
WD-pic,
a New Paradigm for Picture Drawing Programs

and

its Development as a Case Study of

the Use of its User’s Manual as its Specification

by

Lihua (Lizzy) Ou

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2002

c©Lihua Ou, 2002



Abstract

Thepic language is a graphics language for specifying line drawings to be typeset. Thepic pro-

gram is a pre-processor oftroff that runs in batch mode onUnix environments. In this work,WD-

pic, aWYSIWYG Direct-manipulationpic, is developed.WD-pic operates on a new paradigm

for WYSIWYG, direct-manipulation picture drawing in which mouse movement is minimized

by use of natural defaults being used for information normally provided by the mouse, and in

which the internal representation is directly editable in the program. The work is also a case

study of using the user’s manual for a Computer-Based System (CBS) as its requirement specifi-

cation. The result of the case study indicates that along several dimensions, user’s manual makes

an excellent requirement specification for CBSs. The user’s manual not only specifies the what

not how of the CBS at the users level, but it also serves as a useful requirements elicitation and

validation tool, as a repository of use cases, and as a useful source of covering test cases.

v



Chapter 3

Case study

As mentioned in Section 1.2.1, one goal of this thesis is for it to be a case study in the use

of a user’s manual of a software product as requirements specification. The goal of the case

study is to see how well the user’s manual ofWD-pic works as the requirement specification and

how effectively the manual can be used as a reference in the design, implementation and testing

phases. In this case study, Berry worked as the customer ofWD-pic. The author of this thesis

was the software designer, developer and tester.

3.1 Project plan

The project started in the beginning of October, 2001. It was planned to be finished by the end of

July, 2002, for a total duration of 10 months. The project schedule was planned as a classic wa-

terfall, as illustrated in Figure3.1. The rest of this section quotes the project plan as it was written

in September, 2001, including the project schedule, requirements, design, implementation, and

testing plans.

Schedule

• preparation 1 month, from October 1 to October 31, 2001

• requirement 2 months, from November 1 to December 31, 2001

• design 1 month, from January 1 to January 31, 2002

46



preparation

requirement

design

implementation

testing

10/1/01

11/1

1/1/02

2/1

5/1

6/31

Figure 3.1:WD-pic project plan

• implementation 3 months, from February 1 to April 31, 2002

• testing 2 months, from May 1 to June 31, 2002

• others 1 month

During the whole development process, the manual will be kept up to date.

The preparation phase is to study Shpilberg’s prototype ofWD-pic and all the

existing documents, and to get familiar withpic, its features, its source code,Java

Swing, andJni.

One month flexible time is left to deal with unexpected events.

Requirements

No formal requirements specification will be written. Instead we will start by writing

a user’s manual, which will be used as the requirements specification. The software

engineer will discuss with the customer all the features and document them in the

manual. The user’s manual will be organized by use cases. It will describe all the

fundamental concepts as well and is not to be ambiguous.

47



Design

All the features in the manual will be designed. High-level design modules should be

given. The design should be clear enough to show how the modules work together.

Implementation

All the features in the manual will be implemented.Java Swing will be used to

code the GUI.Java Jni will be used to communicate between theJava coded GUI

and theC codedpic compiler.

The project will be carried out on aUnix Solaris environment.

Testing

Both black-box testing and white-box testing will be used to test the program. The

user’s manual will be used as a source of test cases for black-box testing. All the use

cases in the manual should be covered.

Unit-testing will be done on every class.

3.2 Results and introspection

The project was carried out, not exactly matching the schedule that was planned. The following

is a list of the actual milestones:

• October 2, 2001, project started

• November 1, manual started

• March 28, 2002, manual final (design started)

• April 20, design final (implementation started)

• April 22, manual first update

• May 15, first demo (basic features done)

48



preparation

requirement

design

implementation

testing

10/2/01

11/1

3/28/02

4/20

6/11

7/31

Figure 3.2:WD-pic development process

• May 16, manual second update

• June 11, second demo (all features done)

• July 31, testing end

Figure3.2 illustrates the whole development process.

Some phases in the software development process are not exactly bounded to the clear time-

line. The spare time in the previous phases of implementation was used to do research, such as

writing proof of concept (POC) code. The implementation phase was counted from writing the

main frame code ofWD-pic.

White-box testing was actually combined with the implementation phase. Whenever a class

was developed, it was white-box tested. Whenever a feature was implemented, it was tested

against the use case in the manual. Thus, the testing phase in Figure3.2was for only black-box

testing after all the features were implemented,i.e., integration testing and system testing.

49



3.2.1 Requirements

The requirement phase took longer time than that was planned, totaling 4 months, from writing

the outline to finishing up all the features. Writing the manual was actually the process of re-

quirements elicitation. Sometimes, a feature was proposed in a very early version, but it took

several revisions to capture what the customer really wanted. In some cases, the customer did

not know exactly what he wanted until he had seen the manual description of what he thought he

wanted. We had 11 revisions before the implementation started, and 3 more revisions later when

the author decided to change the manual fromMS Word format to LATEX format. Some revisions

had only minor changes, to correct mostly grammar mistakes.

