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Overview

Goal: A clear understanding of how 
requirements relate to the SUD (System 
Under Development) and its environment

[Much of this is based on the work of P. Zave and M. Jackson with C. and E. 
Gunter “A Reference Model for Requirements and Specifications” IEEE 
Software 17:3, 37-43, 2000]



Overview

• Topics:
– Reference model for requirements 

engineering
– System, environment, interface
– Context diagrams
– Domain knowledge
– Zave–Jackson Validation Formula (ZJVF)
– Deriving specifications from requirements



REFERENCE MODEL FOR 
REQUIREMENTS ENGINEERING



Overview

The parts of the RE Reference Model give you 
the mental tools to form a domain (context) 
model for any system you have to build.

It helps you decide what are the components 
and where they go in the model, which it turn
tells you what you implement and what you 
don’t.



Reqs, specs, and programs

Environment

Hard reality 
(domain model)

Shared
phenomena

Interface

Data structures
and algorithms

System (SUD)

“The world”

The boundary of the Environment is fuzzy.



Reqs, specs, and programs

We view the hardware and software as building 
a System
• that operates within a specified Environment 
• interacting with it through a set of Shared 

Phenomena:
– a Sensor senses phenomena in the environment 

(e.g., keyboard clicks)
– an Actuator causes change in the environment

(e.g., screen display)



Reqs, specs, and programs

Both the System and the Environment sit in the 
World. 

• A System is built to improve the 
Environment in some way.
• Therefore, everything in the World that is 

involved in the improvement is part of 
the Environment.



SYSTEM, ENVIRONMENT,
AND INTERFACE



The system

A System can be any socio-technical artifact that 
is to be constructed 
• It can be composed of some mix of software 

and hardware, processes, and possibly 
humans.

• If humans are part of the System, then their 
behavior must be specified and we must 
accept that they will not behave as specified.



The system

However, in general only the software is easily 
modifiable, and that is what we will concentrate 
on.
Hence, we will talk about
Software Engineering and Software 
Requirements,
but we really mean
System Engineering and System Requirements.



The environment

We scope the Environment to include only those 
aspects of the real world that are relevant to the 
particular problem at hand.



Shared phenomena

Shared Phenomena are visible to both the 
Environment and the System, and form the 
Interface between the two.
– A given interface entity may be sensed or 

controlled by the Environment or the System,
but generally not by both.
– It serves as a communication bridge from the 

one to the other.



Shared phenomena

Shared Phenomena...
– Anything that has to be in the Interface has to 

be shared by the Environment and the 
System.

– Anything that has to be shared by the 
Environment and the System has to be in the 
Interface.

We use both ways to make decisions.



A Look Back

The parts of the RE Reference Model give you 
the mental tools to form a domain (context) 
model for any system you have to build.
It helps you decide what are the components 
and where they go in the model:
• in only the environment: you don’t develop
• in the system: you develop
• in both, i.e., in the interface



Park example

Suppose that that the city of Waterloo decides 
to raise funds by instituting users fees for public 
parks.

We must implement a complete system of 
money collection, security, etc. 



Park example: Requirements

Informal requirement: 
Collect $1 fee from each human park user on 
entry to park.
– Ensure that no one may enter park without 

paying.
– Ensure that anyone who has paid may enter 

the park.
These are requirements, stated in terms of only 
the environment, independent of any System.



Park example

There are multiple levels of how:
• Solution level
• Design level
• Coding level

These names are arbitrary; understand them by 
example.



Park example: Possible solutions
Solution #1: 
• Employ human fee collectors. 
• Enforce perimeter security by instituting the 

Waterloo Park Militia, armed guards who 
ensure that no one uses a park w/o paying a 
user fee.



Park example: Possible solutions
Solution #2:
• Use barriers with automated coin collection.
• Use chain link fences for security.
– There is a barrier (turnstile) through which 

to enter a park. 
– A person inserts a coin, the barrier unlocks, 

allowing the person to push the barrier and 
enter the park.



