
The Requirements
Iceberg and Various
Icepicks Chipping at
It

Daniel M. Berry
dberry@uwaterloo.ca

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 1

Requirements

Client’s
View

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 2

Outline

Lifecycle Models
RE is Hard
Why Important to Do RE Early
Myths and Realities
Where Do Requirements Come From?
Formal Methods Needed?
Requirements and Other Engineering
Bottom Line
RE Lifecycle

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 4

Outline, Cont’d

Overview of Research
Earlier and Later
Elicitation
Analysis
Natural Language Processing
Tools
Changes
Empirical Studies

Future

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 5

Traditional Waterfall Lifecycle

à la Win Royce [1970]

Realization

Operation

Integration

Design

Specifications

Requirements

Where is testing?

Only one slight problem: It does not work!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 6

Fred Brooks about Waterfall

In ICSE ’95 Keynote, Brooks [1995a] says “The
Waterfall Model is Wrong!”

g The hardest part of design is deciding what
to design.

g Good design takes upstream jumping at
every cascade, sometimes back more than
one step.

ICSE ’95 was in Seattle, Washington!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 10

Fred Brooks also says:

“There’s no silver bullet!” [Brooks 1987]

g Accidents
process
implementation

i.e., details

g Essence
Requirements

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 11

“No Silver Bullet” (NSB)

g The essence of building software is
devising the conceptual construct itself.

g This is very hard.

- arbitrary complexity
- conformity to given world
- changes and changeability
- invisibility

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 12

NSB, Cont’d

g Most productivity gain came from fixing
accidents

- really awkward assembly language
- severe time and space constraints
- long batch turnaround time
- clerical tasks for which tools are helpful

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 13

NSB, Cont’d

g However, the essence has resisted attack!

We have the same sense of being
overwhelmed by the immensity of the
programming problem and the
seemingly endless details to take care
of,

and we produce the same kind of poorly
designed software that makes the same
kind of stupid mistakes

as 40 years ago!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 14

Brooks, Cont’d

Brooks adds, “The hardest single part of
building a software system is deciding
precisely what to build.... No other part of the
work so cripples the resulting system if it is
done wrong. No other part is more difficult to
rectify later.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 15

Real Life

We see similar requirement problems in real-
life situations not at all related to software.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 16

Contracts

We all know how hard it is to get a contract
just right ...

to cover all possible unanticipated situations.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 17

Houses

We all know how hard it is to get a house plan
just right before starting to build the house.

Contractors even plan on this; they underbid
on the basic plan, expecting to be able to
overcharge on the inevitable changes the
client thinks of later [Berry 1998].

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 18

Homework Assignments

We all know how hard it is to get the
specification of a programming homework
assignment right, especially when the
instructor must invent new ones for every run
of the course.

There is a continual stream of updates to the
assignment.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 19

Errors and Requirements

According to Barry Boehm [1981] and others,
around 65–75% of all errors found in SW can
be traced back to the requirements and design
phases.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 47

Errors and Requirements, Cont’d

Ken Jackson in a 2003 Tutorial on
Requirements Management and Modeling with
UML2, cites data from a year 2000 survey of
500 major projects’ maintenance costs
concluding that 70–85% of total project costs
are rework due to requirements errors and
new requirements.

In the table, the *d lines include requirements
issues and add to 84%, but not all their
instances are requirements related.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 48

Errors and Requirements, Cont’d

Tom Gilb [1988] says that approximately 60%
of all defects in software exist by design time.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 50

Errors and Requirements, Cont’d

Marandi and Khan [2014] cite studies by
Kumaresh & Baskaran and by Suma &
Gopalakrishnan that show that the

g requirement phase introduces 50%–60%,
g design phase introduces 15%–30%, and
g implementation phase introduces 10%–20%

of total defects to software.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 51

Flip Side

Those data say that we are doing a pretty
good job of implementing of what we think we
want.

