An Asymptotically Optimal Algorithm for Maximum Matching in Dynamic Streams

Vihan Shah
Department of Computer Science Rutgers University

January 21, 2022

Joint work with Sepehr Assadi

Matching Problem

- Graph $G=(V, E)$
- Matching: $M \subseteq E,(V, M)$ has max degree 1
- Maximum matching: Matching M^{*} of the largest size

Matching Problem

- Graph $G=(V, E)$
- Matching: $M \subseteq E,(V, M)$ has max degree 1
- Maximum matching: Matching M^{*} of the largest size

Matching Problem

- Graph $G=(V, E)$
- Matching: $M \subseteq E,(V, M)$ has max degree 1
- Maximum matching: Matching M^{*} of the largest size

Streaming Setting

Streaming Setting

- $G=(V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

Streaming Setting

- $G=(V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

Streaming Setting

- $G=(V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

Streaming Setting

- $G=(V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

Streaming Setting

- $G=(V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

Streaming Setting

- $G=(V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

Streaming Setting

- $G=(V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

Streaming Setting

- $G=(V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

Streaming Setting

- $G=(V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
- Output a solution at the end of the stream
- Goal: Minimize Memory

Lower Bound

- Maximum Matching Lower bound: $\Omega\left(n^{2}\right)$ bits [FKM+05]
- Store the input: $O\left(n^{2}\right)$ bits
- No non-trivial solution

Approximation

- Question: What about an α approximation?
- Return a matching M of size at least $\frac{\left|M^{*}\right|}{\alpha}$
- Can we get $o\left(n^{2}\right)$ space?
- What is the trade off between α and the space?

Previous Work

Result	Upper Bound	Lower Bound	
$[$ Kon15]	$O\left(n^{2} / \alpha^{2}\right)$	$\Omega\left(n^{1.5} / \alpha^{4}\right)$	

Space-Approximation Tradeoff

Previous Work

Result	Upper Bound	Lower Bound
[Kon15]	$O\left(n^{2} / \alpha^{2}\right)$	$\Omega\left(n^{1.5} / \alpha^{4}\right)$
$[$ AKLY16]	$\tilde{O}\left(n^{2} / \alpha^{3}\right)$	$\Omega\left(n^{2-o(1)} / \alpha^{3}\right)$

Space-Approximation Tradeoff

Previous Work

Result	Upper Bound	Lower Bound
$[$ Kon15]	$O\left(n^{2} / \alpha^{2}\right)$	$\Omega\left(n^{1.5} / \alpha^{4}\right)$
$[$ AKLY16]	$\tilde{O}\left(n^{2} / \alpha^{3}\right)$	$\Omega\left(n^{2-o(1)} / \alpha^{3}\right)$
$[C C E+16]$	$\tilde{O}\left(n^{2} / \alpha^{3}\right)$	

Space-Approximation Tradeoff

Previous Work

Result	Upper Bound	Lower Bound
$[$ Kon15]	$O\left(n^{2} / \alpha^{2}\right)$	$\Omega\left(n^{1.5} / \alpha^{4}\right)$
$[$ AKLY16]	$\tilde{O}\left(n^{2} / \alpha^{3}\right)$	$\Omega\left(n^{2-o(1)} / \alpha^{3}\right)$
$[C C E+16]$	$\tilde{O}\left(n^{2} / \alpha^{3}\right)$	
$[D K 20]$		$\Omega\left(n^{2} / \alpha^{3}\right)$

Space-Approximation Tradeoff

Previous work

- Best known upper bound: $\tilde{O}\left(n^{2} / \alpha^{3}\right)$ bits ([AKLY16])
- Best known lower bound: $\Omega\left(n^{2} / \alpha^{3}\right)$ bits ([DK20])
- Gap of $\operatorname{polylog}(n)$ bits
- These types of polylog(n) gaps appear frequently in dynamic streams
- One key reason is a main technique for finding edges in a dynamic streams

Previous work

L_{0}-Samplers:

- It is non-trivial to find even one edge in a dynamic stream
- L_{0}-Samplers are a key tool to solve this problem
- They can sample an edge uniformly at random from a set of pairs of vertices undergoing edge insertions and deletions

Previous work

- L_{0}-Samplers can be implemented in $O\left(\log ^{3} n\right)$ bits of space [JST11]
- $\Omega\left(\log ^{3} n\right)$ bits are also necessary [Kap+17]
- Many problems in streaming have the polylog (n) overhead because of the use of L_{0}-samplers
- Connectivity has a lower bound of $\Omega\left(n \log ^{3} n\right)([N Y 19])$

Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O\left(n^{2} / \alpha^{3}\right)$ bits of space for any $\alpha \ll n^{1 / 2}$

Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O\left(n^{2} / \alpha^{3}\right)$ bits of space for any $\alpha \ll n^{1 / 2}$

This closes the gap up to constant factors
Some problems do not need the polylog(n) overhead

Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O\left(n^{2} / \alpha^{3}\right)$ bits of space for any $\alpha \ll n^{1 / 2}$

This closes the gap up to constant factors
Some problems do not need the polylog(n) overhead
If $\alpha>n^{1 / 2}$ then there is not enough space to output the answer:

$$
\frac{n}{\alpha}>\frac{n^{2}}{\alpha^{3}}
$$

Algorithm

We will now show how to prove this!

Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough

Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough

All these assumptions can be lifted!

Hard Instances

A hard instance from previous work [Kon15, AKLY16, DK20]:

Lower Bound [DK20]: $\Omega\left(n^{2} / \alpha^{3}\right)$ bits

Approach

(1) Match or Sparsify:

- Either find a large matching
- Or identify hard instances similar to hard instances of previous work
(2) Solve the hard instances

Note: We run these algorithms in parallel

Match Or Sparsify

(1) Find a matching $M_{\text {easy }}$ in space $O\left(n^{2} / \alpha^{3}\right)$ bits such that:

- Either $\left|M_{\text {easy }}\right|=\Omega(n / \alpha)$

Match Or Sparsify

(1) Find a matching $M_{\text {easy }}$ in space $O\left(n^{2} / \alpha^{3}\right)$ bits such that:

- Either $\left|M_{\text {easy }}\right|=\Omega(n / \alpha)$
- Or Subgraph induced on unmatched vertices has $\tilde{O}(n)$ edges and a matching of size $\Omega(n)$

Match Or Sparsify

Idea:

- Sample $O\left(n^{2} / \alpha^{3} \operatorname{polylog}(n)\right)$ random edges
- L_{0}-samplers take space polylog (n)
- $M_{\text {easy }}$ is a greedy matching over the sampled edges
- Similar to residual greedy property of matching (used in [Ahn+18, Kon18])
- Different proof but along the same lines

Similarity to Hard Instances

The instances we focus on are qualitatively same as the hard instances

Solving Hard Instances

Analysis of [DK20]:

- We need n^{2} / α^{3} edges
- Space: $O\left(\left(n^{2} / \alpha^{3}\right) \cdot \log (n)\right)$ bits
- Lo-samplers: $O\left(\left(n^{2} / \alpha^{3}\right) \cdot \operatorname{polylog}(n)\right)$ bits

Solving Hard Instances

We know the partition U, B at the end of the stream from Match Or Sparsify step

B

Grouping

Consider the bipartite graph

n	0	0	n
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		

Grouping

Partition left randomly into groups of size α

Grouping

V_{i} lies within B with probability $1-o(1)$

Grouping

Focus on group V_{i} that lies within B

Grouping

V_{i} has α edges to $B ; \quad$ We just need one edge;

Grouping

$1 / \alpha$ fraction of vertices on right are in the neighborhood of V_{i}

Grouping

V_{i} has n / α vertices in its neighborhood

Grouping

$o\left(n / \alpha^{2}\right)$ from $U ; \quad n / \alpha$ from B;

Grouping

V_{i} has just 1 edge in B

Grouping

Can we find this one neighbor efficiently?

Grouping

- This is like the set disjointness problem from communication complexity
- Need to find a vertex that has an edge from V_{i} and is from B

Recovery

Need to find a vertex that is from B and also has an edge from V_{i}

- Trivial solution: $O\left(n \log n / \alpha^{2}\right)$ bits
- Goal: $O\left(n / \alpha^{2}+\log n\right)$ bits
- So n / α groups will imply space of $O\left(n^{2} / \alpha^{3}\right)$ bits

$o\left(n / \alpha^{2}\right)$
n / α

Recovery

Idea:

- Represent the neighborhood of V_{i} as a binary vector
- Compute inner products with random vectors

Recovery

Idea:

- Represent the neighborhood of V_{i} as a binary vector
- Compute inner products with random vectors
- Recovery: Go over all possible neighbor vectors and check if the inner products match

