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Environment Assumptions

To establish its requirements, a system relies on
various assumptions about the environment

Nurse performs actions in correct order
Network latency is at most 50 ms
Attacker doesn’t have access to secret key



Environment Deviations

What happens if the environment deviates from
these assumptions?

Nurse inadvertently omits a critical action
Network experiences an unexpected disruption
Attacker obtains a secret through a side channel

Does the system still provide any guarantees?
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Panama City Public Hospital (2001)

/

Starting point

Therapy planning software by Multidata Systems

Theratron-780 by Theratronics (maker of Therac-25)

Shielding blocks

Inserted into beam path, protect healthy tissue

Therapist draws block shapes; SW computes dose
)



Therapist Interaction
D A

12—

dose = D



Accidents
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dose = D dose = 2D
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28 patients overdosed; 21 deaths
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Blame User or Software?

Multidata Systems

“Given [the input] that was given, our system
calculated the correct amount, the correct
dose. And, If [the staff in Panama] had checked,

they would have found an unexpected result.”

Three therapists charged & found guilty for
involuntary manslaughter; barred from practice



The environment will occasionally deviate
from its expected behavior

A robust system should ensure Its critical
properties even under such deviations



TO ENGINEER
IS HUMAN

The Role of Failure in Successful Design

Successful engineering
products are designed with
a margin of safety that
provides layers of protection
1 against abnormal events

With a new afterword by the author

Ve .
—— “Serious, amusing, probing,
. sometimes frightening
' | and always literate.”
-~ Los Angeles Times

HENRY PETROSKI

Author of THE EVOLUTION OF USEFUL THINGS

10



Robust Systems by Design

1) Devise an initial system design
2) ldentify types of deviations in the environment

3) Analyze the design to check whether it’s
robust against those deviations

4) If not, redesign the system to improve its
robustness

But in software:

What exactly do we mean by “robust”?

How do we verify that a system is sufficiently
robust?

How do we systematically improve its robustness?
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Robust Software Design: Roadmap

Specification
What does it mean for
our system to be robust?

=7
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Analysis Robustification
How robust is our How do we improve

system? its robustness?
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What exactly does it mean for
software to be robust?
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Robustness: High-Level Idea

The maximum amount of
environmental deviations under
which the system is capable of
satisfying a desired property
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Robustness: High-Level Idea

Software System
Specification Property
M| EE=P

Assumptions

17



Robustness: High-Level Idea

M|EE=P
5 Deviations

\4

E/
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Robustness: High-Level Idea

M| EEP
5
M| EEP

Preserves P even under
deviated environment

System M is robust against a set of deviations ()
with respect to environment F and property P
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Robustness: Behavioral View

LTS
LTS Safety

M || E' _ P property

LTS: Labelled transition system

20



Labelled Transition System

\ Edltmg

X/
Conflrm
Xray

—

Conflrm beh(M) — {

Ebeam

Enter Enter <>,
i Eb X),(E),
Reaélly Reeae;jr; <X, Enter>,
B S (X, Enter, B),
/ (E, Enter)...

Beam
Delivered

—__
N

Simple but expressive formalism
Behaviors of an LTS = Possible traces (event sequences)
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Robustness: Behavioral View

LTS LTS Safety
property
M| EEP
Traces
0 (not in E)

\4

/

E with additional
behaviors ()

Key ldea: Represent & compute 0 as traces

22



Robustness: Behavioral View

LTS LTS Safety
M || E' B P property
A
M| E'= P

Robustness A(M, E, P)
The largest set of possible deviations under
which the system can ensure property P

23



- Therac-25

Example
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Radiation Modes Iin Therac-25

Electron Mode X-Ray Mode

Low power High power
Wide area Narrow area

Electron ("Ebeam”) and X-ray modes
Insert collimator during X-ray for safe radiation level

25



Safety Hazard

Electron Mode X-Ray Mode THE PROBLEM
Low power High power High power &
Wide area Narrow area Wide area

X-ray mode & collimator out — Possible overdose!
Caused several fatal injuries in Therac-25

20



Establishing Safety Property

Safety property
Software model “No radiation
(interface + controller) overdose”