But, we are doing a lousy job of knowing what
we want.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 50

Source of Errors

Either

g the erroneous behavior is required because
the situation causing the error was not
understood or expressed correctly, or

g the erroneous behavior happens because
the requirements simply do not mention
the situation causing the error, and
something not planned and not appropriate
happens.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 51

Requirements Always Change

In a Requirements Engineering ’94 Keynote,
Michael Jackson says:

Two things are known about requirements:

1. They will change!
2. They will be misunderstood!

Why will they always change?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 71

E-Type Software

à la Meir Lehman [Lehman 1980]

An E-type system solves a problem or
implements an application in some real-world
domain.

Once installed, an E-type system becomes
inextricably part of the application domain, so
that it ends up altering its own requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 72

E-Type Software, Cont’d

Example:

g Consider a bank that exercises an option to
automate its process and then discovers
that it can handle more customers.

g It promotes and gets new customers, easily
handled by the new system but beyond the
capacity of the manual way.

g It cannot back out of automation.
g The requirements of the system have

changed!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 73

E-Type Software, Cont’d

Daily use of a system causes an irresistible
ambition to improve it as users begin to
suggest improvements.

Who is not familiar with that, from either end?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 74

E-Type Software, Cont’d

In fact, data show that most maintenance is
not corrective, but for dealing with E-type
pressures!

Perfective

Adaptive

Corrective

O
th

er

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 75

Why Important to Do RE Early

The BIG Question:

Why is it so important to get the requirements
right early in the lifecycle? [Boehm 1981,
Schach 1992]

We know that it is much cheaper to fix an error
at requirements time than any time later in the
lifecycle.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 85

Cost to Fix Errors

Barry Boehm’s (next slide) and Steve
Schach’s (slide after that) summaries of data
over many application areas show that fixing
an error after delivery costs two orders of
magnitude more than fixing it it at RE time.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 86

Phase in which error is detected

1

2

5

10

20

50

100

R
el

at
iv

e
co

st
 to

 c
or

re
ct

 e
rr

or

Preliminary
design

Detailed
design

Code and
debug

Integrate Validate Operation

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 87

200

150

100

50

0
Reqs Specs Plan Design Code Integ Maint

1 2 3 4 10

30

R
el

at
iv

e
co

st
 to

 fi
x

fa
ul

t

Phase in which fault is detected and fixed

200

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 88

Cost to Fix Errors, Cont’d

More specifically,

g requirement defects are harder to fix than
architectural defects,

g which are harder to fix than design defects,
g which are harder to fix than implementation

defects [Allen et al 2008].

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 91

Conclusion

Therefore, it pays to find errors during RE.

Also, it pays to spend a lot of time getting the
requirements specification error-free, to avoid
later high-cost error repair, and to speed up
implementation—even 70% of the lifecycle!

The 70% is not a prescription, but a prediction
of what will happen, as we see later!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 93

Reliability, Safety, Security, & Survivability

We know that we cannot program reliability,
safety, security, and survivability into the code
of a system only at implementation time. They
must be required from the beginning so that
consideration of their properties permeate the
entire system development [Leveson 1995,
Cheheyl et al 1981, Linger et al 1998].

The wrong requirements can preclude coding
them at implementation time.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 90

Prime Example: the Internet

Everybody is complaining about how insecure
the Internet is [Neumann 1986]

Many are trying to add security to the Internet,
and ultimately fail.

Why?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 91

Internet Requirements

The original requirements for the ARPAnet,
which later became the Internet, was that it be
completely open.

Anyone sitting anywhere on the net was to be
able to use any other site on the net as if he or
she were logged in at the other site.

In other words, the ARPAnet was required to
be open and essentially insecure [Cerf 2003,
Leiner et al 2000].

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 92

Internet Requirements Were Met

And the implementers of the ARPAnet did a
damn good job of implementing the
requirements!

Adding security to the Internet ultimately fails
because there is always a way around the add
on security through the inherently open
Internet.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 93

Secure Internet from Reqs Up

To get a secure Internet, we have to rebuild
the whole thing from requirements up, and
there is no guarantee that it will look anything
like what we have now and that the same
applications would run on it.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 94

Another View of History

The Internet was and is an E-type system, …

if there ever was one!

Oy!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 101

Another View, Cont’d

The original Internet sites were only university
and non-profit research labs.