Park example: Possible solutions
Solution #2:
After some research, we find appropriate barrier 
and coin collection hardware, but it’s all brand 
new technology. So, we must create the 
embedded software system.

This solution admits of three different designs 
based on barrier hardware characteristics:



Park example: Possible designs
Design #1:
Barrier can be turned as many times as desired 
unless it is locked by control.
Design #2:
Barrier is locked unless it is unlocked by control, 
when it can then be turned once.
Design #3:
Barrier is locked unless it is unlocked and then 
turned by control.



Park example: Possible designs
Each of these designs admits of many 
implementations, each with its own algorithm 
and programming language.
Since this course goes no lower than the 
solution level, we ignore these implementations.

In any case, by now, you all should be able to 
program these implementations in your sleep 
!!!!



Reqs, Sol’n, Design, & 
Implementation

• Reqs: If a user presses the “K” key, then E sees “K”
on the screen.

• Sol’n: If the “K” key is pressed, then display “K” on 
the screen.

• Design: A press of any key causes emission of an 
ASCII code that is used as an index into a table of 
bitmaps in a font table, the bit map that is put on 
screen.

• Implementation: C realization of the Design.



Requirements

So, Requirements are expressed in terms of only 
Environment phenomena.

Requirements (Reqs) are 
desired changes to the 
Environment



Requirements

Requirements are expressed in terms of only 
environmental phenomena: 
• No one should enter the park without paying. 
• Anyone who has paid should be allowed to 

enter the park.

There is no notion of any solution, design, or 
implementation here.



Specification

Want to avoid design and implementation bias 
in the Spec. So, a Spec is expressed in terms of 
only Interface, i.e., shared, phenomena.

A Specification (Spec) is a 
description of the 
proposed behavior of 
System.



Specification

A Spec describes how the System should react to 
Environment events that it can sense. The 
reaction includes actuating Environment events.

A Spec is expressed in 
terms of only Interface 
phenomena.



Specification

A Spec describes how the System should react to Environment 
events that it can sense. The reaction includes actuating 
Environment events.

Any Environment entity that must be in a Spec is 
in the Interface.

A Spec is expressed in 
terms of only Interface 
phenomena.



Specification
A Spec describes how the system should react to 
Environment events that it can sense:
For Solution #2:

If the number of coins inserted is greater than 
the number of times the barrier has been 
turned, then the barrier is unlocked.



Specification
A Spec describes how the system should react to Environment 
events that it can sense:
For Solution #2:

If the number of coins inserted is greater than the number of 
times the barrier has been turned, then the barrier is 
unlocked.

Note how internal System details are not 
mentioned and …
how it avoids Environment entities not in the 
Interface.



Specification
A spec describes how the system should react to 
Environment events that it can sense:
Even Solution #1 has a Spec mentioning only 
Interface phenomena for that solution:

If the fee collector, F, receives $1 from a 
person, P, trying to enter the park, F tells the 
militia officers not to shoot P; otherwise, F 
tells the militia officers to shoot P.



Specification
Solution #1 Spec mentions only Interface phenomena:

If the fee collector, F, receives $1 from a person, P, trying to 
enter the park, F tells the militia officers not to shoot P; 
otherwise, F tells the militia officers to shoot P.

The Interface consists of the fee collector, the 
militia officers, and the persons.
The hidden part of the System, not in the 
Environment, is the brains of the Interface 
entities.



Specification
Solution #1 Spec mentions only Interface phenomena:

If the fee collector, F, receives $1 from a person, P, trying to 
enter the park, F tells the militia officers not to shoot P; 
otherwise, F tells the militia officers to shoot P.

The Interface consists of the fee collector, the 
militia officers, and the persons.
Why must the persons be in the Interface?
Does this make sense in the real world?



Specification
Solution #1 Spec mentions only Interface phenomena:

If the fee collector, F, receives $1 from a person, P, trying to 
enter the park, F tells the militia officers not to shoot P; 
otherwise, F tells the militia officers to shoot P.

The Interface consists of the fee collector, the militia officers, 
and the persons.
Does this make sense in the real world?