M| E =P

Operator task
description

M, &/ Labeled transition systems
P Safety property

27



Therac-25 Design

\[ Edltlng

X/ E
Conflrm Conflrm
Xray Ebeam
Enter Enter
Xray Up Up Ebeam
Ready Ready
B B

Beam
Delivered

Interface (M)

Xray Ebeam
Mode Mode
3 B
To Set Set To

Ebeam Xray

Mode setter (My)

OutOf
InPIace
Place

Collimator (M)

M = My || Mg | Mg



Modeling Operator Behavior

| Select
Mode
X E

Confirm
Mcdzngr Possible traces in E:
| (X, Enter, B)
[FlreBeam} <E, Enter, B>
I
[COTT";‘;‘,‘%J Captures expected sequences of

users actions

Typically specified in a training
manual or user instructions

29

Operator model (E)



Establishing Safety Property

Software Safety property
Model e.g., “No overdose”
Operator
behavior

Under “expected” operator behavior,
system satisfies the safety property!
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Deviations

31



Operator Error

“...[Therapist] noticed that for mode she had
typed "x" (for X ray) when she had intended
"e" (for electron)...the mistake was easy to fix;
she merely used the cursor up key to edit the
mode entry.”

An Investigation of the Therac-25 Accidents
Leveson & Turner, IEEE Computer, 1993
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Modeling Operator Error

Select
Mode _ |
e What if the operator commits an error?
Confirm 1. Selects X-ray mode by mistake
Mode 2. Realizes error, presses UP to go back
l Enter 3. Selects Ebeam mode and proceeds
{FireBeam]
B
Task
Complete

Erroneous operator (E')

33



Deviation as Additional Behavior

Select
Mode

Confirm

Mode (X, Enter, B)

Enter

{FireBeam] V
X, Up, E, Enter, B)

B

Task
Complete

Erroneous operator (E')

A new trace (deviation) absent in E

34



System under Deviated Environment

Perfect
operator
M||EEP
5 e
v
M| E'EP?

Erroneous
operator
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Safety Violation

What if the operator commits an error?

4. Collimator is removed for Ebeam
5. When user fires, radiation setting is still
transitioning from X-ray to Ebeam

THE PROBLEM & 6. Safety violation!

High power
Wide area

36



System under Deviated Environment

Perfect

operator
Erroneous i Operator
operator 5 —— mistake

M| E'W P

System is not robust; i.e., fails to be

safe under the deviated environment!
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Robustness: Another View

M . Radiation therapy system
E : Operator behavior

P : “No overdose”

al : Interface events
al”: All possible traces over af

38



Robustness: Another View

beh(M)

39

All environmental behaviors
accepted by system

(X, Enter, B)

(E, Enter, B)

(X, Up, E, Enter, B)
(E, Up, X, Enter, B)...



Robustness: Another View

(al*

beh(M)

/ Normative (i.e., expected)
environment behavior

(X, Enter, B)

(E, Enter, B)

System satisfies its property
(“no overdose”) under these
env. behaviors

40



Robustness: Another View

(al*

beh(M)

\/ System may or may not

satisfy its property under
these deviations

(X, Up, E, Enter, B)

(E, Up, X, Enter, B)...

41



Robustness: Another View

far

__— System may violate property

\
beh(M) under these behaviors
(called intolerable deviations)
> (X, Up, E, Enter, B)
/

\.
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Robustness: Defintion

Robustness A(M, E, P)

. System satisfies its property
under these deviations

far D
beh(M)

=)

\. /

(E, Up, X, Enter, B)...

Robustness (A) is a computable,
first-class property of a system!
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Our definition enables new types of
design analysis tasks

44



Robust Software Design: Roadmap

Specification
What does it mean for
our system to be robust?
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Analysis Robustification
How robust is our How do we improve

system? its robustness?
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Verification Problem

Does M satisfy
P under E?

Yes Satisfied
Verification /

Tool \ Counter-

Property / example
(P)

Env. (F)

N

System (M) >
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Robustness Analysis

How robust is M

w.r.t. E and P?
Env. (£) \
) v A(M, E, P)
System (M) , Robustness
Analyzer ~ o
AM, E, P)
Property /
(P)
What are
Intolerable

deviations?