No commercial, profit making organizations
allowed.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 102

Another View, Cont’d

The code implementing TCP/IP was a research
prototype, …

which is fine because this code served as only
a proof of concept, …

used by only cooperative, well-behaved users.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 103

Another View, Cont’d

When the concept was proved, it was intended
that some commercial institutions would build
production quality versions of TCP/IP, …

each of which meets the full set of
requirements needed to make it a reliable,
robust, and secure system.

They would then market it, as with other
research prototypes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 104

Another View, Cont’d

But E-type pressures proved to be too strong.

Some people started seeing the commercial
potential of the service of the Internet and not
of TCP/IP itself, which was viewed as a utility.

So the research prototype became the utility
without ever going through the requirements
analysis and development necessary to make
it reliable, robust, and secure.

Sigh!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 105

RE & Project Costs

The next slides show the benefits of spending
a significant percentage of development costs
on studying the requirements.

They contain a graph by Kevin Forsberg and
Harold Mooz [1997] relating percentage cost
overrun to study phase cost as a percentage
of development cost in 25 NASA projects.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 96

Project Costs, Cont’d

The study, performed by W. Gruhl at NASA HQ
includes such projects as

g Hubble Space Telescope
g TDRSS
g Gamma Ray Obs 1978
g Gamma Ray Obs 1982
g SeaSat
g Pioneer Venus
g Voyager

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 97

Project Costs, Cont’d
180

160

140

120

100

80

60

40

20

0

0 5 10 15 20 25

P
er

ce
n

ta
g

e
C

o
st

 O
ve

rr
u

n

Study Phase Cost as a Percent
of Development Cost

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 98

Project Costs, Cont’d

There are three interpretations of the data:

The more you study the problem, ...

1. the lower the costs,
2. the fewer the surprises that cause

debugging and rework, and,
3. the more accurate the cost estimates are.

It’s probably a mixture of these.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 99

A Case Study of Serious RE

A Master’s student of mine, Lihua Ou, did a
case study of writing requirements
specification in the form of a user’s manual
[Berry et al (Ou) 2004].

It was very successful in that I got a piece of
software that I wanted, it was implemented
well, it does what I want it to do, and there is a
well-written manual that describes the
software’s behavior completely.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 100

A Case Study, Cont’d

Along the way, it ended up being also a case
study in just having a serious requirements
process, in which implementation did not
begin, and was in fact delayed, until the
requirements were completely worked out and
specified satisfactorily.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 101

The Software

The software was a WYSIWYG, direct
manipulation picture drawing program, WD-
PIC, based on the batch picture drawing
language PIC, a TROFF preprocessor.

Lihua Ou’s assignment was to produce a first
production-quality version of WD-PIC as her
master’s thesis project.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 102

Ou’s Professional Background

Prior to coming to graduate school, Ou had
built other systems in industrial jobs, mainly
in commerce.

She had followed the traditional waterfall
model, with its traditional heavy weight SRS.

She had made effective use of libraries to
simplify development of applications.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 103

Ou’s Input

Ou was to look at all previous prototypes and
UMs as specifications.

She was to filter these and scope them to first
release of a production quality version of WD-
PIC running on Sun UNIX systems.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 104

Ou’s Assignment

Ou was to write a specification of WD-PIC in
the form of a UM.

This UM was

1. to describe all features as desired by the
customer, and

2. to be accepted as complete by the
customer,

before beginning design or implementation.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 105

Ou’s Assignment, Cont’d

Once implementation started, whenever new
requirements were discovered, the UM had to
be modified to capture new requirements.

In the end, the UM was to describe the
program as delivered.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 106

Project Plan
iii
Duration
in months Stepii
1 Preparationiii
2 Requirements specificationiii
4 Implementationiii
2 Testingiii
1 Buffer (probably more implementation

and testing)ii
10 Total plannediiicc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 107

preparation

requirement

design

implementation

testing

10/1/01

11/1

1/1/02

2/1

5/1

6/31Note feedback

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 108

Actual Schedule
iii
Duration
in months Stepii
1 Preparationiii
4.9 Writing of user’s manual = reqs spec,

11 versionsiii
.7 Design including planning for maximum

reuse of PIC code and JAVA libraryiii
1.7 Implementation including module testing

and 3 manual revisionsiii
1.7 Integration testing including 1 manual

revision and implementation changesii
10 Total actualiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 109

preparation

requirement

design

implementation

testing

10/2/01

11/1

3/28/02

4/20

6/11

7/31Note feedback

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 110

What Happened?

