
The Requirements
Iceberg and Various
Icepicks Chipping at
It

Daniel M. Berry
dberry@uwaterloo.ca

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 1

Requirements

Client’s
View

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 2

Outline

Lifecycle Models
RE is Hard
Why Important to Do RE Early
Myths and Realities
Where Do Requirements Come From?
Formal Methods Needed?
Requirements and Other Engineering
Bottom Line
RE Lifecycle

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 4

Traditional Waterfall Lifecycle

à la Win Royce [1970]

Realization

Operation

Integration

Design

Specifications

Requirements

Where is testing?

Only one slight problem: It does not work!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 6

Fred Brooks about Waterfall

In ICSE ’95 Keynote, Brooks [1995a] says “The
Waterfall Model is Wrong!”

g The hardest part of design is deciding what
to design.

g Good design takes upstream jumping at
every cascade, sometimes back more than
one step.

ICSE ’95 was in Seattle, Washington!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 10

Fred Brooks also says:

“There’s no silver bullet!” [Brooks 1987]

g Accidents
process
implementation

i.e., details

g Essence
Requirements

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 11

“No Silver Bullet” (NSB)

g The essence of building software is
devising the conceptual construct itself.

g This is very hard.

- arbitrary complexity
- conformity to given world
- changes and changeability
- invisibility

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 12

NSB, Cont’d

g Most productivity gain came from fixing
accidents

- really awkward assembly language
- severe time and space constraints
- long batch turnaround time
- clerical tasks for which tools are helpful

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 13

NSB, Cont’d

g However, the essence has resisted attack!

We have the same sense of being
overwhelmed by the immensity of the
programming problem and the
seemingly endless details to take care
of,

and we produce the same kind of poorly
designed software that makes the same
kind of stupid mistakes

as 40 years ago!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 14

Brooks, Cont’d

Brooks adds, “The hardest single part of
building a software system is deciding
precisely what to build.... No other part of the
work so cripples the resulting system if it is
done wrong. No other part is more difficult to
rectify later.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 15

Real Life

We see similar requirement problems in real-
life situations not at all related to software.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 16

Contracts

We all know how hard it is to get a contract
just right ...

to cover all possible unanticipated situations.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 17

Houses

We all know how hard it is to get a house plan
just right before starting to build the house.

Contractors even plan on this; they underbid
on the basic plan, expecting to be able to
overcharge on the inevitable changes the
client thinks of later [Berry 1998].

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 18

Homework Assignments

We all know how hard it is to get the
specification of a programming homework
assignment right, especially when the
instructor must invent new ones for every run
of the course.

There is a continual stream of updates to the
assignment.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 19

Errors and Requirements

According to Barry Boehm [1981] and others,
around 65–75% of all errors found in SW can
be traced back to the requirements and design
phases.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 47

Errors and Requirements, Cont’d

Ken Jackson in a 2003 Tutorial on
Requirements Management and Modeling with
UML2, cites data from a year 2000 survey of
500 major projects’ maintenance costs
concluding that 70–85% of total project costs
are rework due to requirements errors and
new requirements.

In the table, the *d lines include requirements
issues and add to 84%, but not all their
instances are requirements related.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 48

Errors and Requirements, Cont’d

Tom Gilb [1988] says that approximately 60%
of all defects in software exist by design time.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 50

Errors and Requirements, Cont’d

Marandi and Khan [2014] cite studies by
Kumaresh & Baskaran and by Suma &
Gopalakrishnan that show that the

g requirement phase introduces 50%–60%,
g design phase introduces 15%–30%, and
g implementation phase introduces 10%–20%

of total defects to software.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 51

Flip Side

Those data say that we are doing a pretty
good job of implementing of what we think we
want.

But, we are doing a lousy job of knowing what
we want.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 50

Source of Errors

Either

g the erroneous behavior is required because
the situation causing the error was not
understood or expressed correctly, or

g the erroneous behavior happens because
the requirements simply do not mention
the situation causing the error, and
something not planned and not appropriate
happens.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 51

Reliability, Safety, Security, & Survivability

We know that we cannot program reliability,
safety, security, and survivability into the code
of a system only at implementation time. They
must be required from the beginning so that
consideration of their properties permeate the
entire system development [Leveson 1995,
Cheheyl et al 1981, Linger et al 1998].