47



Robustness Analysis

Operator errors that
system can handle

Operator (E, Up, X, Enter, B)
task
\
Therac-25 _ Robustness = AM, E, P)
model Analyzer ~_
AM, E, P)
No
overdose”

Operator errors that

result in a violation
(X, Up, E, Enter, B)

48



Robustnhess Comparison

Is one design (X) more

Env. (E) robust than another (Y)?
Design X \
M
M) N Robustness

Ax — A
DesignY Analyzer — T2 r

(My) /

Property
(P)

Ax = A(Mx, E, P)
49 AY — A(My,E P)



Robustnhess Comparison

Is Therac-20 more
Operator robust than Therac-25

task against operator errors?
Therac-20 \
model
~ Robustness Av — A
Therac-25 Analyzer T T4 :
/
model /‘
Operator errors that
“No Therac-20 can
overdose” tolerate but 25 can’t

Ax = A(Mx, E, P)
50 AY — A(MYaEap)



Analyzing Robustness

51



Robustness Analysis

How robust is M

?
Env. (B) w.r.t. E and P:

N

System . Robustness
design () Analyzer — A(M, E, P)

Property /
P)

(

Technical challenges
1. Computing A(M, E, P)
2. Choosing its representation

52



Computing Robustness

(al®

\-

beh(M)

C (M, E, P>

N

~/

Challenge #1

Infinite number of possible deviations
How do we find a maximum set that
the system is robust against?
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Computing Robustness

Weakest assumption (WA)
Set of all environmental

behaviors under which M
satisfies P

Assumption generation for software component verification.
Giannakopoulou, Pasareanu, and Barringer. ASE 2003.
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Computing Robustness

far h
beh(M) _~» Weakest assumption (WA)
Set of all environmental
AMEP) behaviors under which M
satisfies P
. /

1. Compute WA using assumption generation method
2. Compute the difference over E (i.e., WA — E)

55



Representing Robustness

ar” A

beh(M)

Challenge #2
A is an infinite set of traces

A (M,E,P) How do we represent this
information to the designer?

\. /
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Trace Partitioning

_~Deviation class #1

» Deviation class #2

Deviation class #3...

Group A into a finite number of equivalence classes

Each class represents a particular type of deviation
(e.g., omission, repetition, intrusion error...)
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Deviation Patterns in Human Errors

Unspecified event
Failure to complete
Omisston

Sequence error Repetition
! Reztart From 1st step

From earlier breakpoint

Reversal
Skip

Expected action

Previous action

!
i | [ D
» X A% A KX 4 A

Jump backwards Jump forwards

Repetition Omission

Correct action

The phenotypes of erroneous actions. E. Hollnagel. Int. J. Man-Machine Studies (1993)
58



Input:
M,E,P

|

Compute
Weakest
Assumption

|

Weakest
assumption

Analysis Process

Robustness

(4)

——

Compute
Robustnes
SW.ItE

A behavioral notion of robustness for software systems.

—_—

Generate Equiv.
Classes

e

Rep.
Traces

More details in our paper!

Zhang, Garlan, and Kang. ESEC/FSE 2020.
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Input: Deviation
Model D

1

Build
Explanations

|

Output:
{Rep., Explan.)



Analysis Case Studies

| 1st phase

Safety-critical interfaces  Network protocols
Robustness against Robustness against
human errors unreliable network faults

60



Network Communication Protocols

Environment

\anut / output

send rec
I R _
Sender Channel Receiver
— —
getack ack

Two versions
(1) “Naive” protocol
(2) Alternating bit protocol (ABP)

Property: “Message delivered in correct order”

61



Network Faults as Trace Deviations

What could happen in an unreliable channel?

Packet duplication
(send[0], rec[0], ack[0], getack[0]>

(send[0], rec[O0], r;c[O], ack|[0], getack[0]

Packet corruption
(send[0], rec[0], ack[0], getack[0]>

(send[0], revc[1], ack|[0], getack|[0])

62



Comparing Network Protocols

Perfect What types of faults
Channel (E) ABP is more robust

against?
Naive \

Mnaz’fue
( ) \ Robustness

ABP Analyzer — DABP — ABnaive
(MaBpP)
ABP is more robust
“Message delivered against:
in correct order”(P) - message |oss,
duplication
- fabricated

acknowledgments
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Analysis Case Studies

o~ .

