An Asymptotically Optimal Algorithm for Maximum Matching in Dynamic Streams

Vihan Shah

Department of Computer Science Rutgers University

January 21, 2022

Joint work with Sepehr Assadi

Vihan Shah

Dynamic Streaming Matching

January 21, 2022 1 / 69

Matching Problem

- Graph G = (V, E)
- Matching: $M \subseteq E$, (V, M) has max degree 1
- Maximum matching: Matching M* of the largest size

Matching Problem

- Graph G = (V, E)
- Matching: $M \subseteq E$, (V, M) has max degree 1
- Maximum matching: Matching M* of the largest size

Matching Problem

- Graph G = (V, E)
- Matching: $M \subseteq E$, (V, M) has max degree 1
- Maximum matching: Matching M* of the largest size

- *G* = (*V*, *E*)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
- Output a solution at the end of the stream
- Goal: Minimize Memory

Lower Bound

- Maximum Matching Lower bound: $\Omega(n^2)$ bits [FKM+05]
- Store the input: $O(n^2)$ bits
- No non-trivial solution

Approximation

- Question: What about an α approximation?
- Return a matching *M* of size at least $\frac{|M^*|}{\alpha}$
- Can we get $o(n^2)$ space?
- What is the trade off between α and the space?

Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/lpha^4)$

- V i	han	- 51	nah

Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/lpha^4)$
[AKLY16]	$ ilde{O}(n^2/lpha^3)$	$\Omega(n^{2-o(1)}/lpha^3)$

Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/lpha^4)$
[AKLY16]	$ ilde{O}(n^2/lpha^3)$	$\Omega(n^{2-o(1)}/lpha^3)$
[CCE+16]	$ ilde{O}(n^2/lpha^3)$	

Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/lpha^4)$
[AKLY16]	$ ilde{O}(n^2/lpha^3)$	$\Omega(n^{2-o(1)}/lpha^3)$
[CCE+16]	$ ilde{O}(n^2/lpha^3)$	
[DK20]		$\Omega(n^2/lpha^3)$

- Best known upper bound: $\tilde{O}(n^2/\alpha^3)$ bits ([AKLY16])
- Best known lower bound: $\Omega(n^2/\alpha^3)$ bits ([DK20])
- Gap of polylog(n) bits
- These types of polylog(n) gaps appear frequently in dynamic streams
- One key reason is a main technique for finding edges in a dynamic streams

*L*₀-Samplers:

- It is non-trivial to find even one edge in a dynamic stream
- L₀-Samplers are a key tool to solve this problem
- They can sample an edge uniformly at random from a set of pairs of vertices undergoing edge insertions and deletions

- L_0 -Samplers can be implemented in $O(\log^3 n)$ bits of space [JST11]
- $\Omega(\log^3 n)$ bits are also necessary [Kap+17]
- Many problems in streaming have the polylog(n) overhead because of the use of L₀-samplers
- Connectivity has a lower bound of $\Omega(n \log^3 n)$ ([NY19])

We prove asymptotically optimal bounds on the space-approximation tradeoff:

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$

This closes the gap up to constant factors

Some problems do not need the polylog(n) overhead

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$

This closes the gap up to constant factors

Some problems do not need the polylog(n) overhead

If $\alpha > n^{1/2}$ then there is not enough space to output the answer:

$$\frac{n}{\alpha} > \frac{n^2}{\alpha^3}$$

Algorithm

We will now show how to prove this!

Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough

Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough

All these assumptions can be lifted!

Hard Instances

A hard instance from previous work [Kon15, AKLY16, DK20]:

Lower Bound [DK20]: $\Omega(n^2/\alpha^3)$ bits

Approach

- Match or Sparsify:
 - Either find a large matching
 - Or identify hard instances similar to hard instances of previous work
- Solve the hard instances

Note: We run these algorithms in parallel

Match Or Sparsify

- Find a matching M_{easy} in space $O(n^2/\alpha^3)$ bits such that:
 - Either $|M_{easy}| = \Omega(n/\alpha)$

Match Or Sparsify

- Find a matching M_{easy} in space $O(n^2/\alpha^3)$ bits such that:
 - Either $|M_{easy}| = \Omega(n/\alpha)$
 - Or Subgraph induced on unmatched vertices has Õ(n) edges and a matching of size Ω(n)

Match Or Sparsify

Idea:

- Sample $O(n^2/\alpha^3 \operatorname{polylog}(n))$ random edges
- L₀-samplers take space polylog(n)
- *M*_{easy} is a greedy matching over the sampled edges
- Similar to residual greedy property of matching (used in [Ahn+18, Kon18])
- Different proof but along the same lines

Similarity to Hard Instances

The instances we focus on are qualitatively same as the hard instances

Solving Hard Instances

Analysis of [DK20]:

- We need n^2/α^3 edges
- Space: $O((n^2/\alpha^3) \cdot \log(n))$ bits
- L_0 -samplers: $O((n^2/\alpha^3) \cdot \text{polylog}(n))$ bits

Solving Hard Instances

We know the partition U, B at the end of the stream from Match Or Sparsify step

Consider the bipartite graph

Partition left randomly into groups of size α

 V_i lies within *B* with probability 1 - o(1)

Focus on group V_i that lies within *B*

 V_i has α edges to B; We just need one edge;

$1/\alpha$ fraction of vertices on right are in the neighborhood of V_i

V_i has n/α vertices in its neighborhood

 $o(n/\alpha^2)$ from U; n/α from B;

Can we find this one neighbor efficiently?