While detailed plan was not followed, total
project time was as planned.

Also, Ou produced two implementations for
the price of one, for:

g (planned) Sun with UNIX and
g (unplanned) PC with Windows 2000

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 111

Surprise

Ou was more surprised than Berry that she
finished on time.

Berry had a lot of faith in the power of good
RE to reduce implementation effort.

Adding to Ou’s surprise was that the
requirements phase took nearly 5 months
instead of 2 months; the schedule had slipped
3 months out of 10, what appeared to be way
beyond recovery.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 112

Then and ...

Ou’s long projected implementation and
testing times and the 1 month buffer indicate
that she expected implementation to be
slowed by discovery of new requirements that
necessitate major rewriting and restructuring.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 113

Then and Now

This time, only minor rewriting and no
restructuring.

Thus instead of 2 months specifying and 7
months implementing and testing,

she spent 5 months specifying and only 4
months implementing and testing.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 114

Why?

By spending 3 additional months writing a
specification that satisfied a particularly hard-
nosed customer who insisted that the manual
convince him that the product already existed,

Ou produced a specification that

g had very few errors and
g that was very straightforwardly

implemented.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 115

The Errors

Almost all errors found by testing were
relatively minor, easy-to-fix implementation
errors.

The two requirement errors were relatively low
level and detailed.

They involved subfeatures in a way that
required only very local changes to both the
UM and the code.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 116

What Helped?

All exceptional and variant cases had been
worked out and described in the UM.

Thus, very little of the traditional

g implementation-time fleshing out of
exceptional and variant cases and

g implementation-time subconscious RE.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 117

Test Cases

The manual’s scenarios, including exceptions
and variants turned out to be a complete set of
black box test cases.

Tests were so effective that, to our surprise, ...

scenarios not described in the UM, but which
were logical extensions and combinations of
those of the UM worked the first time!

The features composed orthogonally without a
hitch!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 118

Satisfied Customer

Berry found Ou’s implementation to be
production quality and is happily using it in
his own work.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 119

Another Case Study of Serious RE

This one involved what is called a lightweight
formal method [Breen 2005].

At Philips Electronics, Michael Breen
consulted for the project to develop CDR870
to become the first audio separate CD
recorder aimed at the consumer market.

The CDR870 was to be the first of a product
line.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 133

Success or Failure

The key factor determining the conduct of the
project was that it had to be finished in 6
months, in time for next Christmas.

Meeting this deadline and its implied schedule
defines success or failure for the project.

The critical component of the project was the
application-level software to be developed
from scratch.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 134

An Impossible Project?

The consensus among domain experts at
Philips, people who had worked on similar
systems in the past, was that it was
impossible to finish in time. There were just
too many unknowns.

Two people, including Breen, felt it would be
possible IF ...

(There’s ↑ the proverbial big “if”.)

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 135

High Quality RS Essential

They realized that success depended critically
on having a high quality requirements
specification (RS) with no omissions,
inconsistencies, and other defects, from
which the code could be written
straightforwardly.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 136

High Quality RS Or Else

Any omission, inconsistency, or defect in the
RS meant that the programmers would have to
do RE on the fly, ...

leading inevitably to mistakes, backtracking,
and other nasties, ...

leading in turn to delays, an unpredictable
schedule, and flaky software, i.e., ...

to failure to deliver by Christmas.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 137

Requirements for RS

The RS would have to be of only the user-
visible behavior, to have a pure WHAT RS with
complete freedom to choose the HOW based
on the available technology ...

and the RS would have to be accompanied by
a suite of automated regression tests ready to
use at any stage to test the software’s and the
system’s compliance with the RS.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 138

Started RS Provisionally

They started writing the RS on a provisional
basis.