Safety-critical interfaces  Network protocols
Robustness against Robustness against
human errors unreliable network faults

Our definition captures deviations in multiple domains
Robustness can be computed under several seconds

64




Robust Software Design: Roadmap

Specification
What does it mean for
our system to be robust?
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Analysis Robustification
How robust is our How do we improve

system? its robustness?
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Robustifying Systems

66



M| EE=P

5 Intolerable
: deviations

M| E'P




Robustification

M| EEDP
Enhance 5
M| E'E P

Can we generate suggestions for enhancing the
original design to handle additional deviations?

68



Robustification

M| EE P
Transform 5
M| E'E P

Can we generate suggestions for enhancing the
original design to handle additional deviations?
Treat it as a model transformation problem!

69



LTS Transformation

b
add P ‘. b
transition.” e
a remove
transition b I

.......... State a Challen ge

............... e'a . Infinite number
rz r:a <:\e/e | e @ of pOSSi ole

N modifications!

70




Robustification as Supervisory Control

—| Supervisor

x

- Plant -

reduce

Robustification Supervisory
problem control problem

71



Supervisory Control

Plant

Supervisory control of a class of discrete event processes.
Ramadge & Wonham, SIAM Journal on Control and Optimization (1987).
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Supervisory Control

> Supervisor

S

SIGE P

Plant <

G

Given plant G, find supervisor S such that
G under the control of S satisfies property P

Supervisory control of a class of discrete event processes.
Ramadge & Wonham, SIAM Journal on Control and Optimization (1987).

/3



Supervisory Control

> Supervisor

Disables some subset

of plant events

Plant
histo Fy of

G

plant events

X(h)

“.enabled
events

Based on plant’s past behavior, supervisor restricts
the set of events that it is allowed to perform

74



Supervisory Control: Applications

What'’s safe t in th
at’s safe to do in the P: “No incorrect assembly”

....................... B 0 )
.......... . i "-' ; J .
............ “u = 4 = r 3
............. \. -
e .

> Supervisor
o X(h)
past robot Plant B Pick up item,

actions G move arm, ...

Manufacturing
robot

Others: Network security, concurrency control, protocol synthesis...

75



Robustification as Supervisory Control

—| Supervisor

x

- Plant -

reduce

Robustification Supervisory
problem control problem

/6



Robustification as Supervisory Control

Software Environment

M E'

A Deviated

M||E" FE P environment

77



Robustification as Supervisory Control

Software Environment
M E’
Plant G

/8



Robustification as Supervisory Control

3| Supervisor

S
—>
Software Environment
M E’
Plant G
SING E P

— S||M||E") E P

79



Past events

Therac-25 Example

_Additional logic for

I handling operator errors

Supervisor
S
—
Software Environment
M El [
Plant / G
Therac-25 Erroneous
design operator

Enabled
operator
actions

P: “No overdose”

80



Therac-25 Example

Recall: Safety violation
under erroneous operator

NE= >£wset1\

X E

/ \ Ebeam
Confirm U U Confirm Mode
Xray P P Ebeam ! X

Enter Set To
X Up Xray

ray
[ Ready Mode setter (M)

R
Beam
Delivered InPlace glua..t((:)ef

Interface (M)

Collimator (M)

81



Supervisor Behavior

Keep track of ( )
System State e (Editing,

* XrayMode, E
InPlace)
. J

4 N\
U‘F\ (ConfirmEbeam,
ToEbeam,
Ent i/ OutOfPlace)
Disable event(s) ) . / )
that could lead to Up
. . o . (Ebeam Ready’
9 VIOlathn ............................... A ToEbeam, Set
\ OutOfPlace)
- 4 N \ / - N
(BeamFired, (EbeamReady,
EbeamMode, EbeamMode,
OutOfPalce) OutOfPalce)
|\ 4 |\ J

Complications
Not all events are observable/controllable by supervisor

Non-determinism: Multiple possible states to keep track of
82



Therac-25 Example

3| Supervisor

_Additional logic for

} handling operator errors

S
Software Environment
M £’
Plant G
S|WG E P
— S||M||E") E P

83
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Robustification as Supervisory Control

Supervisor

S

i

Software

Environment

M £
ML - Robustified design

S||((M||E") E P

< (S||M)||E'E P

= M'||E"F P

84




Synthesized Solution for Therac-25

\ Editing J

X E

/ \
Confirm U U Confirm
P P Ebeam

Additional check to
ensure mode transition
before beam firing

Beam
Delivered

Redesigned Interface (M))

85



Quality of Redesign

~Disable all plant events!

