CS445 / SE463 / ECE 451 / CS645

Software requirements specification
& analysis

11. The user manual

Fall 2010 — Mike Godfrey

Meta-comments

* Opinions and ideas expressed herein are due to Prof. Dan
Berry and his collaborators K. Daudjee, J. Dong, |. Fainchtein,
M.A. Nelson, T. Nelson, & L. Ou

— Some of them are very personal and even controversial!

* This talk was first written in 1991, prior to the community’s
identification of the concepts of scenarios and use cases as
being helpful in requirements engineering.

* Soyou’ll see these ideas popping up

Meta-comments

» After this slide, “I” means “Prof. Dan Berry”

_ IIIII

[Godfrey] have performed some minor editing, mostly to shorten
existing text. Some paraphrasing was done. Some text was
emphasized. And many slides were left out from the original
presentation.

— Prof. Berry’s original slides can be found on the course web site.

* Although advice as to basic structure of your UMs is given in
these slides, you should carefully read through the example
UM on the course web page

— WOD-pic User’s Manual by Lihua Ou

Introduction

<Prof. Dan Berry speaking>

* | believe that the most useful document to write during
requirements engineering is the user’s manual (UM).

* When done right and at the right time, it can serve as a useful
elicitation, analysis, and validation tool, and can even serve as
a RS.

Introduction

| am not discounting the other requirements documents,
including the SRS.

— They may be required by the customer.
— They may give useful information that is not contained in the UM.

However, | have found the production of the UM a good focal
point in the requirements engineering process and a good
way to get on to paper at least the kernel of all the
information that goes in the other documents.

Why write an RS of a CBS
before implementing it?

The problems of writing an RS

* Despite these clear benefits, many projects are unable to
produce the RS, for a variety of reasons, some technical and
some social.

Pluses: Writing a RS for a CBS
before implementation starts

is a good way to learn the CBS's requirements,

helps reconcile differences among CBS's
stakeholders,

allows customer of CBS to validate the RS,

makes what needs to be implemented clear,
and

allows generating test cases with inputs and
expected outputs.

Negatives: Writing a RS for a CBS

before implementation starts
is difficult to do right, and

“there's not enough time”,
the requirements change, and
the RS is never read anyway.

dberry
Highlight

Writing UM may be a solution

This talk offers writing a UM for a CBS before implementing

it as a way achieving the writing of a RS of the CBS before
implementing it.

The method both

— produces a document that delivers the five benefits of writing a RS
before implementation, and

— helps ameliorate or mitigate the four problems that discourage the
production of a RS before implementation, particularly the last one.

Infoina UM

e An RS should

— describe the CBS’s function and not the CBS’s implementation,

— describe the CBS from the user’s point of view and not the
implementer’s

* Agood UM should

— describe the CBS’s function and not the CBS’s implementation,

— describe the CBS from the user’s point of view and not the
implementer’s,

* Hmmmm????

Fred Brooks’s observation

* In 1975, in MM-M, Fred Brooks equated the UM with the
written RS:

— “The manual must not only describe everything the user does see,
including all interfaces; it must also refrain from describing what the
user does not see. That is the implementer’s business, and there his
design freedom must be unconstrained. The architect must always be
prepared to show an implementation for any feature he describes, but
he must not attempt to dictate the implementation.”

Demarco and McConnell

* Also, Tom DeMarco suggests in several places using UMs as
RSs, most notably in The Deadline.

* In Software Project Survival Guide, Steve McConnell says:

— “Prior to placing the prototype under change control, work can begin
on a detailed user documentation (called the User Manual/
Requirements Specification). This is the documentation that will
eventually be delivered to the software’s end users. Typically, this
documentation is developed at the end of the project, but in this book’s
approach, it is developed near the beginning.”

Lisa & Macintosh

* Itis said that the UMs for the Lisa and Macintosh computers
were written completely before implementation of their
software began.

* The UMs were given to systems programmers as the RS of the
user interfaces (Uls) and of the underlying systems.

» [The original version of DOS on the Intel 8086 chip — called
QDOS — is supposed to have been implemented from a user
manual for the CP/M operating system. — MWG]

UMs and 5 roles of a RS

| claim that:

1. The process of writing a UM for a CBS is a good way to
learn the CBS’s requirements.

2. The process of writing a UM for a CBS helps to reconcile
differences among the CBS’s stakeholders.

3. A UM allows the customer of the CBS to validate that the
projected CBS will be what he or she wants before

resources are spent implementing a possibly incorrect
CBS.