They would proceed to implementation only if
they had completed the RS in time and the RS
met its quality requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 139

FSM-Based RS

Breen got the project to use multi-variable
FSMs specified in tabular form.

The available natural language descriptions
were translated into an initial tabular FSM
specification.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 140

Benefits of FSM-Based RS

This immediately exposed potential
incompleteness in the form of unfilled table
positions.

This immediately pinpointed inconsistencies
in the form of multiple transitions from the
same state.

Some potential incompletenesses proved to
be DON’T CARES.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 141

Benefits, Cont’d

Some potential inconsistencies proved to be
the need for additional states.

The tabular FSMs gave the engineers the
information they needed to rapidly resolve
these problems.

The FSM model was built and checked
manually.

Fortunately, the FSMs were not beyond the
upper bound of what can be managed
manually.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 142

Result:

They finished the specification in time and it
was judged by all involved to be of good,
actually superb, quality.

Some felt it was the best RS that they had ever
written. They had confidence that it was
complete and consistent. They had confidence
that it could be implemented straightforwardly
with a minimum of delay and no backtracking.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 143

To Implementation

They proceeded to implementation.

They finished the implementation in time with
very few delays to flesh out requirements. The
tests ran smoothly and served to expose the
few implementation faults. No show stopping
faults were found.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 144

Success!

They delivered a high quality product in time
for Christmas!

The tabular FSM specification approach
continues to be used for subsequent members
of the product line.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 145

Myths and Realities

A bunch of myths about requirements and the
answering realities

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 133

Coding Before RE

Several related myths:

“You people start the coding while I go find
out what the customer wants.”

Requirements are easy to obtain.

The client/user knows what he/she wants.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 147

Coding Before RE, Cont’d

“You people start the coding while I go find
out what the customer wants.”

Obeying this order amounts to a very bad bet!

It’s practically guaranteed to end up at least
doubling the cost of writing the code and
developing the system.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 148

Coding Before RE, Cont’d

If as little as 10% of the code written in
advance of knowing the full requirements has
to be changed after the full requirements are
known, …

the cost of writing the code has doubled:

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 149

Bad Bet

If C is the cost of writing the advance version,
the cost of fixing the advanced version when
as little as 10% of it has to be changed,

then the total cost of writing the code is

C + (10 × 0.1×C) = 2×C

Oy!

and it gets worse if more than 10% has to be
changed.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 150

Better Bet

So what’s a better use of the programmers
who would become idle if they are not put to
work starting the coding while I go find out
what the customer wants?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 151

Better Bet

So what’s a better use of the programmers?

Have them join the RE team

g to provide more brain power to the RE
effort and

g to help the RE team know when the
requirements specification is complete
enough that it can be programmed without
the programmers’ having to ask questions.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 152

Recall Cost to Fix Errors
200

150

100

50

0
Reqs Specs Plan Design Code Integ Maint

1 2 3 4 10

30

R
el

at
iv

e
co

st
 to

 fi
x

fa
ul

t

Phase in which fault is detected and fixed

200

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 171

Why Fixing Code So Costly

The BIG question:

“Why does it cost so much to fix code?”

It’s because updating code correctly is like
lying perfectly consistently, which is very hard
to do.

Why is lying so hard?

What is the lie?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 172

Why Is Lying So Hard?

You’ve murdered someone, but

you don’t want to take the rap for the crime.

Fortunately, no one actually saw you commit
the murder.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 173

Cover Up!

So, there’s a chance that you can explain
away those little facts

that would place you at the scene of the
crime at the time of the crime, and

that would give you the motive to do the
crime.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 174

Concoct a Story

All you have to do is to to come up with a
consistent story that fits

all the potentially incriminating facts

including that the victim is dead,

that anyone can see,

but that does not incriminate you, …

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 175

Concoct, Cont’d

when you have no way to be sure that you
have identified

all such potentially incriminating facts

and

all such anyones.

Oy!!!!!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 176

The Proof of the Lie

There will always be

that inconvenient witness that innocently
reports

that inconvenient fact out of nowhere, that
you did not know of

that proves that your story is a lie.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 177

What is the Crime?

