An Asymptotically Optimal Algorithm for Maximum Matching in Dynamic Streams

Vihan Shah

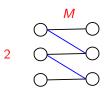
Department of Computer Science Rutgers University

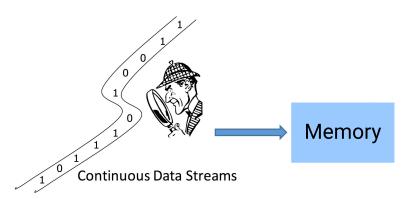
February 1, 2022

Joint work with Sepehr Assadi

Matching Problem

- Graph G = (V, E)
- Matching: $M \subseteq E$, (V, M) has max degree 1
- Maximum matching: Matching M* of the largest size





- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

- G = (V, E)
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
- Output a solution at the end of the stream
- Goal: Minimize Memory

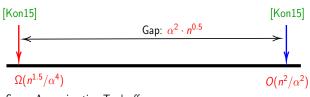
Lower Bound

- Maximum Matching Lower bound: $\Omega(n^2)$ bits [FKM+05]
- Store the input: $O(n^2)$ bits
- No non-trivial solution

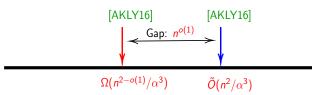
Approximation

- ullet Question: What about an lpha approximation?
- Return a matching M of size at least $\frac{|M^*|}{\alpha}$
- Can we get $o(n^2)$ space?
- What is the trade off between α and the space?

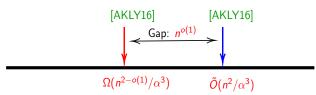
Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/lpha^4)$



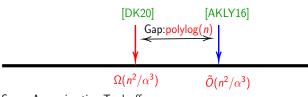
Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/lpha^4)$
[AKLY16]	$\tilde{O}(n^2/lpha^3)$	$\Omega(n^{2-o(1)}/\alpha^3)$



Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/lpha^4)$
[AKLY16]	$\tilde{O}(n^2/lpha^3)$	$\Omega(n^{2-o(1)}/lpha^3)$
[CCE+16]	$ ilde{\mathcal{O}}(\mathit{n}^2/lpha^3)$	
		I



Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/\alpha^4)$
[AKLY16]	$\tilde{O}(n^2/lpha^3)$	$\Omega(n^{2-o(1)}/\alpha^3)$
[CCE+16]	$ ilde{O}(n^2/lpha^3)$	
[DK20]		$\Omega(n^2/\alpha^3)$



- Best known upper bound: $\tilde{O}(n^2/\alpha^3)$ bits ([AKLY16])
- Best known lower bound: $\Omega(n^2/\alpha^3)$ bits ([DK20])
- Gap of polylog(n) bits
- These types of polylog(n) gaps appear frequently in dynamic streams
- One key reason is a main technique for finding edges in a dynamic streams

*L*₀-Samplers:

- It is non-trivial to find even one edge in a dynamic stream
- L_0 -Samplers are a key tool to solve this problem
- They can sample an edge uniformly at random from a set of pairs of vertices undergoing edge insertions and deletions

- L_0 -Samplers can be implemented in $O(\log^3 n)$ bits of space ([JST11])
- $\Omega(\log^3 n)$ bits are also necessary ([Kap+17])
- Many problems in streaming have the polylog(n) overhead because of the use of L_0 -samplers
- Connectivity has a lower bound of $\Omega(n \log^3 n)$ ([NY19])

We prove asymptotically optimal bounds on the space-approximation tradeoff:

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$

This closes the gap up to constant factors

Some problems do not need the polylog(n) overhead

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$

This closes the gap up to constant factors

Some problems do not need the polylog(n) overhead

If $\alpha > n^{1/2}$ then there is not enough space to output the answer:

$$\frac{n}{\alpha} > \frac{n^2}{\alpha^3}$$

Algorithm

We will now give a proof sketch

Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough

Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough

All these assumptions can be lifted!

