
User Interface
Specification

Daniel M. Berry

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 1



User Interfaces a How Issue?

We used to think that specifying the user
interface (UIs) for a system is a How issue
rather than a What issue.

That is, it should not be specified in the
requirements specification and should be left
to the implementers to decide.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 3



However...

However, we have had enough catastrophes in
which the culprit was a poor UI on the
controlling application that left the operator
confused as to what was happening and

he or she made a poor choice of what to do.

or

he or she made the wrong request.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 3



We Know Better Now

We have learned that UIs must be considered
at requirements time.

The UIs must be carefully designed along with
the functional requirements to be consistent
with the functional requirements.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 5



Need to Validate UIs

Many times, it is necessary to validate
proposed UIs with usability testing with real,
alive users.

Finally, the final UIs must be specified in the
requirements specification along with all the
functional and nonfunctional requirements.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 6



Knew This All Along

Actually, we knew this all along, because
ease-of-use is often a nonfunctional
requirement, and is thus a requirement that
must be specified.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 7



The Harsh Realities

Moreover, we have learned that if U-I issues
are not decided upon and specified in the
requirements, it often ends up that it is
impossible to add them later to the code that
results because the proper hooks have not be
left in the code.

Even worse than that, it is often necessary to
program the function into the UI framework
rather than the other way around.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 8



How to Specify User Interfaces

A cool way to specify the UI of a system is to
attach screen diagrams to scenario steps.

Doing so has the effect of showing:

g when a particular screen or window
appears,

g how the particular screen or window
appears, and

g what the system does in response to a
particular input, including that of selecting
or clicking a particular widget.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 8



To Examples

Let us now specify a reasonable WIMP UI for
the Sensus system which we have used as an
example before.

Recall...

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 9



But Whoa!

UCs & Ss are not specifications!

They only illustrate functionality from the
user’s point of view.

Thus a UI specification tied to UCs & Ss is not
really a specification.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 48



Tie UI Specs to Specs

For each scenario step with a numbered
marker, find the states or transitions in your
state machine or process diagrams that
correspond to the scenario step, and give the
same numbered marker to these states or
transitions.

You may need to indicate which transition is
taken in response to any textual input or to
any widget selection or clicking.



 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 49



Why Software Sucks

In a nutshell,

Software sucks because UIs suck!

For many a program, its UI is not obvious.

The typical non-expert user cannot figure out
to get the program to do what he or she wants
it to do.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 50



No or Poor Manual

There is often no manual.

When there is a manual, also it sucks,
because one cannot easily find the answer to
his or her questions about how to use the
program.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 51



Poor Help System

There is often a help system, …

but its index is not very helpful in finding
answers to specific questions.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 52



User Feels Stupid

Often, a user is left feeling stupid by his or her
inability to get the program to do what he or
she wants it to do.

The reality is that the user is fine, but the UI is
stupid.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 53



The Way it Ought to Be

A program should be designed in a way that
makes consulting a manual or help system
unnecessary.

Its UI should guide the user through solutions
to his or her problems.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 54



The Way it Usually Is

Instead, the user finds that he or she has to
understand the inner workings of the program
to use it.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 55



Why Do UIs Suck?

David Platt suggests that the reason a
program’s UI sucks is that the program’s
programmers, not professional UI designers,
design and implement the program’s UI.

The typical programmer programs the
interface for a user like him or herself.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 56



The Typical Programmer

The typical programmer wants to be in control
of all options.

Programming is the ultimate expression of
this control!

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 57



The Typical User

The typical user wants the program to do only
what he or she wants; i.e., he or she could not
give a s--t about all the options.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 58



How a Program Should Behave

The program should do normally what most
people want as a default without asking the
user to make choices that are probably
unintelligible, e.g.,

‘‘Allow ❏ / Disallow ❏ cookies.’’

The program should have an optionally
invoked “Preferences” section that guides the
user in making his or her choices intelligently,
possibly explaining the implications of each
choice.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 59



Platt’s Law of UI Design

David Platt’s First, Last, and Only Law of UI
Design:

Know Thy User, for He Is Not Thee.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 60



Control vs. Ease of Use

You, the programmer, may want control.

The typical user wants ease of use.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 61



Example

Directory Assistance:

Control: AT&T’s directory assistance just tells
you the phone number. You have to dial if you
want to.

Ease of use: Verizon’s directory assistance
tells you the phone number and then dials it
for you.

Which choice reflects the way most users
operate?

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 62



I Don’t Care

The typical user says, “I don’t care how your
program works!” (Actually he or she probably
says it with slightly different words!)

Many a programmer forces the user to
understand how the program the programmer
wrote works in order to use it properly.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 63



Example

The question that the typical text editor or
word processor asks when you try to exit the
program is, “The text in the file F has been
changed. Do you want to save the changes?”

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 64



Implication of the Question

This question forces the user to understand
that the way the program works is that it first
reads the file contents into the memory, it
modifies the in-memory copy, and then at the
end, for the changes to be permanent, the
current in-memory must be written back to the
file.

A better question is “Do you want to throw
away every change you have just done?”

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 65



Bad vs Good Feature

On a Windows system, when you select a file
F and then press the “Delete” key, …

unless you have figured out how to disable
what is about to happen, you get a dialog box
that asks, “Are you sure that you want to send
F to the Recycle Bin?”

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 66



Do You Really Want to Be Asked?

When you turn a car’s ignition on or off, does
the car ask you if you really want to do what
you have just done?

The purpose of the recycle bin is to allow
recoverable deletes. So why is it necessary to
ask if the user is sure that he or she wants a
file sent to the recycle bin?

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 67



A Better Idea

A better idea is to make as many operations
as possible undoable and redoable.

The possible exception would be emptying the
recycle bin.

Even that can be made undoable by tying the
emptying operation with ???

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 68



Lostness Formula

Tom Tullis and Bill Albert(2008) have offered a
formula for calculating how lost the user of a
Web site is:

R = the minimum number of pages that must
be visited to do the task at hand.

N = the number of different pages actually
visited while doing the task.

S = the number of pages actually visited while
doing the task, including revisits.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 69



Lostness Formula, Cont’d

L = sqrt ((
S
Nhhh − 1)2 + (

N
Rhhh − 1)2 )

L = lostness, [0 .. 1],

0 = not lost at all.

1 = totally lost.

0.4 is already bad.

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 70



My Advice

KIS

Keep it Simple!

 2003 Daniel M. Berry Requirements Engineering User Interface Specification Pg. 69