What is the crime with the software?

It has a big fat BUG!!!! Oy!!!!!!! Woe!!!!!!!

You gotta totally eradicate the bug, …

without throwing out the software and starting
all over.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 178

Actually, Why Not?

Because, too many people,

including those that can fire you if you are
perceived as making a mistake,

think that that would be a crime, …

to waste all the good work that was done so
far!

So you modify the existing code.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 179

What Is The Lie?
The lie is making all parts of the modified code
appear as if …

they were produced during …

an application of the current development
method …

to produce the modified code from scratch, …

under the constraint that you cannot change
the architecture of the code …

that has, and maybe even led to the BUG!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 180

The Exposure of the Lie

The lie gets exposed because

there is always some overlooked piece of
code

that is affected by the changes you made
elsewhere in the code.

sigh!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 181

Where the Expense is

The expensive part of fixing defects in code is
the attempt to find every last cockamamie
piece of code that is

affected by the parts that you need to
change and
affecting the parts that you need to change

recursively applied until

no new parts and
no new changes

are identified.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 182

It’s SO expensive …

It’s so expensive, that fixing code costs at
least 10 times what fixing the relevant
requirements specification would cost.

Thus, if as little as 10% of the code has to be
modified, it’s cheaper to throw out the
incorrect code and start all over than to fix the
code.

But, no manager can bring him or herself to do
that!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 183

Empirical Evidence?

There is some empirical evidence to support
this, …

but because so few people are willing to stick
their necks out to try this, …

the reports are few and far between, not
enough for generalization.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 184

Evidence, Cont’d

Note that there are lots of project failure
reports, …

many of which point to the difficulty of
consistently updating code correctly.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 185

What About Refactoring?

Refactoring, i.e.,

changing the architecture of the code,

without changing its behavior, and

reusing as much of the code as possible:

Isn’t that the BIGGEST lie ever?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 186

Has to be done SO carefully

You have to do it piecemeal, one refactoring at
a time,

moving as few code chunks as possible,

modifying as little code as possible,

and then testing,

before doing any other refactorings.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 187

Why?

Indeed, why?"

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 188

Limiting the Scope of Bugs

to try to limit the scope of where the bug can
be

when a refactoring does not preserve the
behavior of the code.

This limiting does not always work! sigh!

This piecemeal work adds to the cost of the
changes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 189

Compounding the Lie

Let’s see what happens when these sorts of in
situ code fixes happen repeatedly so that the
lies get compounded,

which often happens in a crime when the
concocted story begins to unravel.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 190

Recall Type E Systems

Meir Lehman classifies a CBS that solves a
problem or implements an application in some
real world domain as an E-type system.

Once installed, an E-type system becomes
inextricably part of its application domain so
that it ends up altering its own requirements.

So there is no hope of getting ahead of
requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 191

Most Changes are
Requirements Changes

Not all changes to a CBS are due to
requirement changes.

But, as early as 1978, Bennett Lientz and
Burton Swanson found that 80% of
maintenance changes deal with requirements
changes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 192

Decay of Software

As early as 1976, Laszlo Belady and Meir
Lehman observed the phenomenon of
eventual unbounded growth of errors in
legacy programs that were continually
modified in an attempt to fix errors and
enhance functionality.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 193

Decay of SW Cont’d

When a change is made, it’s hard to find all
places that are affected by the change.

So any change, including for correcting an
error, has a non-zero chance to introduce a
(new) error!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 194

Belady-Lehman Graph

They modeled the phenomenon
mathematically and derived a graph:

Release Number

B
ug

s
Fo

un
d

Pe
r

R
el

ea
se

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 195

B-L Graph, Cont’d

In practice, the curve is not as smooth as in
the figure; it’s bumpy with local minima and
maxima.

It is sometimes necessary to get very far into
what we will call Belady-Lehman (B-L)
upswing before being sure where the min
point is.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 196

Min Point

The min point represents the software at its
most bug-free release.

After this point, the software’s structure has
so decayed that it is very difficult to change
anything without adding more errors than
have been fixed by the change.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 197

Freezing SW

If we are in the B-L upswing for a CBS, we
could roll back to the best version, at the min
point.