The wrong requirements can preclude coding
them at implementation time.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 90

Prime Example: the Internet

Everybody is complaining about how insecure
the Internet is [Neumann 1986]

Many are trying to add security to the Internet,
and ultimately fail.

Why?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 91

Internet Requirements

The original requirements for the ARPAnet,
which later became the Internet, was that it be
completely open.

Anyone sitting anywhere on the net was to be
able to use any other site on the net as if he or
she were logged in at the other site.

In other words, the ARPAnet was required to
be open and essentially insecure [Cerf 2003,
Leiner et al 2000].

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 92

Internet Requirements Were Met

And the implementers of the ARPAnet did a
damn good job of implementing the
requirements!

Adding security to the Internet ultimately fails
because there is always a way around the add
on security through the inherently open
Internet.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 93

Secure Internet from Reqs Up

To get a secure Internet, we have to rebuild
the whole thing from requirements up, and
there is no guarantee that it will look anything
like what we have now and that the same
applications would run on it.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 94

E-Type Software

à la Meir Lehman [Lehman 1980]

An E-type system solves a problem or
implements an application in some real-world
domain.

Once installed, an E-type system becomes
inextricably part of the application domain, so
that it ends up altering its own requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 72

Another View of History

The Internet was and is an E-type system, …

if there ever was one!

Oy!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 101

Another View, Cont’d

The original Internet sites were only university
and non-profit research labs.

No commercial, profit making organizations
allowed.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 102

Another View, Cont’d

The code implementing TCP/IP was a research
prototype, …

which is fine because this code served as only
a proof of concept, …

used by only cooperative, well-behaved users.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 103

Another View, Cont’d

When the concept was proved, it was intended
that some commercial institutions would build
production quality versions of TCP/IP, …

each of which meets the full set of
requirements needed to make it a reliable,
robust, and secure system.

They would then market it, as with other
research prototypes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 104

Another View, Cont’d

But E-type pressures proved to be too strong.

Some people started seeing the commercial
potential of the service of the Internet and not
of TCP/IP itself, which was viewed as a utility.

So the research prototype became the utility
without ever going through the requirements
analysis and development necessary to make
it reliable, robust, and secure.

Sigh!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 105

RE & Project Costs

The next slides show the benefits of spending
a significant percentage of development costs
on studying the requirements.

They contain a graph by Kevin Forsberg and
Harold Mooz [1997] relating percentage cost
overrun to study phase cost as a percentage
of development cost in 25 NASA projects.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 96

Project Costs, Cont’d

The study, performed by W. Gruhl at NASA HQ
includes such projects as

g Hubble Space Telescope
g TDRSS
g Gamma Ray Obs 1978
g Gamma Ray Obs 1982
g SeaSat
g Pioneer Venus
g Voyager

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 97

Project Costs, Cont’d
180

160

140

120

100

80

60

40

20

0

0 5 10 15 20 25

P
er

ce
n

ta
g

e
C

o
st

 O
ve

rr
u

n

Study Phase Cost as a Percent
of Development Cost

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 98

Project Costs, Cont’d

There are three interpretations of the data:

The more you study the problem, ...

1. the lower the costs,
2. the fewer the surprises that cause

debugging and rework, and,
3. the more accurate the cost estimates are.

It’s probably a mixture of these.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 99

Why Fixing Code So Costly

The BIG question:

“Why does it cost so much to fix code?”

It’s because updating code correctly is like
lying perfectly consistently, which is very hard
to do.

Why is lying so hard?

What is the lie?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 172

Why Is Lying So Hard?

You’ve murdered someone, but

you don’t want to take the rap for the crime.

Fortunately, no one actually saw you commit
the murder.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 173

Cover Up!

So, there’s a chance that you can explain
away those little facts

that would place you at the scene of the
crime at the time of the crime, and

that would give you the motive to do the
crime.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 174

Concoct a Story

All you have to do is to to come up with a
consistent story that fits

all the potentially incriminating facts

including that the victim is dead,

that anyone can see,

but that does not incriminate you, …

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 175

Concoct, Cont’d

when you have no way to be sure that you
have identified

all such potentially incriminating facts

and

all such anyones.