UMs and 5 roles of a RS

4. A UM makes it clear what must be implemented to
obtain the required CBS.

5. A UM allows deriving both covering test cases and
expected results that allow verification that the

implementation of the CBS does what it is supposed to
do.

Motivating writing of a RS
— “It’s difficult to write a good RS”

Writing a good RS is difficult because the advice to describe “what, not
how” is easier said than done.

Clients and users tend to describe solutions to possibly non-existent
problems rather than just problems that need to be solved.

Writing a good UM forces focusing on the user’s view of the CBS.

With typical user in mind as the future audience of the UM, it’s easier to
focus on the user’s view, the what of the CBS, and to avoid mentioning
implementation details.

“It takes too long”
“It’s a waste of time”

* If a project produces a UM, help system or test cases, it writes
a RS.
— Any project for commercial or contracted software does so.
— Thus there is time to write a RS; it’s already being done.

* But the UM, help system, test cases are written later.

— Ah, but writing them earlier saves time and money for each
requirement error found earlier when it costs an order of magnitude
less to fix it.

Writing UM preferable to writing RS

UM or help system needs to be written eventually for user’s
benefit, but RS is not likely to be looked at beyond beginning
of coding.

Good UM exposes full set of use cases, from which test cases
can be written, but most SRSs tend to focus on functional and
NFRs and skip use cases.

Requirements for RS

* Itis most important that a requirements document
— be readable, and

— accurately and completely describe the software system to be built, a
system that meets the client’s desires and needs.

* All else is frosting on the cake.

Requirements for RS

* |t must be readable because if not,

— no one will be able to judge whether the document meets the second
document requirement,

— no one will be able to write the software to meet the system
requirements,

— no one will be able to judge whether the software meets the system
requirements.

Good UMs

* My favorite way to write a RS for a system that will have users
is to write a UM or a collection of UMs, one for each kind of

user.

* Writing UM requires a clear conception of what the system is
supposed to do, clear enough that the manual author can
visualize user scenarios and describe both

— what the user should say to the system and
— what the system will respond to the user.

Good UMs

* So what does a good UM look like?
— Well, it should be clear, no longer than necessary, and fun to read!

— Actually, almost everyone knows a bad user manual when he or she
tries to read one and cannot!

— There is something of an art to writing a good UM.

Good and bad UMs

* | personally have found the following manuals good:
— The PARADOX UM from Borland
— The TEXbook by Knuth
— The C Programming Language by Kernighan and Ritchie
— The PIC UM by Kernighan
— The EQN UM by Kernighan and Cherry

* | personally have found the following manuals bad
— The C++ Programming Language by Stroustrup
— The NROFF/TROFF UM by Ossana
— The SCRIBE UM by Unilogic
— The TBL UM by Lesk

Good UMs

A good UM seems to have the following elements:

1. Descriptions of underlying and fundamental concepts of the
software, [i.e., a lexicon!]

2. A graduated set of examples each showing
— a problem situation the user faces

— some possible user responses to the problem in the form of
commands to the software

— the software’s response to these commands
[i.e., use cases!]

3. A systematic summary of all the commands
[i.e., a reference manual]

Good UMs

* Having only the command summary [i.e., a reference manual]
— loses many readers who do not understand the concepts, and

— turns off many readers who just plain get bored reading page after
page after page of boring command syntax and semantics.

* Leaving out the lexicon makes it very hard for the author to
use a consistent vocabulary in writing the rest of the manual.

Good UMs

* Leaving out the “use cases” leaves the reader without any
sense of what is important and how to use the system to solve

his or her problems.

* A well-written set of “use cases” makes reading the manual,
even the command summary, fun.

Good UMs

* The command summary must be consulted in order to fully

explain why the input of an example solved the problem the
example claims it does.

* Itisin writing the lexicon and “use cases” that diagrams are
most useful

— ... although | have seen command summaries that use a collection of

related diagrams, one per command, to explain the system response
to every command.

Good UMs

A good way to organize the lexicon is around the abstractions
that you have found in the problem domain.
[i.e., a Domain Model!]

Each abstraction that survives the analysis should be
explained in terms of

— what the objects are

— what they do

— what is done to them

Good UMs

* Writing a good UM takes skill, and there is no substitute for
that skill.

— | hope that at least one person in each group has that skill.

* In anindustrial situation, the client and the software house

must hire good writers to write skillful conception and
requirements documents.

English majors as documenters

* Bob Glass reports how successfully non-software-
knowledgeable English majors were able to write high-quality

descriptions of the grubby details of programs in
documentation about these programs for maintainers.