The problem is the park militia who can shoot 
persons who enter the park without paying. 
They have to shoot only the right people.



Park example: Possible solution
If the solution had been
Solution #1’: 
• Employ human fee collectors that give out 

tickets to those who pay the fee. 
• Enforce perimeter security by a chain link 

fence and ticket collectors that allow in only 
those with tickets.



Park example: Possible solutions
Spec of Solution #1’
• The fee collector issues a ticket for each $1 E 

receives.
• The ticket collector allows in only any ticket 

bearer.

Just as the system does not care what pushes a 
key on a keyboard, the system here does not 
care who bears a ticket.



Requirements vs. Specification

• Requirements are statements of desired 
properties of an SUD, what it must do
– trying to avoid any mention of any solution.

• A specification is a description of a solution
explaining how the SUD will satisfy those 
properties, in terms of the shared phenomena
– more concrete and detailed, but not as 

much as a design or implementation.



Requirements vs. Specification

Requirements are statements of desired properties of 
an SUD, what it must do
• trying to avoid any mention of any solution.

Reqs mention only Environment entities.
If they mention the Interface entities of some 
solution, that solution becomes required and 
other solutions are precluded!



Requirements vs. Specification

A specification is a description of a solution
explaining how the SUD will satisfy those 
properties, in terms of the shared phenomena
• more concrete and detailed, but not as much 

as a design or implementation.



Requirements vs. Specification

A specification is a description of a solution explaining 
how the SUD will satisfy those properties, in terms of 
the shared phenomena
• more concrete and detailed, but not as much as a 

design or implementation.

A spec mentions only Interface entities.
If it mentions some other Environment entity, 
that entity becomes part of the Interface.



R, S, Design, & Code

• R: If a user presses the “K” key, then E sees “K” on 
the screen.

• S: If the “K” key is pressed, then display “K” on the 
screen.

• Design: A press of any key causes emission of an 
ASCII code that is used as an index into a table of 
bitmaps in a font table, the bit map that is put on 
screen.

• Code: C realization of the Design.



Scoping the Environment

The Environment
• It is a subset of the World.
• Want to model only as much of the World as is 

necessary to express the reqs and the spec – no 
more and no less.

The Environment 
defines the  area of 
discourse. 



Scoping the Interface

The Interface
• It is a subset of the Environment. 
• Want to put into the Interface only as much of 

the System and the Environment as is necessary 
to express the spec – no more and no less.

The Interface constrains 
the interaction and the 
spec. 



CONTEXT DIAGRAM



Context diagram

A Context Diagram is a graphical model of the 
Environment plus System and their components.
• Each Environment component that is 

connected to the System shares phenomena 
with the System.

• Sometimes need to have Environment 
components that don’t interact directly with 
the System, to be able to write the Reqs and 
Spec.



Context diagram

A Context Diagram is known in the literature 
also as
• a Domain Model
• a Class Model
• a Class Diagram
Just so that you are aware



Context diagram

• Each Environment component that is connected to 
the System shares phenomena with the System.

• Sometimes need to have Environment components 
that don’t interact directly with the System, to be able 
to write the Reqs and Spec.



Context diagram

• Each Environment component that is connected to 
the System shares phenomena with the System.

• Sometimes need to have Environment components 
that don’t interact directly with the System, to be able 
to write the Reqs and Spec.



Context diagram

Superimposing World model on context diagram



Example:  Elevator
An elevator passenger who wants to travel from one 
floor to another (higher) floor presses the “up” button 
at his current floor. The light beside the button must 
then be lit, if it was not lit before. The elevator must 
arrive reasonably soon, travelling in an upwards 
direction. The direction of travel is indicated by an 
arrow illuminated when the elevator arrives. The doors 
must open, and stay open long enough for the 
passenger to enter the elevator. The doors must never 
be open except with the elevator is stationary at a floor. 
Michael Jackson, Software Requirements and Specifications, Addison-Wesley, 1995.



