Recall vs. Precision vs. Summarization in RE for AI

Daniel M. Berry
University of Waterloo
Tasks Requiring Intelligence

We are talking about tasks requiring *real intelligence (RI)*, i.e., from a *human*.

The task is to find *correct answers* in a space of *answers*, some *correct* and the rest *incorrect*.
Building an AI or LM

We want to build an *artificial intelligence (AI)* that does the task.

This AI might be a *learned machine (LM)* which is the result of *machine learning (ML)*, whether it is taught, self-teaching, or both.
Specifying Requirements of AI

How do we specify the requirements of the AI in a way that …

when we have an implementation of the AI, we can use the
requirements specification (RS) of the AI to decide whether the
implementation meets the AI’s requirements?
Precision

P is the percentage of the tool-returned answers that are correct.

$$P = \frac{|\text{ret} \cap \text{cor}|}{|\text{ret}|} = \frac{|TP|}{|FP| + |TP|}$$
Precision

\[\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \]

- TN (True Negative)
- FP (False Positive)
- TP (True Positive)
- FN (False Negative)

\[\sim \text{cor} \quad \text{cor} \]
\[\sim \text{ret} \quad \text{ret} \]
Recall

R is the percentage of the correct answers that the tool returns.

$$R = \frac{|\text{ret} \cap \text{cor}|}{|\text{cor}|}$$

$$= \frac{|\text{TP}|}{|\text{TP}| + |\text{FN}|}$$
Recall

\[\text{TP} \quad \text{FN} \]
\[\text{FP} \quad \text{TN} \]
R vs P Tradeoff

P and R can usually be traded off in an IR algorithm:

- increase R at the cost of decreasing P, or
- increase P at the cost of decreasing R
Extremes of Tradeoff

Extremes of this tradeoff are:

1. tool returns all possible answers, correct and incorrect: for
 \[R = 100\%, \ P = C, \]
 where \(C = \frac{\text{# correctAnswers}}{\text{# answers}} \)

2. tool returns only one answer, a correct one: for
 \[P = 100\%, \ R = \varepsilon, \]
 where \(\varepsilon = \frac{1}{\text{# correctAnswers}} \)
Extremes are Useless

Extremes are useless, because in either case, ...

the entire task must be done manually on the original document in order to find exactly the correct answers.
100% Recall Useless?

Returning everything to get 100% R doesn’t save any real work, because we still have to manually search the entire document.

This is why we are wary of claims of 100% R ... Maybe it’s a case of this phenomenon!