Fairly’s UM model

* According to Richard Fairley in his 1985 Software Engineering
Concepts, a preliminary UM should be produced at
requirements definition time.

— He proposes the following outline for the (preliminary) manual.

1. Introduction
— Product overview and rationale
— Terminology and basic features
— Summary of display and report formats
— Outline of the manual

2.

3.

4.

5.

Fairly’s UM model

Getting started
— Sign-on

— Help mode

— Sample run

Modes of operation:
— Commands/Dialogues/Reports

Advanced features

Command syntax and system options

Using a UM as an RS

e ...works only for those CBSs for which a UM describes all but
trivially explained requirements.

* Thus,

— The CBS must have at least one kind of user.

— The CBS must provide all but trivially explained functionality through

at least one Ul, and all of this functionality must be clear from the
behavior seen by a user.

— Each of the CBS’s NFRs must be well understood and easily described
in prose.

Using a UM as an RS

* |If a CBS has several kinds of users, one UM manual can be
written for each kind.

— However, maintaining consistency of all UMs becomes a problem.

This won’t work well for ...

* Autonomous systems with no real human users

— However, a description of the real world’s or other CBS’s behavior
might suffice.

A CBS for which one or more algorithms it computes is the
major issue of a RS (and the Ul is not an issue):

e.g., a weather predictor

* A CBS with nontrivial NFRs that are not specifically visible to
the user

e.g., security, reliability, and robustness (SR&R), for which the user does
nothing to cause the NFR to kick in.

— The way SR&R is achieved is a major issue for the RS.

Users vs. developers

It can be argued that a UM favors the user over the developer
(designer and implementer).

If a UM is use-case centred, it’s hard to identify functions that
must be implemented

However, a good UM has also a feature-centred part listing all
the individual features and describing all of the options of
each.

— This part is organized much as is a traditional SRS.

— The designer and implementer can find the functions already
identified.

“It don’t come easy”

* Writing the UM is hard, but so is writing a RS!

— So you are no worse off!

All the gory details

* No requirements specification method that does not force
working out the details is going to work.

— Itis only in working out the details that all the show-stopping
exceptions and interactions are going to be discovered.

* These details can be worked out in any of several media:
— the software itself,
— a complete formal specification,
— a complete, traditional SRS, or
— a complete, scenario-based UM.

All the gory details

 The advantage of UM is that changing the manual consistently
is much cheaper than changing either the software itself or a
complete formal specification.

* Also, unlike a complete, traditional SRS, a UM is both needed
and perceived as needed after the software is delivered.

— Thus, the motivation to keep it up to date is higher than that to keep a
traditional SRS up to date.

All the gory details

* The advantage of the software itself or a complete formal
specification is that it is hard to handwave over the details, to
cheat to leave the impression of completeness when details
are missing.

— If details have been left out, the software will not work or the formal
specification cannot be verified to satisfy requirements.

All the gory details

* Whileitis fairly easy to leave details out of a UM, since the
UM is intended to be delivered with the software to help
naive users, the incentive is to get those details in.

— Thus, it is an issue of finding a right medium for expressing detailed
requirements that is both cheap to change, but hard to handwave
one’s way to a false impression of completeness.

Summary

* AUMis anideal RS in many cases because, if it is well-written:
— it is written at the level of what the user sees,

— it describes the basic concepts, and
— it does not describe implementation details.

 That s, it is written at the right level of abstraction for a RS.

</Prof. Dan Berry speaking>

Some examples

 WD-pic Manual, by Lihua Ou

— http://www.student.cs.uwaterloo.ca/~cs445/Fall2009/exampleDocs/
WD-picManual.pdf

* iPhone User Guide, Apple Computers
— http://manuals.info.apple.com/en US/iPhone User Guide.pdf

 GNU Image Manipulation Program (GIMP) User Manual
— http://docs.gimp.org/en/

[This and the remaining slides are due to Mike Godfrey, tho he didn’t actually
create any of the content.]