Declare all bugs in this version to be features.

Usually not changing a CBS means that the
CBS is dead; no one is demanding changes
because no one is using the software any
more.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 198

Exceptions to Death

However, many old faithful, mature, and
reliable programs have gone this way, e.g.:

g cat, and other basic UNIX applications,
g vi, and
g ditroff

Their user communities have grown to accept,
and even, require that they never change.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 199

Non-Freezable Programs

IF
g the remaining bugs of best version are not

acceptable features, or
g the lack of certain new features begins to

kill usage of the CBS
THEN a new CBS has to be developed from
scratch
g to meet all old and new requirements,
g to eliminate bugs, and
g to restore a good structure for future

modifications.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 200

Another alternative

Use best version of legacy program as a
feature server.

Build a nearly hollow client that

g provides a new user interface,
g has the server do old features, and
g does only new features itself.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 201

Tendencies for B-L Upswing

The more complex the CBS is, the steeper the
curve tends to be.

The more careful the development of the CBS
is, the later the min point tends to be.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 202

Occasionally

Occasionally, the min point is passed during
the development of the first release, as a
result of

g extensive requirements creep that
destroyed the initial architecture, or

g the code being slapped together into an
extremely brittle CBS built with with no
sense of structure at all.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 203

Whence Do Requirements Come?

REQS

REQS

REQS

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 150

Whence, Cont’d

Joe Goguen [1994a] says, “It is not quite
accurate to say that requirements are in the
minds of clients; it would be more accurate to
say that they are in the social system of the
client organization. They have to be invented,
not captured or elicited, and that invention has
to be a cooperative venture involving the
client, the users, and the developers. The
difficulties are mainly social, political, and
cultural, and not technical.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 151

Whence, Cont’d

Interviewing does not really help because
when asked what they do, most people will
quote the official policy, and not what they
actually do. Most of what they really do,
which is not specified by the policy, is what
they do in situations not covered by the
policy.

We’re not even talking about conscious,
politically safe mouthing of the policy.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 152

Whence, Cont’d

Many people simply do not remember the
exceptions unless and until they actually
come up. Their conscious model of what
happens is the policy.

Therefore, the requirements engineer has to
be there when the exceptional situations come
up in order to see what really happens.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 154

Whence, Cont’d

Moreover, many people just do not know why
they do something, saying only that it’s done
this way because the policy says so.

They very often do not even know why the
policy is the way it is.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 155

Whence, Cont’d

Moreover, many people just do not know how
they do something, drawing a complete blank
or saying only, “Watch me!”.

For example, how do you ride a bicycle? Nu?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 156

Whence, Cont’d

Don Gause and Jerry Weinberg [1989] tell the
story of the woman who always cuts off 1⁄3 of a
raw roast before cooking both pieces together.

She was asked “Why?” ... “???”

Her mother was asked “Why?” ... “???”

Her grandmother was asked “Why?” ...

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 157

Whence, Cont’d

Because the pot of this woman’s grandmother
was too small to accommodate the full length
piece. Nu?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 158

Whence, Cont’d

In other words, the policy once made sense,
but the person who formulated the policy, the
reasons for it, and the understanding of the
reasons are long since gone.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 159

Whence, Cont’d

For example, many companies that have
committed all data to a highly reliable data
base continue to print out the summary in
quintuplicate.

Why? At the time of automation, the five most
senior members of the company, who long
ago retired, refused to learn to use the
computer to access the data directly!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 160

More on Whence

Recall that Joe Goguen [1994a] says, “It is not
quite accurate to say that requirements are in
the minds of clients; it would be more
accurate to say that they are in the social
system of the client organization. They have to
be invented, not captured or elicited, and that
invention has to be a cooperative venture
involving the client, the users, and the
developers. The difficulties are mainly social,
political, and cultural, and not technical.”
[italics are mine]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 186

Social, Political, & Cultural?

Several others have observed that emotions,
values, beliefs, politics, and culture play a
significant role in whether or not users accept
and use deployed information-technology
systems (ITSs).