To avoid ambiguity, the final version ofWD-pic user’s manual has a glossary defining 34

fundamental concepts including the program name “WD-pic”, “user”, “grid”, and “gravity”. The

main part of the manual was organized by use cases, from basic use cases to advanced features.

A step-by-step sample run was given for each use case.

Later, after implementation started, we had the following several updates.

• We planed to play an alert sound if there was a syntax error when the user tying in the edit

window. We decided to use a different color, red, to mark out the text with errors, as this

would help the user better than the sound, which is unfocused.

• A status bar was added at the bottom of the main frame to show session command errors.

The advantage of using status bar is that the user does not have to click theOK button in

the warning dialog as in other applications. The coordinates of the cursor on the canvas

can always be shown in the status bar as well.

• Selected object is high-lighted in the same selection color as the selected text in the editor

window. Then the user can easily see the relationship between the selected object on the

canvas and in the edit window.

• It was said in the manual that when the user selected an object on the canvas, the attributes

of that object would be shown in the attribute area. But in the implementation, the attribute

area is made up of attribute buttons. So it is difficult to show all the values of the attributes

in the attribute area. So we changed the attribute buttons to be used for insertion only,i.e.,

50

dberry
Highlight



no matter what the existing values are, LMCing an attribute button always resets the value

of the attribute in the internal representation.

• There is no grid information in the internal representation. But the customer wants grid to

be saved. We need save the grid in a file on the hard disk. During the implementation, we

realized that we can further use this file to create a recently opened file history, which is a

popular feature in most GUI applications.

• It was said in the manual that preference setting effected inputting from the palette the same

as inputting from the keyboard. In the implementation, it is difficult to let the program

know what the token is just input from the keyboard. So we changed the preference setting

only effects the input from palette. Refer to the user’s manual for details.

• We planed to develop and executeWD-pic in a Unix environment. Because the code was

written inJava, we built aWindows version without too many changes in the code.

The first three updates actually could have been avoided if we do a better review of the manual,

but not the last four. They are related to implementation details.

Compared to writing traditional requirements specification, writing the user’s manual at the

requirement phase has the following advantages.

• The user’s manual is written at the user’s level, so it is easy for the user or the customer to

see and to tell what he or she wants. It helps requirements elicitation.

• It is also easier for the software engineer to capture what the customer wants. By writing

a use-cases-centered user’s manual, what the user inputs to the CBS and how the CBS

responds to the user are clear to the software engineer.

• By reading the use cases, the customer can verify whether these are what he or she wants.

Berry, the customer’s previous experience being a requirement engineer and a customer is

relevant to this case study because he learned how to be a demanding customer. But his previous

experience withWD-pic was irrelevant, because each time he does this, he goes for what he

believes are correct requirements. The fact that he has doneWD-pic before changes only set of

features not the software engineer’s job to find out what he wants and to specify and implement

it.

51

dberry
Highlight

dberry
Line



3.2.2 Design

WD-pic user’s manual was used as the guideline for design. It is actually a repository of use

cases, from basic to advanced. By reading all the use cases, it is not difficult for the designer

to figure out the main modules. Then each key use case was visualized to aUML sequence

diagram. Last, the user’s manual was used to verify whether the designed modules working

together to carry out all the use cases. Some of these sequences diagrams are given in Appendix

B.

The user’s manual helps the design in the following ways.

• The use cases are already there, it is easy for the designer to generate the use case diagrams.

• Because a use case in the manual describes in each step what the user inputs to the CBS

or what the CBS responds to the user, it is easy for the designer to construct the sequence

(scenario) diagrams.

• The manual helps the designer to verify whether the design covers all the features in the

manual by verifying each use case.

3.2.3 Implementation

The user’s manual was used as the guideline to implement all the features. Lots of research was

done during the process of preparation and requirement, such as studying thepic source code and

Shpilberg’s prototype code and getting familiar withJava Swing andJni. POC code was written

in the requirement and design phases. For instance, a small piece ofJava code was written to

show that theC-codedpic compiler works with a simpleJava-coded GUI program. Therefore,

once the design was fixed, the software engineer could write a main frame and put everything

together to make a rough working version, then implement the use cases and abstracted features

in the manual one by one. From this rough working version to all features done, it took about

two months. Totally, there are 24,091 lines of code (LOCs) inWD-pic. Among all the source

code, 13,524 LOCs are GUI code inJava, 10,464 LOCs arepic compiler code inC, and 103

LOCs are external editor code inC. Among thepic compiler code, 9,567 LOCs are reused code

from the originalpic compiler. 897 LOCs are newly coded. Implementation went much faster

than expected.

52

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Line



WD-pic was planned to run only onUnix Solaris systems. However, the result shows that

after compiling thepic source code into a dynamic link library onWindows, it works with the

GUI in Java onWindows as well. So aWindows version ofWD-pic was implemented as well,

with slightly different code for font setting and invoking the external editor.