Example:  Elevator

Passenger System
Elevator hardware:

Button, light, 
motor, door



Example:  Elevator

Passenger System
Elevator hardware:

Button, light, 
motor, door

ENV

SYS



Example:  Elevator
Better Context Diagram

Passenger
System 

incl. 
Motor

Button

Door

Light

ENV

SYS



Review of Overview

Goal: A clear understanding of how 
requirements relate to the SUD (System 
Under Development) and its environment

[Much of this is based on the work of P. Zave and M. Jackson with C. and E. 
Gunter “A Reference Model for Requirements and Specifications” IEEE 
Software 17:3, 37-43, 2000]



Overview

The parts of the RE Reference Model give you 
the mental tools to form a domain (context) 
model for any system you have to build.

It helps you decide what are the components 
and where they go in the model, which it turn
tells you what you implement and what you 
don’t.



A Look Back

The parts of the RE Reference Model give you the mental tools to 
form a domain (context) model for any system you have to build.
It helps you decide what are the components and where they go in 
the model:
• in the environment you don’t develop
• in the system you develop
• in both, i.e., in the interface

It tells you the questions you must ask, and
it tells you what you have to build and what you 
don’t.



Reqs, specs, and programs

Environment

Hard reality 
(domain model)

Shared
phenomena

Interface

Data structures
and algorithms

System (SUD)

“The world”

The boundary of the Environment is fuzzy.



Example:  Elevator
An elevator passenger who wants to travel from one 
floor to another (higher) floor presses the “up” button 
at his current floor. The light beside the button must 
then be lit, if it was not lit before. The elevator must 
arrive reasonably soon, travelling in an upwards 
direction. The direction of travel is indicated by an 
arrow illuminated when the elevator arrives. The doors 
must open, and stay open long enough for the 
passenger to enter the elevator. The doors must never 
be open except with the elevator is stationary at a floor. 
Michael Jackson, Software Requirements and Specifications, Addison-Wesley, 1995.



Example:  Elevator
Better Context Diagram

Passenger
System 

incl. 
Motor

Button

Door

Light

ENV

SYS



Moving Forward

• Topics:
– Domain knowledge
– Zave–Jackson Validation Formula (ZJVF)
– Deriving specifications from requirements



DOMAIN KNOWLEDGE



Eventual Goal:
Deriving specifications

Deriving specs (S) is the process of identifying actions, 
functions, operations, and constraints on shared 
phenomena, i.e., S, that achieves or entails the reqs (R):

S ⊢ R

R S



Domain knowledge

Reqs are concerned with describing things that 
we want the System to help make true. 
• The System might not be able to accomplish 

these things by itself. 
• Guaranteed properties of the Environment 

might be necessary for the System to actually 
and fully meet the Reqs. 

These properties are called Domain Knowledge, 
D.



Domain knowledge

These properties are called Domain Knowledge, 
D. 

Domain Knowledge is thus the set of properties 
that we know, or assume, to be true of the 
Environment that are relevant to the problem.



Domain knowledge

Without domain knowledge, you could not 
ensure that any system you designed would be 
capable of satisfying the stated requirements!
That is, without D, you could not ensure that
S ⊢ R.
That is, you will need to show that
D, S ⊢ R,
the Zave—Jackson Validation Formula (ZJVF).



Park domain knowledge

• There is no way to get into or out of the park 
except through the barrier, i.e.,
– the fence is tall enough that no one can 

jump over it, and
– the fence is inserted deep enough into the 

ground that no one can burrow underneath 
it.

• …



Park domain knowledge

• …
• The power that the barrier and coin slot need 

to operate is always available.
• The coin slot is able to hold as many coins as 

have been inserted.
• ….



Park Spec

• The park turnstile (barrier + coin slot) system 
spec will be expressed in terms of the shared 
phenomena:
– coin insertion, barrier locking and 

unlocking, barrier pushing, …
• Without the stated domain knowledge, you 

could not ensure that any turnstile system you 
designed would be capable of satisfying the 
stated reqs!



Park example: Requirements

Informal requirement: 
Collect $1 fee from each human park user on 
entry to park.
– Ensure that no one may enter park without 

paying.
– Ensure that anyone who has paid may enter 

the park.



