10. [18 total marks] State Machines and Linear Temporal Logic

(a) Consider the following specification written in Temporal Logic:

```
\(\square(\) Initial \(\Rightarrow(\) Initial \(\mathcal{W}(\) WhiteSpace \(\vee\) Letter \(\vee\) Digit \(\vee\) Otherwise \()))\)
\(\square((\) Initial \(\wedge\) WhiteSpace \() \Rightarrow\) 〇Initial \()\)
\(\square((\) Initial \(\wedge\) Digit \() \Rightarrow \bigcirc\) Num \()\)
\(\square((\) Initial \(\wedge\) Letter \() \Rightarrow \bigcirc I d)\)
\(\square((\) Initial \(\wedge\) Otherwise \() \Rightarrow\) OError \()\)
\(\square(I d \Rightarrow(\) Id \(\mathcal{W}(\) Letter \(\vee\) Digit \(\vee\) Otherwise \()))\)
\(\square((I d \wedge(\) Letter \(\vee\) Digit \()) \Rightarrow \bigcirc I d)\)
\(\square((\) Id \(\wedge\) Otherwise \() \Rightarrow\) OInitial \()\)
\(\square(\) Num \(\Rightarrow(\) Num \(\mathcal{W}(\) Digit \(\vee\) Otherwise \()))\)
\(\square((\) Num \(\wedge\) Digit \() \Rightarrow\) ○Num \()\)
\(\square((\) Num \(\wedge\) Otherwise \() \Rightarrow\) OInitial \()\)
\(\square(\) Error \(\Rightarrow(\) Error \(\mathcal{W}(\) false \()))\)
\(\square((\) Error \(\wedge\) true \() \Rightarrow\) OError \()\)
```

Draw the specified finite state machine.

(b) Now, recognize that in each state with an Otherwise event, Otherwise means something different. For any state, Otherwise means "any event but the other events that emerge from the same state". Define each of the three Otherwises in terms of the other predicates.

1. Otherwise of Initial:
$\neg($ WhiteSpace \vee Letter \vee Digit $)$
2. Otherwise of $I d$:
$\neg($ Letter \vee Digit $)$
3. Otherwise of Num:
\neg (Digit)
(c) In the FSM you made for (a), consider the transition from Id to Initial under the event Otherwise. The basic FSM notation indicates neither any conditions on the transition nor an action to happen when a transition is taken. The UML state machine notation allows specifying both conditions on the transition and an action to happen when a transition is taken.
Assume that Otherwise (x) means that the actual otherwise character that triggers the Otherwise event is available to be used in the transition's conditions and actions by mentioning the parameter x.
On the transition line in the diagram below, write the UML expression associated with this transition that says
"Whenever in state $I d$,
if the input is the otherwise character x and the x is a punctuation character $(\operatorname{punct}(x))$ then first the current value of token is emitted (emit(token)), and then token is assigned the value of x.
Finally, the next state is Initial."
Otherwise $(x)[\operatorname{punct}(x)] /$ emit(token); token $:=x$