3.2.4 Testing

White-box, unit testing was done to every class during the implementation phase. The user’s

manual was used as the test plan and the source of black-box test cases. Results show that the

user’s manual works as a good test plan and source of test cases. The user’s manual has all

the information that a normal test plan and test cases have, including the system requirement of

the program, the execution steps, and the correct results. Once a feature was implemented, the

software engineer did black-box testing by following the exact steps in the manual to make sure

the program worked as expected.

Most of the testing was done during implementation. Later, more black-box testing was done

when the author usedWD-pic to draw all the line diagrams in this thesis. The author realized that

it was very convenient and fast to useWD-pic to draw the line diagrams if the user had the layout

of the whole diagram in mind. Users of the traditional batchpic reported the same phenomenon.

To summarize, the user’s manual helps testing by serving as the test plan and providing test

cases.

3.3 Author’s feelings during the life cycle

When I first heard the idea of using a program’s user’s manual as its requirement specification,

the idea sounded a little bit strange, because in a normal life cycle, the user’s manual is the

last document to be written. Furthermore, a user’s manual and a requirement specification have

different readers. They have different focuses on the content.

During the preparation phase, as I was getting to know more about thepic program, I was not

sure how much this GUI we were going to built on top ofpic could enhance thepic program’s

functionalities. Even if a user knows thepic language well, the flexibility that thepic program

gives to the user is limited because of the limitations of the batch mode program.

53

dberry
Highlight

dberry
Highlight



The requirement phase was the hardest phase during the whole life cycle. The requirement

elicitation was hard. Describing the requirement to capture what the customer really wanted

was hard too. I felt that writing a good user’s manual which is to be used as a requirements

specification is as hard as writing a normal requirement specification. We didn’t save time during

the requirement phase by writing the user’s manual instead of a requirement specification. In fact,

I would say that we lost time.

Everything got paid back in the later design, implementation, and testing phases. Having

walked through the requirement elicitation process, I knew exactly what I was supposed to im-

plement. Testing became very easy too, as the use-case-oriented manual itself was a source

of covering test cases. Implementation went much faster than expected. When I did the first

demonstration to the customer, the customer was really impressed.

When I was usingWD-pic to draw the diagrams in this thesis, I realized that this software

turned out to be much better than I expected. The GUI gives users much more flexibility to draw

diagrams than the originalpic program. Without too much knowledge of thepic language, I was

able to draw all kinds of line drawings easily.

Compared to projects that I did before, the requirement phase in this case study was no

easier than that in a normal life cycle. I expected that writing a user’s manual would have been

easier than writing a formal requirement specification. However, design, implementation, and

testing went much better than expected. The project finished on time and with the customer’s

satisfaction. While in my past experience, of about 5 years, usually the early requirements and

design phases went much more smoothly than in this project. However, in the past projects,

always requirements and design problems were discovered during implementation and testing.

In this project, there were much fewer problems discovered during implementation and testing,

allowing them to go very quickly.

54

dberry
Highlight

dberry
Highlight



Chapter 4

Conclusions

In this work, two contributions are that,

1. WD-pic was implemented and

2. a case study of using a program’s user’s manual as the program’s requirement specification

was carried out.

We have the following conclusions.

First,WD-pic follows a new paradigm for WYSIWYG direct-manipulation picture drawing

programs. It has the following advantages.

• It inherits all the advantages that the batch modepic program has and it fixes the disadvan-

tages of the batch and most WYSIWYG picture drawing programs.

• It provides convenient direct manipulations and directly editing the internal representation

of picture to users.

• Input by mouse or by keyboard are fully interchangeable. The user does not have to inform

the application where its next input is coming from.

• It minimizes the mouse movement.

However, becauseWD-pic is built on top of thepic program, its features are limited to the

features thatpic can provide. Besides this, the current implementation ofWD-pic also has some

other shortcomings that are independent ofpic.

55



• Changing the sizes and locations of objects cannot be done by direct mouse manipulations.

• Copy, paste, cut, undo, andredo do not work with the canvas.

• Changing attributes of constructs cannot be done by direct manipulations.

• Pictures cannot be output in a standard graph format.

The first two are not real limitations. They can be overcome by using the built-in text editor.

They are not difficult to fix based on the current implementation. The later two are the challenges

for the designer of the next version.

Second, the result of our case study shows it is useful to write the user’s manual at the

requirement phase. A non-ambiguous, use-case-centered user’s manual helps the whole process

of the software development.

• The user’s manual makes an excellent requirement specification for CBSs. It specifies the

what-not-how of the CBS at the users level.

• It helps requirements elicitation by helping both the customer and the software engineer to

see what is wanted. But it cannot solve the problem that sometimes, the customer does not

know what he or she want.

• The user’s manual is a good validation tool; it helps the customer to verify the requirements

specification, and helps software engineer to verify the design and implementation.

• The user’s manual as a repository of use cases, and a useful source of a test plan and

covering test cases.

• There is no need to write the user’s manual again after the development finished! The one

used by the software engineer a lot is also easy to be read by users.

There is no completely satisfactory way to validate any SE method, but at best, our re-

sult shows that using a program’s user’s manual as its requirement specification is a promising

method. It is worth additional case studies.

56

dberry
Highlight

dberry
Line




