
CS445 / SE463 / ECE 451 / CS645
Software requirements specification

& analysis

A reference model for 
requirements engineering

Spring/Summer 2023
Mike Godfrey & Daniel Berry & Richard Trefler



Reference model

ENV SUD
INTF

R – Reqs live in ENV (incl. INTF)
S – Spec lives in INTF, describes behavior of SUD
D – Domain knowledge lives in ENV (incl. INTF)



Reference model

Thus, if we enlarge our model to include domain 
knowledge, then the ZJVF must hold: 

D, S ⊢ R 
• D is domain knowledge 
• S is the spec
• R is the reqs



Reference model

D, S ⊢ R
• The spec describes the behavior of a system 

that is supposed to realize the reqs. 
• The domain assumptions are needed to argue 

that any system that meets the spec, and that 
manipulates the interface phenomena, will 
satisfy the original reqs. 



Scenarios and
Use Cases

Daniel M. Berry

 2023 Daniel M. Berry Requirements Engineering Scenarios and Use Cases Pg. 1



Use Case

Each such particular way to use S is called a
use case.

It is one case of the many ways to use S.

A use case (UC) is expressed in natural
language as a simple imperative sentence,
e.g.:

g Insert a coin into the coinSlot

g Push and walk through the barrier

 2023 Daniel M. Berry Requirements Engineering Scenarios and Use Cases Pg. 3



Scenario

A UC should not be confused with a closely
related concept called a scenario. A scenario
of S is a particular sequence of interaction
steps between a user of S and S.

 2023 Daniel M. Berry Requirements Engineering Scenarios and Use Cases Pg. 4



Use Cases and Scenarios

The relation between UCs and scenarios can
make both terms clearer.

A single use case contains many, many
scenarios.

A UC U of S has a so-called typical scenario.
This scenario is that identified by the
stakeholders of S as being the normal case of
U that proceeds with all decisions being made
in the so-called normal or typical way.

 2023 Daniel M. Berry Requirements Engineering Scenarios and Use Cases Pg. 5



Variations

A UC consists also of variations called
alternatives and exceptions.

 2023 Daniel M. Berry Requirements Engineering Scenarios and Use Cases Pg. 8



Alternatives (As)

An alternative of UC U is a sub-use-case that
achieves the main goal of U through different
sequences of steps or fails to achieve the
goals of U although it follows most of the
steps of U.

 2023 Daniel M. Berry Requirements Engineering Scenarios and Use Cases Pg. 9



Exceptions (Es)

An exception of UC U is a sub-use-case that
deals with the conditions along the typical
scenario and other sub-use-cases that differ
from the norm and those already covered.

 2023 Daniel M. Berry Requirements Engineering Scenarios and Use Cases Pg. 10



As vs Es

The distinction between alternatives and
exceptions is not really important, …

so long as you find all of both of them.

So think of them as prompts that help you find
all of them.

 2023 Daniel M. Berry Requirements Engineering Scenarios and Use Cases Pg. 11



Brainstorm to Find As & Es!

Brainstorm to find as many alternatives and
exceptions as you can!

You can always throw out ones that prove
useless later on.

It helps to have a twisted psyche, a devious,
diabolical mind!

Heh heh heh!!

 2023 Daniel M. Berry Requirements Engineering Scenarios and Use Cases Pg. 14



6/21/23, 19:28

Page 1 of 1https://student.cs.uwaterloo.ca/~se463/Exceptions.html

Deliverable: List of Domain Assumptions, Exceptions, and
Variations for Your System
This deliverable is a complete list of assumptions, exceptions, and variations for your system.

An assumption is anything that must be true about the real world in order for the use cases of your sytem to
work as expected. For now, write down all the assumptions that you can find,

whether or not they are explicit in all documents you have produced before, and
whether or not they are true of the real world.

(Later, i.e., not in this deliverable, but in the specification that is Deliverables 4 and 5, you will decide
what your system does about each assumption.

To help you understand what an assumption is, know now that what you will say that your system does about
each assumption, A, is one of the three following:

your system does nothing because A is true of the real world,
if A is not true of the real world, your system acts as if A is true, or
if A is not true of the real world, your system provides functionality that eliminates the need for A.)

An exception is any condition that may cause a use case in your system not to work as intended or expected.
Exceptions may overlap with assumptions in the sense that the failure for an assumption to hold may give rise
to exceptions.

A variation is a use case that is slightly different from another use case, which itself might be a variation. It
might represent a different way to achieve the other use case's goals or a way to achieve a different goal with
approximately the same behavior as the other use case.

In making this list, don't hold back. Treat it like brainstorming for assumptions, exceptions, and variations,
i.e., anything that could be different from the normal behavior of any use case.

Later, as you decide your system's responses to the items on this list, you will trim the list back to the truly
relevant items.

Please make one numbered sublist for assumptions, one numbered sublist for exceptions, and one numbered
sublist for variations. If you cannot decide which sublist an item should be in, just pick one sublist, and go
on!

You may include in this deliverable a list of any question that you have for your customer about your system.
These should be clearly marked as questions.