- This is like the set disjointness problem from communication complexity
- Need to find a vertex that has an edge from V_i and is from B

Need to find a vertex that is from B and also has an edge from V_i

- Trivial solution: $O(n \log n/\alpha^2)$ bits
- Goal: $O(n/\alpha^2 + \log n)$ bits
- So n/α groups will imply space of $O(n^2/\alpha^3)$ bits

Idea:

- Represent the neighborhood of V_i as a binary vector
- Compute inner products with random vectors

Idea:

- Represent the neighborhood of V_i as a binary vector
- Compute inner products with random vectors
- Recovery: Go over all possible neighbor vectors and check if the inner products match

Idea:

- Number of possible neighbor vectors: $2^{o(n/\alpha^2)} \cdot n$
- Space: $O(n/\alpha^2 + \log n)$ bits

Issues

- We can find the neighbor of V_i
- But we do not know the name of the endpoint in V_i
- Cannot recover an edge
- We need grouping on the right too

Consider the bipartite graph

Random grouping on both sides

 V_i lies within *B* with probability 1 - o(1)

Focus on group V_i that lies within B

 V_i has α edges to B; We just need one edge;

 $1/\alpha$ fraction of groups on right are in the neighborhood of V_i

V_i has n/α^2 groups in its neighborhood

The green groups lie completely within B

 V_i has an edge to V_i

 $\begin{array}{c}
o(n/\alpha) \\
\Theta(n) \\
\end{array}$

- There may be multiple edges between V_i and V_j
- But there is just one edge between them with high constant probability

$$V_i \bigcirc V_j$$

Want to recover the edge between V_i and V_i

- We know u is a neighbor of V_i (from Neighborhood sketch of V_i)
- We know v is a neighbor of V_i (from Neighborhood sketch of V_i)
- Thus, (u, v) must be an edge

Challenges

We need to solve a more general problem

Challenges

Challenges:

- $\tilde{O}(n)$ edges
- Cannot bound the degree of vertices with a constant

- G = (V, E) specified in a dynamic stream
- $S \subseteq V$ known before the stream
- $T \subseteq V$ revealed after the stream
- Goal: Return N(S) T

Promises:

- **1** $|T| \le a;$
- **2** $|N(S) T| \le b$;
- **◎** for every vertex $v \in N(S) T$, $|S \cap N(v)| = O(1)$

Space:

- Trivial solution: $O(a \log n + b \log n)$ bits
- **2** Goal: $O(a + b \log n)$ bits

Solution:

- We can solve the problem using previous ideas of inner products
- Problems:
 - Exponential time for recovery
 - Random bits needed is much more than space budget

Solution:

- We can solve the problem using previous ideas of inner products
- Problems:
 - Exponential time for recovery
 - Random bits needed is much more than space budget
- Solution using ideas from sparse recovery (complicated)
- Space bound: $O(a + b \log n)$ bits
- S This bound is information-theoretically optimal

Solving General Hard Instance

- Using sparse neighborhood recovery sketch we can solve the general hard instance
- Space: $O(n^2/\alpha^3)$ bits

Conclusion

Summary

Concluding Remarks

- Match or Sparsify: In $O(n^2/\alpha^3)$ bits of space
 - We either get a large matching
 - Or get a hard instance that is sparse and contains a large matching
- Our sparse recovery sketches can be used to solve these hard instances in $O(n^2/\alpha^3)$ bits
- We run both algorithms in parallel and get the final algorithm

• There is a dynamic streaming algorithm that whp outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space

- There is a dynamic streaming algorithm that whp outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space
- The lower bound of [DK20] is $\Omega(n^2/\alpha^3)$ bits making our algorithm optimal

- There is a dynamic streaming algorithm that whp outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space
- The lower bound of [DK20] is $\Omega(n^2/\alpha^3)$ bits making our algorithm optimal
- polylog(n) overhead of L₀-samplers is not always necessary (Unlike [NY19])

Open Problems

- These polylog(n) overheads due to use of L₀-samplers are prevalent in dynamic stream literature
- Can our techniques be used to bypass polylog(*n*) overheads for other problems:
 - E.g. Vertex Cover, Dominating Set, Vertex Connectivity

Open Problems

- These polylog(n) overheads due to use of L₀-samplers are prevalent in dynamic stream literature
- Can our techniques be used to bypass polylog(*n*) overheads for other problems:
 - E.g. Vertex Cover, Dominating Set, Vertex Connectivity

Thank you!