[- CEapter 1: Getting Started >
9 Viewing the User Guide on iPhone

9 What You Need

10 Activating iPhone

10 Installing the SIM Card

10 Registering iPhone

11 Setting Up iPhone Using VoiceOver

11 Syncing

16 Mail, Contacts, and Calendar Accounts
18 Installing Configuration Profiles

19 Disconnecting iPhone from Your Computer

&_Lhapter 2: Basics >
20 iPho

23 Home Screen

26 Buttons

28 Touchscreen

31 Onscreen Keyboard

37 Searching

38 Voice Control

39 Stereo Headset

40 Connecting to the Internet
43 Battery

45 Security Features

46 Cleaning iPhone

46 Restarting and Resetting iPhone

! EEapter 3: Phone >
47 Phone Calls

51 Visual Voicemail

54 Contacts

54 Favorites

54 Ringtones and the Ring/Silent Switch

3838388 RRBBBY

S

81

85

88X

89

91
91
91
92
93
93

95

97

97
97

Bluetooth Devices
International Calls

Chapter 4: Mail

Setting Up Email Accounts
Sending Email

Checking and Reading Email
Searching Email

Organizing Email

Chapter 5: Safari
Viewing Webpages
Searching the Web
Bookmarks

Web Clips

Chapter 6: iPod

Getting Music, Video, and More
Music and Other Audio

Videos

Setting a Sleep Timer
Changing the Browse Buttons

Chapter 7: Messages

Sending and Receiving Messages
Sharing Photos and Videos

Sending Voice Memos

Editing Conversations

Using Contact Information and Links
Managing Previews and Alerts

Chapter 8: Calendar

About Calendar

Syncing Calendars

Viewing Your Calendar

Searching Calendars

Subscribing to and Sharing Calendars
Adding Calendar Events to iPhone
Responding to Meeting Invitations
Alerts

Chapter 9: Photos
About Photos
Syncing Photos and Videos with Your Computer

98

100
102
102

103
103
104
105
105
106

107
107
108
109
109
10
m

m

n2
n2
mn3

n4
n4
mn9
19
121
121

123
123
124

125
125
126
127
128
128
129

Viewing Photos and Videos
Slideshows

Sharing Photos and Videos
Assigning a Photo to a Contact

Wallpaper

Chapter 10: Camera
About Camera

Taking Photos and Recording Videos
Viewing and Sharing Photos and Videos

Trimming Videos

Uploading Photos and Videos to Your Computer

Chapter 11: YouTube
Finding and Viewing Videos
Controlling Video Playback
Managing Videos

Getting More Information

Using YouTube Account Features
Changing the Browse Buttons
Sending Videos to YouTube

Chapter 12: Stocks
Viewing Stock Quotes
Getting More Information

Chapter 13: Maps

Finding and Viewing Locations
Bookmarking Locations

Getting Directions

Showing Traffic Conditions

Finding and Contacting Businesses

Chapter 14: Weather
Viewing Weather Summaries
Getting More Weather Information

Chapter 15: Voice Memos
Recording Voice Memos
Listening to Voice Memos
Managing Voice Memos
Trimming Voice Memos
Sharing Voice Memos

Syncing Voice Memos

130
130
131
131
131

132
132
133
133
134

135
135
135
136

Chapter 16: Notes
Writing and Reading Notes
Searching Notes

Emailing Notes

Syncing Notes

Chapter 17: Clock
World Clocks

Alarms

Stopwatch

Timer

Chapter 18: Calculator
Using the Calculator
Standard Memory Functions
Scientific Calculator Keys

< 138 Chapter 19: Settings

139
140
140
141

141

142
142
142
150
153
156
157
158
159
159
159

160
160
161

162
162
163
164

Wi-Fi

VPN

Notifications

Carrier

Sounds and the Ring/Silent Switch
Brightness

Wallpaper

General

Mail, Contacts, Calendars
Phone

Safari

Messages

iPod

Photos

Store

Nike + iPod

Chapter 20: iTunes Store
About the iTunes Store

Finding Music, Videos, and More
Purchasing Ringtones

Purchasing Music or Audiobooks
Purchasing or Renting Videos
Streaming or Downloading Podcasts

165 Checking Download Status
165 Syncing Purchased Content
165 Changing the Browse Buttons
166 Viewing Account Information
166 Verifying Purchases

167 Chapter 21: App Store

167 About the App Store

167 Browsing and Searching

169 Info Screen

170 Downloading Applications

171 Deleting Applications

171 Writing Reviews

172 Updating Applications

172 Syncing Purchased Applications

173 Chapter 22: Compass
173 Getting Compass Readings
174 Compass and Maps

176 Chapter 23: Contacts

176 About Contacts

176 Adding Contacts

177 Searching Contacts

178 Managing Contacts on iPhone

180 Chapter 24: Nike + iPod
180 Activating Nike + iPod
181 Additional Nike + iPod Settings

&82 Chapter 25: Accessibility
182 yPeTes

183 VoiceOver

189 Zoom

190 White on Black
190 Mono Audio

190 Speak Auto-text
191 Tripleclick Home

191 Closed Captioning and Other Helpful Features

193 Appendix A: Troubleshooting

193 Ap
193 General
195 iTunes and Syncing

196 Phone and Voicemall

197 Safari, Text, Mail, and Contacts

200 Sound, Music, and Video

201 iTunes Stores

201 Removing the SIM Card

202 Backing Up iPhone

204 Updating and Restoring iPhone Software

&5 Appendix B: Other Resource®»
205 Safety, Software, and Service Information
206 Viewing the User Guide on iPhone