Recovery

Idea:

- Number of possible neighbor vectors: $2^{o\left(n / \alpha^{2}\right)} \cdot n$
- Space: $O\left(n / \alpha^{2}+\log n\right)$ bits

B

Issues

- We can find the neighbor of V_{i}
- But we do not know the name of the endpoint in V_{i}
- Cannot recover an edge
- We need grouping on the right too

Grouping

Consider the bipartite graph

n	0	0	n
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		

Grouping

Random grouping on both sides

Grouping

V_{i} lies within B with probability $1-o(1)$

Grouping

Focus on group V_{i} that lies within B

Grouping

V_{i} has α edges to B; We just need one edge;

Grouping

$1 / \alpha$ fraction of groups on right are in the neighborhood of V_{i}

Grouping

V_{i} has n / α^{2} groups in its neighborhood

Grouping

The green groups lie completely within B

Grouping

V_{i} has an edge to V_{j}

Recovery

- There may be multiple edges between V_{i} and V_{j}
- But there is just one edge between them with high constant probability

Grouping

Want to recover the edge between V_{i} and V_{j}

Recovery

- We know u is a neighbor of V_{i} (from Neighborhood sketch of V_{i})
- We know v is a neighbor of V_{j} (from Neighborhood sketch of V_{j})
- Thus, (u, v) must be an edge

Challenges

We need to solve a more general problem

Challenges

Challenges:

- $\tilde{O}(n)$ edges
- Cannot bound the degree of vertices with a constant

Sparse Neighborhood Recovery

- $G=(V, E)$ specified in a dynamic stream
- $S \subseteq V$ known before the stream
- $T \subseteq V$ revealed after the stream
- Goal: Return $N(S)-T$

Sparse Neighborhood Recovery

Promises:

(1) $|T| \leq a$;
(2) $|N(S)-T| \leq b$;
(3) for every vertex $v \in N(S)-T,|S \cap N(v)|=O(1)$

Sparse Neighborhood Recovery

Space:

(1) Trivial solution: $O(a \log n+b \log n)$ bits
(2) Goal: $O(a+b \log n)$ bits

Sparse Neighborhood Recovery

Solution:
(1) We can solve the problem using previous ideas of inner products
(2) Problems:

- Exponential time for recovery
- Random bits needed is much more than space budget

Sparse Neighborhood Recovery

Solution:
(1) We can solve the problem using previous ideas of inner products
(2) Problems:

- Exponential time for recovery
- Random bits needed is much more than space budget
(3) Solution using ideas from sparse recovery (complicated)
(9) Space bound: $O(a+b \log n)$ bits
(5) This bound is information-theoretically optimal

Solving General Hard Instance

- Using sparse neighborhood recovery sketch we can solve the general hard instance
- Space: $O\left(n^{2} / \alpha^{3}\right)$ bits

Summary

Concluding Remarks

Summary

(1) Match or Sparsify: In $O\left(n^{2} / \alpha^{3}\right)$ bits of space

- We either get a large matching
- Or get a hard instance that is sparse and contains a large matching
(2) Our sparse recovery sketches can be used to solve these hard instances in $O\left(n^{2} / \alpha^{3}\right)$ bits
(3) We run both algorithms in parallel and get the final algorithm

Summary

- There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O\left(n^{2} / \alpha^{3}\right)$ bits of space

Summary

- There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O\left(n^{2} / \alpha^{3}\right)$ bits of space
- The lower bound of [DK20] is $\Omega\left(n^{2} / \alpha^{3}\right)$ bits making our algorithm optimal

Summary

- There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O\left(n^{2} / \alpha^{3}\right)$ bits of space
- The lower bound of [DK20] is $\Omega\left(n^{2} / \alpha^{3}\right)$ bits making our algorithm optimal
- polylog(n) overhead of L_{0}-samplers is not always necessary (Unlike [NY19])

Open Problems

- These polylog(n) overheads due to use of L_{0}-samplers are prevalent in dynamic stream literature
- Can our techniques be used to bypass polylog(n) overheads for other problems:
- E.g. Vertex Cover, Dominating Set, Vertex Connectivity

Open Problems

- These polylog(n) overheads due to use of L_{0}-samplers are prevalent in dynamic stream literature
- Can our techniques be used to bypass polylog(n) overheads for other problems:
- E.g. Vertex Cover, Dominating Set, Vertex Connectivity

Thank you!