Elevator domain knowledge

• The elevator is constrained to move in a shaft, 
so that it never goes from one floor to another 
without passing all the intermediate floors. 

• If the motor polarity is set to “up” and the 
motor is activated, then the elevator will rise.

• …



Elevator domain knowledge

• …
• If the elevator arrives at a floor travelling 

upwards, the floor sensor switch is set on 
when the elevator is nine centimeters below 
the home position at the floor. 

• The lift doors take 2250 msec to reach the fully 
closed state from the fully open state.



Elevator Spec

• The elevator spec will be expressed in terms of 
the shared phenomena:
– states of the sensor switches, button 

pressings, setting and activations of the 
motor and doors, … 

• Without the stated domain knowledge, you 
could not ensure that any elevator system you 
designed would be capable of satisfying the 
stated reqs!



R, S, D, Design, & Code

• R: If a user presses the “K” key, then E sees “K” on the 
screen.

• S: If the “K” key is pressed, then display “K” on the 
screen.

• D: The user has a way to press keys and a way to see 
what is on the screen.

• Design: A press of any key causes emission of an ASCII 
code that is used as an index into a table of bitmaps in a 
font table, the bit map that is put on screen.

• Code: C realization of the Design.



Traffic light example

• S = spec of traffic light that guarantees that 
perpendicular directions do not show green at 
same time

• R = perpendicular traffic does not collide

Can you show that S ⊢ R?



Traffic light example

• S = spec of traffic light that guarantees that 
perpendicular directions do not show green at 
same time

• R = perpendicular traffic does not collide

Can you show that S ⊢ R?

No!  What’s missing?  Some D!



Traffic light example

• S = spec of traffic light that guarantees that 
perpendicular directions do not show green at 
same time

• R = perpendicular traffic does not collide
• D = drivers behave legally and cars function 

correctly

Now you can show that D, S ⊢ R?



Traffic light example

• S = spec of traffic light that guarantees that 
perpendicular directions do not show green at 
same time

• R = perpendicular traffic does not collide
• D = drivers behave legally and cars function 

correctly
Now you can show that D, S ⊢ R?
Yes… sort of, in a hand-wavy way! !"



Traffic light example
• S = spec of traffic light that guarantees that perpendicular 

directions do not show green at same time
• R = perpendicular traffic does not collide
• D = drivers behave legally and cars function correctly
Now you can show that D, S ⊢ R?
Yes… sort of, in a hand-wavy way! !"

It ain’t pure and proper math, like is done in MC!
But you (I hope!) and I can see the logic.
We’ll see soon that there is a good reason why it 
will never be pure and proper math.



Traffic light example
• S = spec of traffic light that guarantees that perpendicular 

directions do not show green at same time
• R = perpendicular traffic does not collide
• D = drivers behave legally and cars function correctly
Now you can show that D, S ⊢ R?
Yes… sort of, in a hand-wavy way! !"

Or can we?
It all depends on all hardware’s operating 
correctly and power’s being always available!



Traffic light example
• S = spec of traffic light that guarantees that perpendicular directions 

do not show green at same time
• R = perpendicular traffic does not collide
• D = drivers behave legally and cars function correctly
Now you can show that D, S ⊢ R?
Yes… sort of, in a hand-wavy way! !"

It all depends on all hardware’s operating correctly and power’s being 
always available!

We choose to ignore hardware failures here.
In this part of the world, the probability of 
power failures is low enough to ignore.



Traffic light example
In parts of the world, in which the probability of 
power failures is too high to ignore:

In such a place, the Spec might provide that:
In the event of a power failure, a back-up 
battery flashes the red lights in all directions.

This makes the traffic light a 4, or whatever, way 
stop sign.



A look back.

Normally, you will have to examine each domain 
assumption, i.e., conjunct of D, to decide…

if, given the context of your SUD, it is worth 
for the system to protect against, i.e., detect 
and react to, the failure of the assumption to 
be true. 

Take into account the probability of, and the cost 
of the failure.                       