3| Supervisor

Software Environment

M E| [
Plant G

Multiple possible solutions, not all desirable!
Some supervisors may disable more events than needed

|deally, find a solution that
(1) Preserves as many existing behaviors in M as possible

(2) Picks the simplest supervisor possible
36



Optimal Robustification

A
Permissiveness o
(Amount of
preserved
behaviors)
..................................... R Pa?eto—optimal
>
Redesign
Complexity
Trade-offs between these dimensions! (# events used by

Multiple, possible Pareto-optimal solutions supervisor)

87



Robust Design Framework

More detalls in paper!

Search heuristics to efficiently
find (D', (A, A,)) that

.....................................................................

|| System Eav troperty ' maximize the objective function.
L (M) (E) (P) |
’ D' D -
Design (Ae Ap) € (A, Ap) R Supervisory
g L ‘ Control
Optimizer |* ) . |
Candidate Solution M’ Synthesis

-----------------------------------------------------------------------------------------------------------

Intolerable Pref. Ctrl./Obs. Optimal new Leverage supervisory control
i | Dev. (6) Behaviors (D) | Events (A, Ap) | | designs M’ theory to synthesis valid redesigns.
7 14 v i
Deviations that Metric to quantify Metric to
the system is not the preserved quantify the . |
yet robust against. behaviors. cost of changes. Return pareto-optimal solutions.

Robustification of Behavioral Designs against Environmental Deviations
CJ Zhang et al., ICSE 2023
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Robustification Case Studies

Electronic voting Infusion pump
Voter errors Therapist errors

Malicious officials Power and alarm failure

89



Electronic Voting System

\

FRANKFORT — A former Clay County precinct worker testified Friday that top
election officers in the county taught her how to change people’s choices on voting
machines to steal votes in the May 2006 primary.

ES&S iVotronic, Kentucky
Voters exits the voting booth before pressing “confirm”

Malicious official enters booth, press “back” & modify the vote
90




Electronic Voting Interface

password select vote

select
candidate:

enter
password:

confirm

Property: The machine must record the vote as selected
by the voter

Introduce a deviation to capture voters omitting “confirm’
Use robustification to generate suggested enhancements

91



Synthesized Solutions

confirm

confirm

4’( C C C 0 password
password select vote

eo.exit

select

eo. enter

eo.enter

eo.{enter,exit} eo.{enter,exit}

Redesign #1 Redesign #2

Disables “back” action Disables confirm while the official is
Simple, but not permissive in the booth

Does not allow the voter to More permissive: Allows vote change
modify their selection But also more complex: Requires

keeping track of booth occupant

92



Robustification Case Studies

Electronic voting Infusion pump

Our method can automatically synthesize optimal
robustification solutions
For complex models (~760 states), < 20 secs

93



Other On-going Works
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Robustification

M|EEP
strengthen 0

M'|E'= P

Can we enhance the original design to tolerate
additional deviations in the environment??

95



Robustness through Reqg. Weakening

weaken

M|EEP
5
M| E'E P

Self-adaptive framework
Temporarily weaken P to a weaker variant (P’)

that is (1) acceptable to the user &
(2) satisfiable in the deviated environment

SEAMS 2023
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Robustness of Al-based Systems

lunarLander-19.532-0.010
Step: 1 | Reward: -1.748 | Done: Ralse
STL- 0.125 | Violated: False

System as a composition of Al & “traditional” SW

How robust is the overall system against:
(1) Deviations in the environment?
(2) Mistakes in the learning-based components?

How do we validate & measure robustness in such systems?
97



Takeaway

Software-intensive systems depend on various
assumptions about the environment

The environment may deviate from its
expectations due to misbehavior or changes

To ensure critical properties, systems should be
designed to be robust against possible deviations

98



Robust Software Design: Roadmap

Specification
What does it mean for
our system to be robust?

—
https://qgithub.com/ — I

cmu-soda/Fortis / \

x

. -
Analysis Robustification
How robust is our How do we improve

system? its robustness?
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