
For any such exception, the group may decide in the end
that its system may not deal at all with the exception,
that if the assumption does not hold during the running
of the system, the system will fail. This treatment
will usually be that the exception is not detectable or
even if detectable, there is nothing the system can do
about it. But then, the assumption, the exception, and
the decision not to handle it will need to be
documented in the final specs. Now is too early to make
this decision. So all we expect for this deliverable is
the assumption and the exception.

The main points of failure are:

1. NOT PAYING ATTENTION TO YOUR FEEDBACK ON PREVIOUS
DELIVERABLE, particularly the requirement to hand in a
revised earlier deliverable. This failing earns a 0. I
want the group to learn that NOT listening to YOU is a
BIG NO NO now, when the points don't count much.

Nevertheless, give whatever feedback you can on the
deliverable they did hand in.

This deliverable is probably the hardest to mark,
because marking it correctly requires understanding
what the UCs are and what they do. However, I believe
that by this time, you have this understanding of your
teams' projects.

Based on past experience, I would say that many will
give good lists of assumptions, exceptions, and
variants. These will be largely at the level of the
UCM, and this is a GOOD thing. While not deprecating
these lists, many will not list many of the lower-
level, data-level exceptions. Also, I see that many do
not have at least one exception for every assumption.

So the principal failings are:

1. Not having at least one exception for every
assumption. At the very least, the negation of an
assumption is an exception. Sometimes, there is not ONE
exception to an assumption; there are multiple
exceptions, the logical disjunction of which is the
logical negation of the assumption. :-)

For any such exception, the group may decide in the end
that its system may not deal at all with the exception,
that if the assumption does not hold during the running
of the system, the system will fail. This treatment
will usually be that the exception is not detectable or
even if detectable, there is nothing the system can do
about it. But then, the assumption, the exception, and
the decision not to handle it will need to be
documented in the final specs. Now is too early to make
this decision. So all we expect for this deliverable is
the assumption and the exception.

2. Ignoring the common, everyday mistakes that a user
can make on input, including just plain clicking on the
wrong buttons or typing the wrong kind of text, e.g., a
letter when digits are expected, etc. While these
exceptions are not exciting, not difficult to deal
with, etc., dealing with these ends up being a majority
of the code that needs to be written.

If there is ANYTHING that they have done that you do
not understand, comment on that. Say that this is not
clear. Ask them what they mean. Sometimes, lack of
clarity to you is a sign of something that is unclear
to them. Regardless, it is their job to be clear.

With regard to variants, almost anything is fine. The
purpose of having them list variants was just to get
them to think about them. These will generally be
either fairly obvious or fairly innovative. If they
have NONE, ask, "Where are the variants?" If you think
of a variant that they did not, you can ask about it.

Of course, if the UCM of D2 was or is still deficient,
then any list of assumptions, exceptions and variations
will be deficient. So the team may have to go back and
redo their UCMs again.