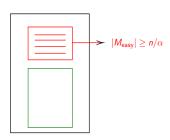
Approach

- Match or Sparsify:
 - Either find a large matching
 - Or identify hard instances
- Solve the hard instances

Note: We run these algorithms in parallel

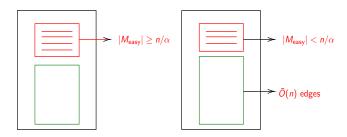
Match Or Sparsify

- Find a matching M_{easy} in space $O(n^2/\alpha^3)$ bits such that:
 - Either $|M_{\text{easy}}| = \Omega(n/\alpha)$



Match Or Sparsify

- Find a matching M_{easy} in space $O(n^2/\alpha^3)$ bits such that:
 - Either $|M_{\text{easy}}| = \Omega(n/\alpha)$
 - Or Subgraph induced on unmatched vertices has $\tilde{O}(n)$ edges and a matching of size $\Omega(n)$



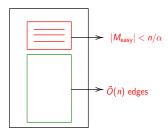
Match Or Sparsify

Idea:

- Sample $O(n^2/\alpha^3 \text{polylog}(n))$ random edges
- L_0 -samplers take space polylog(n)
- Measy is a greedy matching over the sampled edges
- Similar to residual greedy property of matching (used in [Ahn+18, Kon18])
- Different proof but along the same lines

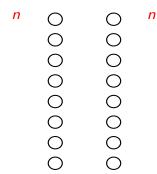
Solving Hard Instances

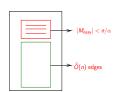
We know the partition at the end of the stream from Match Or Sparsify step



Grouping

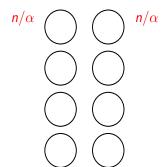
Consider the bipartite graph

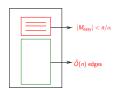




Grouping

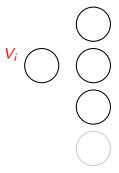
Random grouping on both sides

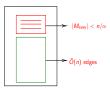




Grouping

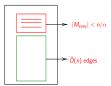
 $1/\alpha$ fraction of groups on right are in the neighborhood of V_i



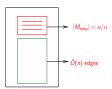


Done to reduce the neighbors of V_i

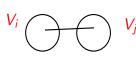
- There are $\Omega(n/\alpha)$ pairs of groups with exactly one edge between them
- V_i , V_j do not contain any vertices of M_{easy}

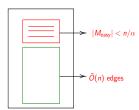


Want to recover the edge between V_i and V_j

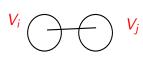


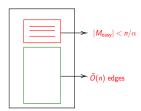
- V_i does not contain any vertices of M_{easy}
- Neighbors of V_i : $O(n/\alpha^2)$
- Trivial solution: $O((n/\alpha^2) \cdot \log n)$ bits





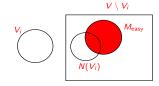
- Goal: $O(n/\alpha^2)$ bits
- So n/α groups will imply space of $O(n^2/\alpha^3)$ bits
- ullet V_j does not contain any vertices of $M_{\rm easy}$
- Recover $N(V_i) M_{\text{easy}}$

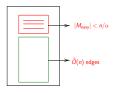




Sparse neighborhood recovery sketch

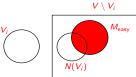
- Given V_i at the beginning
- Given Measy at the end
- Output: $N(V_i) M_{easy}$
- Space: $O(n/\alpha^2)$ bits



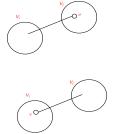


Grouping

 V_i lies completely within $N(V_i) - M_{\text{easy}}$



- We know u is a neighbor of V_i (from Neighborhood sketch of V_i)
- We know v is a neighbor of V_j (from Neighborhood sketch of V_j)
- Thus, (u, v) must be an edge



Concluding Remarks

• There is a dynamic streaming algorithm that whp outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space

- There is a dynamic streaming algorithm that whp outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space
- The lower bound of [DK20] is $\Omega(n^2/\alpha^3)$ bits making our algorithm optimal

- There is a dynamic streaming algorithm that whp outputs an α -approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space
- The lower bound of [DK20] is $\Omega(n^2/\alpha^3)$ bits making our algorithm optimal
- polylog(n) overhead of L_0 -samplers is not always necessary (Unlike [NY19])

Open Problems

- These polylog(n) overheads due to use of L_0 -samplers are prevalent in dynamic stream literature
- Can our techniques be used to bypass polylog(n) overheads for other problems:
 - E.g. Vertex Cover, Dominating Set, Vertex Connectivity

Open Problems

- These polylog(n) overheads due to use of L_0 -samplers are prevalent in dynamic stream literature
- Can our techniques be used to bypass polylog(n) overheads for other problems:
 - E.g. Vertex Cover, Dominating Set, Vertex Connectivity

Thank you!