities
	UML terminology
	Example: Stopwatch
	Slide Number 14
	State diagram for Stopwatch
	Composite state
	Hierarchical states
	Test your self
	Concurrent regions
	Slide Number 20
	Final State
	Concurrency and Final States
	Priority
	Priority
	Determinism
	History
	Slide Number 27
	History mechanism usage
	Deep history
	Termination
	Time event
	Change events
	Traffic light example
	State Activities
	Slide Number 35
	Creating a Behavior Model
	Behavioral Models Validation
	Improve the State diagram for Stopwatch
	Practice exercise: �You are to create a state-machine model for an elevator that has the following domain model
	Slide Number 40
	Slide Number 41
	The End!