Management tries to introduce ITSs to
automate and transform business processes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 187

Employee View

However, many times, employees see these
ITSs not as work savers or work facilitators,
but fear them as job eliminators, job
trivializers, and job complicators.

Such employees have difficulty using the
ITSs, refuse to use them, or even sabotage
them!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 188

Sabotage

Isabel Ramos (Santos) et al [1998, 2002, &
2004] report several failed ITS deployments
because of these fears and, in one case, user
sabotage:

g a mistake-logging system
g a new centralized system for a university

library
g an OTS ERP system replacing a home-

brewed system in a commercial company
g a CSCW system in a university classroom

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 189

Political Reasons for Failed Projects

Johann Rost [2004] writes about political
reasons for failed software projects.

He describes how subversive behavior can
sabotage software projects.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 190

LAS and CAPSA

The deployments of the London Ambulance
System [Finkelstein 1993, Finkelstein & Dowell
1996] and the deployment of CAPSA, the
Cambridge University’s new on-line
accounting system [Finkelstein & Shattock
2001] failed miserably.

Ramos believes that a prime cause of these
failed deployments was the failure to deal with
the stakeholders’ emotions, values, and
beliefs during their RE processes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 191

Technology vs. Politics

M.B. Bergman, J.L. King and K. Lyytinen
[2002] observe, “Indeed, policymakers will
tend to see all problems as political, while
engineers will tend to see the same problems
as technical. Those on the policy side cannot
see the technical implications of unresolved
political issues, and those on the technical
side are unaware that the political ecology is
creating serious problems that will show up in
the functional ecology.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 192

Technology vs. Politics, Cont’d

Bergman, King, and Lyytinen go on to say,
“We believe that one source of opposition to
explicit engagement of the political side of RE
is the sense that politics is somehow in
opposition to rationality. This is a
misconception of the nature and role of
politics. Political action embodies a vital form
of rationality that is required to reach socially
important decisions in conditions of
incomplete information about the relationship
between actions and outcomes.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 193

User Acceptability

Boehm and Huang [2003] observe, project can
be tremendously successful with respect to
cost-oriented earned value, but an absolute
disaster in terms of actual organizational
value earned. This frequently happens when
the product has flaws with respect to user
acceptability, operational cost-effectiveness,
or timely market entry.”

Note that user acceptability is an emotional
issue.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 194

User Acceptability, Cont’d

Boehm and Huang add, “the initiative to
implement a new order-entry system to reduce
the time required to process must convince
the sales people that using the new system
features will be good for their careers. For
example, if the order-entry system is so
efficiency-optimized, it doesn’t track sales
credits [which prove who sold what], the sales
people will fight using it.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 195

Emotional RE

Ramos [Ramos (Santos) et al 1998, 2002, &
2004] suggests that the requirements engineer
be on the lookout for signs of all sorts of
social, emotional, political, and cultural
problems among the customers and users
during RE.

When such a problem is found, it should be
explored with an eye to adjusting the
requirements of the ITS so that the problem is
ameliorated or even goes away.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 196

Just Managerial Issues?

Some who see these ITS deployment
problems regard the problems as managerial
problems and not as requirements problems.

In one sense, they are right, in that these
problems require action by management,
addressing social issues.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 197

What is a Requirements Problem?

However, any problem that can prevent the
successful deployment of a system, whether it
be

g incorrect function,
g failure to notice tacit assumptions,
g or anything else

should be identified as early as possible so
that dealing with it can permeate the entire
system design and development process.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 198

Requirements Problems!

Perhaps a so-called managerial problem borne
of emotion can be solved by a simple change
in functionality or user interface, e.g., by
eliminating a hated feature entirely.

Delaying consideration of any problem drives
up the cost of solving the problem once it is
identified as seen in graphs earlier.

When viewed this way, all such problems
become requirement problems.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 199

Managerial Solutions!

In the end, it may very well be that the adopted
solution to an problem may be considered
managerial, e.g., educating users and their
managers, providing incentives for adopting,
etc.

However, such solutions, especially that of
educating users, may be applied also to what
might appear to be a functional or user-
interface issue (as did NASA [Lutz & Mikulski
2003]).

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 200