Oy!!!!!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 176

The Proof of the Lie

There will always be

that inconvenient witness that innocently
reports

that inconvenient fact out of nowhere, that
you did not know of

that proves that your story is a lie.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 177

What is the Crime?

What is the crime with the software?

It has a big fat BUG!!!! Oy!!!!!!! Woe!!!!!!!

You gotta totally eradicate the bug, …

without throwing out the software and starting
all over.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 178

Actually, Why Not?

Because, too many people,

including those that can fire you if you are
perceived as making a mistake,

think that that would be a crime, …

to waste all the good work that was done so
far!

So you modify the existing code.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 179

What Is The Lie?
The lie is making all parts of the modified code
appear as if …

they were produced during …

an application of the current development
method …

to produce the modified code from scratch, …

under the constraint that you cannot change
the architecture of the code …

that has, and maybe even led to the BUG!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 180

The Exposure of the Lie

The lie gets exposed because

there is always some overlooked piece of
code

that is affected by the changes you made
elsewhere in the code.

sigh!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 181

Where the Expense is

The expensive part of fixing defects in code is
the attempt to find every last cockamamie
piece of code that is

affected by the parts that you need to
change and
affecting the parts that you need to change

recursively applied until

no new parts and
no new changes

are identified.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 182

It’s SO expensive …
It’s so expensive, that fixing code costs at
least 10 times what fixing the relevant
requirements specification would cost.

Thus, if as little as 10% of the code has to be
modified, it’s cheaper to throw out the
incorrect code and start all over than to fix the
code.

But, no manager can bring emself to do that!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 183

Empirical Evidence?

There is some empirical evidence to support
this, …

but because so few people are willing to stick
their necks out to try this, …

the reports are few and far between, not
enough for generalization.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 184

Evidence, Cont’d

Note that there are lots of project failure
reports, …

many of which point to the difficulty of
consistently updating code correctly.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 185

Whence Do Requirements Come?

REQS

REQS

REQS

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 150

Whence, Cont’d

Joe Goguen [1994a] says, “It is not quite
accurate to say that requirements are in the
minds of clients; it would be more accurate to
say that they are in the social system of the
client organization. They have to be invented,
not captured or elicited, and that invention has
to be a cooperative venture involving the
client, the users, and the developers. The
difficulties are mainly social, political, and
cultural, and not technical.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 151

Whence, Cont’d

Interviewing does not really help because
when asked what they do, most people will
quote the official policy, and not what they
actually do. Most of what they really do,
which is not specified by the policy, is what
they do in situations not covered by the
policy.

We’re not even talking about conscious,
politically safe mouthing of the policy.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 152

Whence, Cont’d

Many people simply do not remember the
exceptions unless and until they actually
come up. Their conscious model of what
happens is the policy.

Therefore, the requirements engineer has to
be there when the exceptional situations come
up in order to see what really happens.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 154

Whence, Cont’d

Moreover, many people just do not know why
they do something, saying only that it’s done
this way because the policy says so.

They very often do not even know why the
policy is the way it is.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 155

Whence, Cont’d

Moreover, many people just do not know how
they do something, drawing a complete blank
or saying only, “Watch me!”.

For example, how do you ride a bicycle? Nu?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 156

Whence, Cont’d

Don Gause and Jerry Weinberg [1989] tell the
story of the woman who always cuts off 1⁄3 of a
raw roast before cooking both pieces together.

She was asked “Why?” ... “???”

Her mother was asked “Why?” ... “???”

Her grandmother was asked “Why?” ...

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 157

Whence, Cont’d

Because the pot of this woman’s grandmother
was too small to accommodate the full length
piece. Nu?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 158

Whence, Cont’d

In other words, the policy once made sense,
but the person who formulated the policy, the
reasons for it, and the understanding of the
reasons are long since gone.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 159

Whence, Cont’d

For example, many companies that have
committed all data to a highly reliable data
base continue to print out the summary in
quintuplicate.

Why? At the time of automation, the five most
senior members of the company, who long
ago retired, refused to learn to use the
computer to access the data directly!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 160