Traffic light example

• S = spec of traffic light that guarantees that 
perpendicular directions do not show green at 
same time

• R = perpendicular traffic does not collide
• D = drivers behave legally and cars function 

correctly

Problem: make D unnecessary!



Traffic light example

• S = spec of traffic light that guarantees that 
perpendicular directions do not show green at same 
time

• R = perpendicular traffic does not collide
• D = drivers behave legally and cars function correctly

Problem: make D unnecessary
Steel walls pop up on red. 
Traffic light controls cars by radio!



Traffic light example

• S = spec of traffic light that guarantees that perpendicular 
directions do not show green at same time

• R = perpendicular traffic does not collide
• D = drivers behave legally and cars function correctly

Problem: make D unnecessary
Steel walls pop up on red. 
Traffic light controls cars by radio!

Even so, it still all depends on all hardware’s 
operating correctly and power’s being available!



ZAVE–JACKSON VALIDATION 
FORMULA (ZJVF)



Zave–Jackson Validation Formula 
(ZJVF)

This part of the RE reference model, the ZJVF, 
helps you decide
• the features that you need to meet the reqs of 

the SUD you have to develop and
• the exceptions these features must check for 

to deal with the surprises that the real world 
delivers.



Reference model

ENV SUD
INTF

R – Reqs live in ENV (incl. INTF)
S – Spec lives in INTF, describes behavior of SUD
D – Domain knowledge lives in ENV (incl. INTF)



Reference model

Thus, if we enlarge our model to include domain 
knowledge, then the ZJVF must hold: 

D, S ⊢ R 
• D is domain knowledge 
• S is the spec
• R is the reqs



Reference model

D, S ⊢ R
• The spec describes the behavior of a system 

that is supposed to realize the reqs. 
• The domain assumptions are needed to argue 

that any system that meets the spec, and that 
manipulates the interface phenomena, will 
satisfy the original reqs. 



Reqs that live in only ENV – INTF?

Is there some notion of requirements that live in 
only ENV, saying only what is desired in the 
world, independent of any system that might 
achieve it?

We could call these “high-level requirements” or 
“goals”!



Add Goal = G, with R ⊢ G

ENV SUD
INTF

G – High Level Reqs, Goals live in ENV – INTF
R – Requirements live in ENV (incl. INTF)
S – Spec lives in INTF, describes behaviour of SUD
D – Domain knowledge lives in ENV (incl. INTF)



Where is the User Interface?

ENV SUD
INTF

All this makes it very clear where the user 
interface of the SUD is and…
Why it is described in the Spec, and it is 
NOT just another implementation detail!



Reference model

If you can’t prove D, S ⊢ R, then at least one of 3 
things must be wrong: 
• reqs are incorrect or unreasonable
• system doesn’t do enough 
• we aren’t assuming enough about the 

environment 



Reference model

A real world example:   [M. Jackson]
• An airplane overshot the runway on landing.

The pilot had tried to engage reverse thrust, but the 
airplane’s avionics system wouldn’t permit it.

• What’s wrong?



A real world example

Environment System

can_reverse
(actuator)

wheel_pulses
(sensor)

moving_on_runway

wheels_turning

R: An airplane may engage reverse thrust iff 
it’s moving on the runway
D1: Moving on runway iff wheels turning
D2:Wheel pulses detected iff wheels turning
S: Can reverse iff wheel pulses detected

S
D1

D2

R



A real world example

The reason for the crash that the runway was 
wet, and the wheels were hydroplaning instead 
of turning. 
• Reverse thrust could be engaged only if 

pulses from the wheel sensors indicated that 
the wheels were turning.



A real world example

The developers made domain assumptions, but 
D1 was wrong.
• If airplane is hydroplaning, then 

MOVING_ON_RUNWAY is true (and would 
like to engage reverse thrust), but 
WHEELS_TURNING is false. 

• The error was in the step of deriving spec 
from reqs. 



Correctness

To validate: 

D, S ⊢ R
Must be able to argue that the spec plus the 
domain assumptions are enough to satisfy the 
reqs.

Trivia:  What’s this
symbol called?