206 Disposal and Recycling Information
207 Apple and the Environment

208 Index

Preface
1. GIMP User Manual A i

I Getting §tart9d

1. W 1o GIMP
1.1. Authors
1.2. The GIMP Help system
1.3. Features and Capabilities

2. What' in GIMP 2.67

1.1 Known Platforms
12 language
13 Command Line Arguments
2. Starti IMP the first time
2.1. Finally . ..
3. First with Wilber
1. Basic Concepts
2. Main Windows

2.1. The Main Toolbox
2.2.1m Wi

2.3. Dial and Dockin

3. Undoing
3.1. Things That Cannot be Undone
. GIMPLite Quicki

5. How to Draw Straight Lines
2.1 Infeation

2.2 Examples
4, Getting Unstuck
1. Getting Unstuck
11, Stuck!
1.2, Common Causes of GIMP Non-Responsiveness

I _How do | Become a GIMP Wizard? > <_ 11 Pimp my GIMP >

1. Image Types 1.1. Intreduction
2. Creating new Files 1.2. Environment
3. Opening Files 1.3. Interface
3.1. Open File 1.4. Theme
3.2. Open Location 1.5 Help System
3.3. Open Recent 1.6. Teol Options
3.4. Using External Programs 1.7. Teolbox
3.5, File Manager 1.8. Default Image Preferences
3.6. Drag and Drop 1.9. Default Image Grid
3.7. Copy and Paste 1.10. Image Windows
3.8. Image Browser Lll..lmiﬂﬁ_wmﬁm[m
1. Files 1.13. Display
1.1, Saving Images -
i He it
sl e e 1.17. Window Management
2.1.Im with an Optimal Size/Quality Ratio 1.18. Folders
2.2. Reducing the File Size Even More 1.19. Data Folders
2.3. Saving Images with Transparency . .
7. Pain with GIMP 2.1. The Image Grid
1. The Selection i
1.1. Feathering m .
1.2. Making a Selection Partially Transparent 3. Rendering a Grid
2. Creating and Using Selections 5, Creating Shortcuts to Menu Functions
2.1. Moving a Selection 6. Customize Splash-Screen
22 Adding or sublracting selections 12, Scripti
2. QuickMask 1. Plugins
2.1 Ouarview 1.1, Introduction
4. Using the Quickmask 1.3. Installing New Pluging
5. Paths 1.4. Writing Plugins
5.1. Path Creating ; oy .
5.2. Paths and Selections 2.1. Script-Fu?
sl sl Bl 2.2.Installing Script-Fus

5.4. Stroking a Path
5.5. Paths and Text

5.6. Paths and SVG files

[LOTS of stuff deleted]

[LOTS of stuff deleted]

|. Keys and Mouse Reference
%p menu

Tools — Key reference for the Tools menu

File — Key reference for the File menu

Dialogs — Key reference for Dockable Dialogs submenu
View — Key reference for View menu

Edit — Key reference for Edit menu

Layer — Key reference for Layer menu

Select — Key reference for Select menu

Filters — Key reference for Filters menu

Zoom tool — Key reference for the Zoom tool submenu

Glossary

A. GIMP History
1. The Very Beginning
2. The Early Days of GIMP

3. The One to Change the World
4. Version 2.0

5. What's New in GIMP 2.27
6. What's New in GIMP 2.47

C. GNU Free Documentation License
1. PREAMBLE
2. APPLICABILITY AND DEFINITIONS
3. VERBATIM COPYING
4. COPYING IN QUANTITY
5. MODIFICATIONS
6. COMBINING DOCUMENTS
7. COLLECTIONS OF DOCUMENTS
8. AGGREGATION WITH INDEPENDENT WORKS
9. TRANSLATION
10. TERMINATION
11. FUTURE REVISIONS OF THIS LICENSE

12. ADDENDUM: How to use this License for your documents

D. Eeek! There is Missing Help
Index

[No stuff deleted, as it turns out]

CS445 / SE463 / ECE 451 / CS645

Software requirements specification
& analysis

11. The user manual

Fall 2010 — Mike Godfrey