Correctness

D, S ⊢ R 
If you can’t make this argument successfully, 
then you need to do one (or more) of:
1.
2.
3.



Correctness

1. strengthen the specification 
2. strengthen the domain knowledge
3. weaken the requirements



Example:  Train crossing

Req: train is in crossing ⇒ gate must be down 

S1: if approaching train is 200m away, lower 
gate 



Example:  Train crossing

Is S1 enough?

No, then give D1, then D2. 

• D1: gate can be lowered in 10 sec
• D2: trains move more slowly that 

200m/10s 



Example:  Train crossing

• D1: gate can be lowered in 10 sec
• D2: trains move more slowly that 200m/10s

Yes, this is enough now ... but ... 
• Is this enough to be safe? Are D1 and D2 

reasonable?
• What about speed of cars and humans who 

might be crossing tracks? Do they have 
enough time to clear? Will the crossing 
coming down interfere with their leaving? 



D, S ⊢ R 

The ZJVF encapsulates all the thinking the 
requirements engineers need to be doing, with 
input from the clients and users of the future 
SUD to make sure that it will work in the real 
world, that never behaves as we assume it to 
behave.
It gets the requirements engineers to ask the 
right questions of the clients and users.



• The formula D, S ⊢ R tries to be formal in the 
sense of describing what happens completely.

• One would expect computers and software 
and their combination to be formal in this 
sense.

• But, the real world intervenes to make this 
formula only a guideline and not an accurate, 
precise model.

Uncertainty in D, S ⊢ R



• First, the real world never behaves as any
model.

• Any model D is only an approximation. 
• Generally, the simpler the model, the more of 

an approximation the model is, but the easier 
it is to prove things about the model.
• There is a distinction between proving things 

about a model and proving that a model is 
correct!

Uncertainty in D, S ⊢ R



There is a distinction between
proving things about a model
[Math proof]

and
proving that a model is correct
[Empirical proof].

• …

Uncertainty in D, S ⊢ R



• …
• Modeling the real world accurately requires 

complexity to deal with all the weird 
exceptions.

• A mechanistic description generally has to be 
replaced by or tempered with a probabilistic 
model, e.g., 99.99% of drivers stop at a red 
light.

Uncertainty in D, S ⊢ R



• At the lowest level, a CBS is mechanistic, e.g., 
a traffic light, the sqrt function, and can be 
modeled with a consistent S that is 
mechanistic, that always gives for any input 
the same answer that the CBS does.

• But floating point arithmetic is not the same 
as real numbers, and integer arithmetic suffers 
over- & underflow.

• …

Uncertainty in D, S ⊢ R



• …
• At higher levels, e.g., MS Word, an operating 

system, process control, etc., the CBS is so 
large that we cannot understand all of its code 
and all of its behavior. So, we begin to give 
probabilistic models of what the CBS does.

Uncertainty in D, S ⊢ R



• All that applies to D, applies to R, because 
both are models of the real world, one as is, 
and the other as it is to be.

• R is always an approximation of what we 
want, because if we overlook something in the 
real world and it turns out to be relevant to 
the CBS’s behavior, e.g., a gaggle of Canadian 
geese that fly near a jet engine, then R may 
not be correct.

Uncertainty in D, S ⊢ R



• The formula D, S ⊢ R tries to be formal in the 
sense of describing what happens completely.

• But, as we have seen, it cannot be completely 
formal because at least D and R have to 
describe the real world, which is not formal

What does this do to the hope of formally 
modeling computer systems?

Uncertainty in D, S ⊢ R



We are developing more and more systems with 
stochastic behavior:
• Molecular SW, e.g., DNA, RNA, Proteins, 

Catalysts
• Molecules designed specifically to achieve a 

desired effect
• Molecule is shown empirically to behave as 

specified in S, with 99.95% certainty

• …

More uncertainty in D, S ⊢ R



We are developing more and more systems with 
stochastic behavior:

• …
• AIs
• Learned Machines (LMs) = ML + teaching data

In these case, in D, S ⊢ R, also S is informal!

More uncertainty in D, S ⊢ R
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